Patterns of the Evolution of Aptychi of Middle Jurassic to Early Cretaceous Boreal Ammonites

Total Page:16

File Type:pdf, Size:1020Kb

Patterns of the Evolution of Aptychi of Middle Jurassic to Early Cretaceous Boreal Ammonites Swiss J Palaeontol DOI 10.1007/s13358-015-0110-1 Patterns of the evolution of aptychi of Middle Jurassic to Early Cretaceous Boreal ammonites 1 1 Mikhail A. Rogov • Aleksandr A. Mironenko Received: 27 March 2015 / Accepted: 1 November 2015 Ó Akademie der Naturwissenschaften Schweiz (SCNAT) 2015 Abstract Here we are providing a review of aptychi Stephanoceratoidea and Perisphinctoidea have aptychi records in ammonites of Boreal origin or that inhabited significantly smaller than the aperture diameter. Boreal/Subboreal basins during the Bathonian–Albian with special focus on new records and the relationship between Keywords Aptychi Á Jurassic Á Cretaceous Á Ammonites Á the evolution of ammonite conch and aptychi. For the first Evolution time we figure aptychi that belong to Aulacostephanidae, Virgatitidae, Deshayesitidae, Craspeditinae and Laugeiti- nae. A strong difference between aptychi of micro- and Introduction macroconchs of co-occurring Aspidoceratidae is shown, which, along with their shell morphologies suggests niche Aptychi are organic (in some cases with calcite layers of divergence of these dimorphs. Aptychi of Aptian Sinzovia variable thickness) and usually bivalved plates, associ- (Aconeceratidae) should be tentatively ascribed to Diday- ated with ammonites and considered as parts of the lower ilamellaptychus, while their previous assignment to rhyn- jaws albeit other functions are also widely discussed chaptychi was caused by misidentification. Aptychi of (Parent et al. 2014). During the nearly 200-year history Middle Jurassic–Early Cretaceous Boreal and Subboreal of aptychi research, a great number of formal species and ammonites are characterized by a very thin calcareous non- genera have been described. However, only uncommon porous outer layer lacking distinct ribs and tubercles (only records of aptychi were mentioned from the Boreal radial striae sometimes occur), and mainly should be Middle Jurassic to Early Cretaceous (e.g. Blake 1875; assigned to Praestriaptychus. Some ammonoid groups (i.e. Weerth 1884), and aptychi of many ammonite groups Ancylocerina and Desmoceratoidea) are characterized by (especially of those with Boreal and Subboreal affinities) the presence of different aptychi types irrespective of their remain unknown until now. Significant progress in the shell shape. This fact could indicate that bivalved praes- study of Boreal aptychi has been achieved over the last triaptychi could have easily transformed into single-valved decades in which numerous aptychi (including in situ ‘‘anaptychi’’ and vice versa. Size and form of aptychi in findings in ammonoid body chambers) were described relation to those of the aperture of ammonite conchs vary and/or figured (cf. Etches and Clarke 1999; Engeser and within different lineages and at least some Keupp 2002; Rogov and Gulyaev 2003; Rogov 2004a, b; Mitta and Keupp 2004; Keupp and Mitta 2013; Miro- nenko 2014). Aptychi–ammonite conch associations sometimes are used for reconstructing ammonite evolu- & Mikhail A. Rogov tion (Trauth 1927; Engeser and Keupp 2002). However, [email protected] aptychi records are still significantly incomplete, and the Aleksandr A. Mironenko ammonite phylogenetic tree based on aptychi distribution [email protected] contradicts some aspects of phylogenies based on other 1 Geological Institute of RAS, Pyzhevski Lane 7, Moscow, features, especially the sutural development (Rogov Russia 119017 2004a, b). M. A. Rogov, A. A. Mironenko Material correlation with international Tithonian and Berriasian stages remains unclear. In this study, we focus on little-known aptychi from Boreal Studied specimens are stored in the Moscow State and Subboreal areas (Fig. 1). Most of the studied speci- University Museum (MSU) and Vernadsky State Geolog- mens have been collected by the authors, and some spec- ical Museum of the Russian Academy of Sciences (SGM), imens or photos of aptychi were transferred to us by both in Moscow, Russia, with exception of those specimens colleagues. Studied aptychi were discovered within the which are available as photos thanks to the help of our body chambers of ammonites or ascribed to particular colleagues; the latter specimens are kept in the University ammonite groups due to their co-occurrences. As ammo- of Oslo (PMO, Norway), Cambridge Arctic Shelf Pro- nite diversity is relatively low in many stratigraphic levels gramme (CASP, Cambridge, UK) and Museum of Jurassic of the Boreal Jurassic (in many cases 1–2 genera belonging Marine Life (K, Kimmeridge, UK). to 1–2 families), such co-occurrences could help signifi- cantly even when aptychi are found separately from the conchs of the corresponding ammonite. In some cases (for Review and description of new aptychi records example, in suspected Middle Volgian virgatitid aptychi), a cross sections of ammonites versus aptychi relative length Stephanoceratoidea was also used to infer ammonite–aptychi relationships. In addition to newly collected material, we are also reviewing Cardioceratidae some recent records of aptychi in Boreal and Subboreal ammonites. Both in situ records of cardioceratid aptychi and their Systematics of higher ammonite taxa used herein is isolated occurrences are only known from the Lower based on Besnosov and Michailova (1991) with some Callovian of the European part of Russia (Mitta and Keupp additions from Kvantaliani et al. (1999) and Shevyrev 2004), while Late Callovian aptychi, which belong to (2006). As aptychi usually occurred outside the host conchs Quenstedtoceras, are also known from northern Poland and their relation to ammonoid taxa are unclear, generic (Lehmann 1972; Dzik 1986). Surprisingly, mass occur- and species names used for aptychi are separate from those rences of cardioceratids, which sometimes crowded the of ammonoid shells and treated as parataxa (Engeser and bedding planes in the Upper Oxfordian or Upper Kim- Keupp 2002). A brief description of major aptychi types is meridgian black shales are lacking cardioceratid aptychi, given by Engeser and Keupp (2002). albeit the Upper Oxfordian shales of the Kostroma region For the stages around the Jurassic/Cretaceous boundary, yielded perisphinctid aptychi. Taking reported uncalcified we are using the Volgian and Ryazanian as preferred cephalopod jaws into account, which co-occur with names, because these stages could be easily used for all numerous cardioceratids described by Dzik (1986) from the Boreal regions (cf. Rogov and Zakharov 2009), while their Upper Callovian of Poland and the absence of a calcitic Fig. 1 Map showing aptychi-bearing sites, specimens from which are Gorodischi, Ulianovsk, 10 Kashpir, Marievka, 11 Shirokij buerak, 12 figured or discussed. 1 Kuhn Island, 2 Janusfjellet Mt, Vasstak Elva, Kelevudagh Mt, 13 Veselovskaya 5 well, 14 Nordvik, 15 Cape Cape Festningen, 3 Sorkappland, 4 Kimmeridge Bay, 5 Eganovo, Hajryuzova Rybaki, 6 Ivanovskoe, Glebovo, 7 Mikhalenino, 8 Hvadukassy, 9 Patterns of the evolution of aptychi of Middle Jurassic to Early Cretaceous Boreal ammonites layer in the Early Callovian ones, cardioceratid aptychi conch (Keupp and Mitta 2013, Fig. 13e). Similar aptychi could have been fully organic and their absence might be were also found within the body chamber of the Late primarily taphonomic in the Upper Jurassic. The shape of Bathonian Homoeoplanulites from NE Iran (Seyed-Emami cardioceratid aptychi allows them to be described as and Schairer 2011, Fig. 3B). A poorly preserved Praes- Praestriaptychus Trauth, 1927. triaptychus was also discovered associated with Elatmites (Grossouvriinae, Keupp and Mitta 2013, Fig. 21). Upper Kosmoceratidae Oxfordian clays and black shales, intensively studied in the Kostroma region of European Russia during the last decade Numerous occurrences of kosmoceratid aptychi have (Glowniak et al. 2010; Tesakova et al. 2012), are also become known since recently. Schweigert (2000) described known as a source of the suspected perisphinctid aptychi. an in situ record of Kosmogranulaptychus Rogov, 2004a Praestriaptychus was usually found in black shales as (originally referred by Schweigert to Granulaptychus isolated plates (Fig. 3f), but in situ findings are also known. Trauth, 1927) within the body chamber of Late Callovian The in situ occurrence of relatively small-sized Praestri- Kosmoceras. A few years later, the suggested kosmoceratid aptychus within the body chamber of Dichotomosphinctes aptychi, which were assigned to this family by co-occur- from the Upper Oxfordian Serratum Zone of Mikhalenino rence of conchs with corresponding aptychi, were descri- (Kostroma region, Fig. 2n) is the most interesting among bed from the Upper Bathonian (Mitta 2009) and Middle these records. Ataxioceratid ammonites were mainly typi- Callovian (Rogov 2004a, b) of the Russian Platform. cal for Sub-mediterranean areas, except their short-lived Finally, Keupp and Mitta (2013) described and illustrated Subboreal offshoot, separated as the subfamily Gravesiinae both isolated and well-preserved in situ aptychi of Early by Zeiss (in Fischer and Zeiss 1987). Aptychi were Callovian kosmoceratids. It should be noted that generic recorded in Early Volgian Gravesia gigas from Northern classification of kosmoceratid aptychi still remains unclear, France (Boulogne-sur-Mer, see Hahn 1963, pl. 13, Fig. 1), as in some cases, they are represented by internal moulds and isolated aptychi co-occurred with Gravesia gravesiana without any traces of a calcitic layer, thus they could be in Swabia (Scherzinger et al. 2006). These aptychi should assigned
Recommended publications
  • Contributions in BIOLOGY and GEOLOGY
    MILWAUKEE PUBLIC MUSEUM Contributions In BIOLOGY and GEOLOGY Number 51 November 29, 1982 A Compendium of Fossil Marine Families J. John Sepkoski, Jr. MILWAUKEE PUBLIC MUSEUM Contributions in BIOLOGY and GEOLOGY Number 51 November 29, 1982 A COMPENDIUM OF FOSSIL MARINE FAMILIES J. JOHN SEPKOSKI, JR. Department of the Geophysical Sciences University of Chicago REVIEWERS FOR THIS PUBLICATION: Robert Gernant, University of Wisconsin-Milwaukee David M. Raup, Field Museum of Natural History Frederick R. Schram, San Diego Natural History Museum Peter M. Sheehan, Milwaukee Public Museum ISBN 0-893260-081-9 Milwaukee Public Museum Press Published by the Order of the Board of Trustees CONTENTS Abstract ---- ---------- -- - ----------------------- 2 Introduction -- --- -- ------ - - - ------- - ----------- - - - 2 Compendium ----------------------------- -- ------ 6 Protozoa ----- - ------- - - - -- -- - -------- - ------ - 6 Porifera------------- --- ---------------------- 9 Archaeocyatha -- - ------ - ------ - - -- ---------- - - - - 14 Coelenterata -- - -- --- -- - - -- - - - - -- - -- - -- - - -- -- - -- 17 Platyhelminthes - - -- - - - -- - - -- - -- - -- - -- -- --- - - - - - - 24 Rhynchocoela - ---- - - - - ---- --- ---- - - ----------- - 24 Priapulida ------ ---- - - - - -- - - -- - ------ - -- ------ 24 Nematoda - -- - --- --- -- - -- --- - -- --- ---- -- - - -- -- 24 Mollusca ------------- --- --------------- ------ 24 Sipunculida ---------- --- ------------ ---- -- --- - 46 Echiurida ------ - --- - - - - - --- --- - -- --- - -- - - ---
    [Show full text]
  • Newsletter 35/2, December 2008
    INTERNATIONAL SUBCOMMISSION ON JURASSIC STRATIGRAPHY http://jurassic.earth.ox.ac.uk/ Newsletter 35/2, December 2008 Edited by Nicol Morton and Stephen Hesselbo Prospective GSSP for base Toarcian, Peniche, Portugal (photo: S. P. Hesselbo) CONTENTS EX-CHAIRMAN’S REPORT Nicol Morton 1 NEWS ITEMS AND MEETINGS 8th International Congress on the Jurassic System, Shehong of Suining, China August 2010 Jingeng Sha and Yongdong Wang 4 IGCP506: Marine and Non-marine Jurassic: Report on 5th International Symposium, Hammamet, Tunisia, 28-31 March 2008-11-15 Nicol Morton 5 REPORTS OF WORKING GROUPS Pliensbachian Christian Meister 7 Bathonian Sixto R. Fernandez Lopez 9 Callovian John Callomon 12 Kimmeridgian Andrzej Wierzbowski 14 Tithonian Federico Oloriz and Günther Schweigert 20 Geoconservation Kevin Page 21 Liaison Robert Chandler 27 CORRESPONDENCE Session on the Jurassic System at the 2007 annual meeting of the Geological Society of Japan. Atsushi Matsuoka 30 Annual meeting of the German Subcommission on Jurassic Stratigraphy, Bamberg (Bavaria) 22-24 May 2008. Eckhard Mönnig 31 Trans-border (S.E. Serbia/S.W. Bulgaria) correlation of Jurassic sediments – a new bilateral project. Platon Tchoumatchenko 32 BOOK ANNOUNCEMENTS Stratigraphy: Terminology and Practice. J. Rey and S. Galeotti (eds.) 2008, Technip Édit. BRGM-Total 176p. Jacques Thierry 41 Proceedings of the Geologists’ Association vol. 119, Part 1, 2008, Special Issue on the Jurassic edited by Beris M. Cox and Michael G. Sumbler Nicol Morton 42 IN MEMORIAM Larbi MEKHALI (1952-2008) Abbas Marok 43 René MOUTERDE (1915–2007) Christiane Ruget 45 Colin F. PARSONS (1945-2008) Robert Chandler 47 Bruce W. SELLWOOD (1946-2007) Tony Hallam 50 EX-CHAIRMAN’S REPORT Nicol MORTON The Jurassic Subcommission and the [email protected] international Jurassic community in general have the advantages of two changes of I am happy to report to you all that this is my personnel at the same time as the advent of last such Report in the ISJS Newsletter.
    [Show full text]
  • 1501 Rogov.Vp
    Aulacostephanid ammonites from the Kimmeridgian (Upper Jurassic) of British Columbia (western Canada) and their significance for correlation and palaeobiogeography MIKHAIL A. ROGOV & TERRY P. POULTON We present the first description of aulacostephanid (Perisphinctoidea) ammonites from the Kimmeridgian of Canada, and the first illustration of these ammonites in the Americas. These ammonites include Rasenia ex gr. cymodoce, Zenostephanus (Xenostephanoides) thurrelli, and Zonovia sp. A from British Columbia (western Canada). They belong to genera that are widely distributed in the subboreal Eurasian Arctic and Northwest Europe, and they also occur even in those Boreal regions dominated by cardioceratids. They are important markers for a narrow stratigraphic interval in the Cymodoce Zone (top of Lower Kimmeridgian) and the lower part of the Mutabilis Zone (base of Upper Kimmeridgian) of the Northwest European standard succession. In Spitsbergen and Franz Josef Land, the only Upper Kimmeridgian aulacostephanid-bearing level is the Zenostephanus (Zenostephanus) sachsi biohorizon, which very likely belongs to the Mutabilis Zone. Expansion of Zenostephanus from Eurasia, where it is present over a large area, into British Columbia, is approximately correlative with a transgressive event that also led to expansion of the Submediterranean ammonite ge- nus Crussoliceras through the Submediterranean and Subboreal areas slightly before Zenostephanus. • Key words: Kimmeridgian, aulacostephanids, Zenostephanus, Rasenia, British Columbia, palaeobiogeography, sea-level changes. ROGOV, M.A. & POULTON, T.P. 2015. Aulacostephanid ammonites from the Kimmeridgian (Upper Jurassic) of British Columbia (western Canada) and their significance for correlation and palaeobiogeography. Bulletin of Geosciences 90(1), 7–20 (5 figures). Czech Geological Survey, Prague. ISSN 1214-1119. Manuscript received January 31, 2014; ac- cepted in revised form October 2, 2014; published online November 25, 2014; issued January 26, 2015.
    [Show full text]
  • Ammonites and Dinoflagellate Cysts in the Upper Oxfordian and Kimmeridgian of the Northeastern Norwegian Sea (Nordland VII Offsh
    N. Jb. Geol. Paläont. Abh. 226 (2) 145 -164 Stuttgart, November 2002 Ammonites and dinoflagellate cysts in the Upper Oxfordian and Kimmeridgian of the northeastern Norwegian Sea (Nordland VII offshore area): biostratigraphical and biogeographical significance Andrzej Wierzbowski, Warszawa, Morten Smelror and Atle Merk, Trondheim With 5 figures WIERZBOWSKI, A., SMELROR, M. & MORK, A. (2002): Ammonites and dinoflagellate cysts in the Upper Oxfordian and Kimmeridgian of the northeastern Norwegian Sea (Nordland VII offshore area): biostratigraphic and biogeographical significance. - N. Jb. Geol. Paläont. Abh., 226: 145-164; Stuttgart. Abstract: Ammonites and dinoflagellate cysts recovered from Upper Oxfordian and Kimmeridgian deposits in a core 6814/04-U-01 from offshore northern Nordland, Norway, allow a detailed biostratigraphic subdivision of the studied sequence. The numerous ammonites of the families Cardioceratidae and Aulacostephanidae found in the Kimmeridgian strata show both Boreal and Subboreal affinities and allow a correlation with the standard Boreal and Subboreal biostratigraphic zonations. The Kimmeridgian ammonite fauna from offshore northern Nordland shows an inter- mediate character between the Subboreal fauna of Northwest Europe and the Boreal fauna of the southern Barents Shelf and Svalbard. The dinoflagellate cyst assem- blages are typically of low diversity and are related to the Upper Jurassic Boreal/ Arctic Paragonyaulacysta borealis assemblage. They apparently seem to show the same type of provincialism within the "Kimmeridge Clay Sea" as the ammo- nites. Zusammenfassung: Ammoniten und Dinoflagellatenzysten aus Ablagerungen des Oberen Oxford und des Kimmeridge in dem vor der Küste des nördlichen Teils der Provinz Nordland (Explorationsgebiet Nordland VII), Norwegen, genommenen Bohrkern 6814/04-U-01 erlauben eine detaillierte Unterteilung der untersuchten Schichtenfolge.
    [Show full text]
  • The Middle Oxfordian to Lowermost Kimmeridgian Ammonite
    Volumina Jurassica, 2010, Viii: 5–48 The Middle Oxfordian to lowermost Kimmeridgian ammonite succession at Mikhalenino (Kostroma District) of the Russian Platform, and its stratigraphical and palaeobiogeographical importance Ewa GŁOWNIAK1, Dmitry N. KISELEV2, Mikhail ROGOV3, Andrzej WIERZBOWSKI1, John K. WRIGHT4 Key words: ammonites, biostratigraphy, Boreal zonation, Subboreal zonation, Submediterranean zonation, correlation, Oxfordian/ Kimmeridgian boundary. Abstract. The Mikhalenino section on the Russian Platform has yielded numerous ammonites from the Middle and Upper Oxfordian and lowermost Kimmeridgian, collected bed by bed. The ammonites belong mostly to the Boreal family Cardioceratidae, but also to the Sub- boreal family Aulacostephanidae; additionally at some levels there were collected various Submediterranean ammonites (Perisphinctidae, Oppeliidae and Aspidoceratidae). The co-occurrence of ammonites representative of different faunal provinces makes possible recognition of the Boreal, Subboreal, and partly also Submediterranean standard zonations. In consequence, it is possible to make a close correlation between these zonal schemes. The Oxfordian/Kimmeridgian boundary at the Pseudocordata/Baylei zonal boundary of the Subboreal zonal scheme corresponds precisely to the Rosenkrantzi/Bauhini zonal boundary. This boundary of the stages defined well faunistically in the Flodigarry section (Isle of Skye, Scotland) and proposed as a candidate for the uniform Oxfordian/Kimmeridgian boundary, can be also recognized in the Russian sec- tion studied. The boundary can be traced in the Mikhalenino section using the same criteria as used at Staffin: the appearance of the first representatives of Pictonia [M]–Prorasenia [m] (Subboreal), and the first appearance of Amoeboceras (Plasmatites) (Boreal). This indi- cates the large correlation potential of the boundary defined in this way. The research on the Mikhalenino section has provided the new palaeontological findings described in this study.
    [Show full text]
  • Sepkoski, J.J. 1992. Compendium of Fossil Marine Animal Families
    MILWAUKEE PUBLIC MUSEUM Contributions . In BIOLOGY and GEOLOGY Number 83 March 1,1992 A Compendium of Fossil Marine Animal Families 2nd edition J. John Sepkoski, Jr. MILWAUKEE PUBLIC MUSEUM Contributions . In BIOLOGY and GEOLOGY Number 83 March 1,1992 A Compendium of Fossil Marine Animal Families 2nd edition J. John Sepkoski, Jr. Department of the Geophysical Sciences University of Chicago Chicago, Illinois 60637 Milwaukee Public Museum Contributions in Biology and Geology Rodney Watkins, Editor (Reviewer for this paper was P.M. Sheehan) This publication is priced at $25.00 and may be obtained by writing to the Museum Gift Shop, Milwaukee Public Museum, 800 West Wells Street, Milwaukee, WI 53233. Orders must also include $3.00 for shipping and handling ($4.00 for foreign destinations) and must be accompanied by money order or check drawn on U.S. bank. Money orders or checks should be made payable to the Milwaukee Public Museum. Wisconsin residents please add 5% sales tax. In addition, a diskette in ASCII format (DOS) containing the data in this publication is priced at $25.00. Diskettes should be ordered from the Geology Section, Milwaukee Public Museum, 800 West Wells Street, Milwaukee, WI 53233. Specify 3Y. inch or 5Y. inch diskette size when ordering. Checks or money orders for diskettes should be made payable to "GeologySection, Milwaukee Public Museum," and fees for shipping and handling included as stated above. Profits support the research effort of the GeologySection. ISBN 0-89326-168-8 ©1992Milwaukee Public Museum Sponsored by Milwaukee County Contents Abstract ....... 1 Introduction.. ... 2 Stratigraphic codes. 8 The Compendium 14 Actinopoda.
    [Show full text]
  • Abstracts and Program. – 9Th International Symposium Cephalopods ‒ Present and Past in Combination with the 5Th
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/265856753 Abstracts and program. – 9th International Symposium Cephalopods ‒ Present and Past in combination with the 5th... Conference Paper · September 2014 CITATIONS READS 0 319 2 authors: Christian Klug Dirk Fuchs University of Zurich 79 PUBLICATIONS 833 CITATIONS 186 PUBLICATIONS 2,148 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Exceptionally preserved fossil coleoids View project Paleontological and Ecological Changes during the Devonian and Carboniferous in the Anti-Atlas of Morocco View project All content following this page was uploaded by Christian Klug on 22 September 2014. The user has requested enhancement of the downloaded file. in combination with the 5th International Symposium Coleoid Cephalopods through Time Abstracts and program Edited by Christian Klug (Zürich) & Dirk Fuchs (Sapporo) Paläontologisches Institut und Museum, Universität Zürich Cephalopods ‒ Present and Past 9 & Coleoids through Time 5 Zürich 2014 ____________________________________________________________________________ 2 Cephalopods ‒ Present and Past 9 & Coleoids through Time 5 Zürich 2014 ____________________________________________________________________________ 9th International Symposium Cephalopods ‒ Present and Past in combination with the 5th International Symposium Coleoid Cephalopods through Time Edited by Christian Klug (Zürich) & Dirk Fuchs (Sapporo) Paläontologisches Institut und Museum Universität Zürich, September 2014 3 Cephalopods ‒ Present and Past 9 & Coleoids through Time 5 Zürich 2014 ____________________________________________________________________________ Scientific Committee Prof. Dr. Hugo Bucher (Zürich, Switzerland) Dr. Larisa Doguzhaeva (Moscow, Russia) Dr. Dirk Fuchs (Hokkaido University, Japan) Dr. Christian Klug (Zürich, Switzerland) Dr. Dieter Korn (Berlin, Germany) Dr. Neil Landman (New York, USA) Prof. Pascal Neige (Dijon, France) Dr.
    [Show full text]
  • Vol. 33, N° 1, 2014
    1661-5468 VOL. 33, N° 1, 2014 Revue de Paléobiologie, Genève (juin 2014) 33 (1) : 1-37 ISSN 0253-6730 Les Aulacostephanidae du Kimméridgien supérieur : systématique, évolution et biochronologie Laurent BORRELLI 20 av. Jean Giono, résidence Bernadette F15, F-13090 Aix-en-Provence, France. E-mail : [email protected] Résumé La famille des Aulacostephanidae du Kimméridgien supérieur a fait l’objet d’une première révision depuis Ziegler (1962), à partir d’un matériel nouveau et inédit du Quercy et des Charentes rigoureusement repéré d’un point de vue stratigraphique, et sur la base des nombreuses découvertes et actualisations effectuées ces dernières années à travers l’Europe. Une simplification taxinomique importante est réalisée par cette révision, en l’abordant selon des concepts actuels s’appuyant sur une approche ontogénétique des espèces et sur la reconnaissance des dimorphes. L’échelle biochronologique et les corrélations stra- tigraphiques en Europe sont affinées par le repositionnement de la sous-zone à Orthocera dans la zone à Mutabilis, par la création d’un nouvel horizon à Eudoxus, et par la nouvelle appelation de « zone à Volgensis » pour l’ancienne zone à Autissiodorensis. Une biochronologie exclusivement fondée sur les Aulacostephanidae est proposée pour le haut-fond ouest-européen. Les nouvelles données biogéographiques et évolutives permettent de proposer une nouvelle interprétation de la différenciation et de l’évolution des lignées, composée de lignées anagénétiques donnant successivement naissance à de courtes lignées dérivées. Cette approche fait des Aulacos- tephanoides, Aulacostephanus, Aulacostephanoceras et des Pararasenia des sous-genres et genres monophylétiques. Mots-clés Ammonoidea, Aulacostephanoides, Aulacostephanus, Aulacostephanoceras, Pararasenia, Kimméridgien supérieur, Biochronologie, Evolution.
    [Show full text]
  • 9Th International Congress on the Juras Ic Ys Em, Jaipur, India Abstracts
    9th International Congress on the Juras ic ys em, Jaipur, India Abstracts 9th International Congress on the Jurassic System, Jaipur, India Abstracts Dhirendra K. Pandey, Franz T. Fiirsich & Matthias Alberti (Eds.) Beringeria Special Issue 8 - Erlangen 2 014 Cover photographs Front: The facade of the Hawa Mahal or Palace of Winds in Jaipur. Back: A mural in the Nahargarh Fort near Jaipur. Addresses of the editors: DHIRENDRA K. PANDEY, Department of Geology, University of Rajasthan, Jaipur, 302004, India; E-mail: [email protected] FRANZ T. FiiRSICH, GeoZentrum Nordbayern, Fachgruppe PaUioumwelt der Friedrich-Alexander­ Universitat Erlangen-Niirnberg, Loewenichstr. 28, D-91054 Erlangen, Germany; E-mail: franz. [email protected] MATTHIAS ALBERTI, Institut fiir Geowissenschaften, Christian-Albrechts-Universitat zu Kiel, Ludewig-Meyn-Str. 10, D-24118 Kiel, Germany; E-mail: [email protected] Beringeria, Special Issue 8: 213 pages Erlangen, 01.12.2013 ISSN 093 7-0242 Publisher: Freunde der nordbayerischen Geowissenschaftene. V. Editorial Office: GeoZentrum Nordbayern, Fachgruppe Palaoumwelt, Friedrich-Alexander-Universitat Erlangen-N iirnberg Loewenichstr. 28, D-91054 Erlangen, Germany. Print: Tiwari Printers Jhotwara,Jaipur, 302012, India. 9th International Congress on the Jurassic System - Abstracts 3 Contents A sequence stratigraphic interpretation of the contact between the Lathi and 11 Jaisalmer formations, Jaisalmer Basin, Rajasthan, India by A. Agarwal, A. S. Kale & P. B. Jadhav Ammonites of the family Mayaitidae SPATH, 1928 from the Oxfordian of Kachchh, 13 western India by M. Alberti, D. K. Pandey,M. Hethke & F. T. Fiirsich Stratigraphy, facies analysis and reservoir characterization of the Upper Jurassic 16 Arab "C", Qatar, Arabian Gulf by H. Al-Saad & F.
    [Show full text]
  • Towards a Consistent Oxfordian-Kimmeridgian Global
    Towards a consistent Oxfordian-Kimmeridgian global boundary: current state of knowledge Andrzej Wierzbowski 1, Francois Atrops 2, Jacek Grabowski 1, Mark Hounslow 3, Bronisław A.Matyja 4, Federico Olóriz 5, Kevin Page 6, Horacio Parent 7, Mikhail A. Rogov 8, Günter Schweigert 9, Hubert Wierzbowski 1, John K. Wright 10 1 Polish Geological; Institute – National Research Institute, 4, Rakowiecka Str., 00-975 Warszawa, Poland, e-mail: [email protected] , [email protected] , [email protected] ; 2 UFR Sciences de la Terre, Université Claude-Bernard Lyon 1, 43 bd.du 11 Novembre, 69622 Villeurbanne Cedex, e-mail: francois.atrops@univ- lyon1.fr ; 3CEMP, Lancaster Environment Centre, Lancaster University, UK, e-mail: [email protected] ; 4 Faculty of Geology, University of Warsaw, 93, Żwirki i Wigury Str., 02-089 Warszawa, Poland, e-mail: [email protected] ; 5 Department of Stratigraphy and Paleontology, Faculty of Sciences, University of Granada, Av. Fuentenueva s/n, 1807 Granada, Spain, e-mail: [email protected]; 6 School of Geography, Earth and Environmental Sciences, University of Plymouth, Drakes Circus, Plymouth PL4 8AA, UK, e- mail: [email protected] ; 7 Laboratorio de Paleontologia IFG, FCEIA Universidad Nacional de Rosario, pellegrini 259-0, 2000 Rosario, Argentina, e-mail: [email protected],edu.ar ; 8 Geological Institute of Russian Academy of Sciences, 7, Pyzhevskii Lane, 119017 Moscow, Russia; e-mail: [email protected] ; 9Staatliches Museum für Naturkunde, 1, Rosenstein, 70-191Stuttgart, Germany; e-mail: [email protected] ;10 Department of Earth Sciences, Royal Holloway College, Egham, Surrey, U.K.
    [Show full text]
  • Patterns of the Evolution of Aptychi of Middle Jurassic to Early Cretaceous Boreal Ammonites
    Swiss J Palaeontol (2016) 135:139–151 DOI 10.1007/s13358-015-0110-1 Patterns of the evolution of aptychi of Middle Jurassic to Early Cretaceous Boreal ammonites 1 1 Mikhail A. Rogov • Aleksandr A. Mironenko Received: 27 March 2015 / Accepted: 1 November 2015 / Published online: 27 November 2015 Ó Akademie der Naturwissenschaften Schweiz (SCNAT) 2015 Abstract Here we are providing a review of aptychi Stephanoceratoidea and Perisphinctoidea have aptychi records in ammonites of Boreal origin or that inhabited significantly smaller than the aperture diameter. Boreal/Subboreal basins during the Bathonian–Albian with special focus on new records and the relationship between Keywords Aptychi Á Jurassic Á Cretaceous Á Ammonites Á the evolution of ammonite conch and aptychi. For the first Evolution time we figure aptychi that belong to Aulacostephanidae, Virgatitidae, Deshayesitidae, Craspeditinae and Laugeiti- nae. A strong difference between aptychi of micro- and Introduction macroconchs of co-occurring Aspidoceratidae is shown, which, along with their shell morphologies suggests niche Aptychi are organic (in some cases with calcite layers of divergence of these dimorphs. Aptychi of Aptian Sinzovia variable thickness) and usually bivalved plates, associ- (Aconeceratidae) should be tentatively ascribed to Diday- ated with ammonites and considered as parts of the lower ilamellaptychus, while their previous assignment to rhyn- jaws albeit other functions are also widely discussed chaptychi was caused by misidentification. Aptychi of (Parent et al. 2014). During the nearly 200-year history Middle Jurassic–Early Cretaceous Boreal and Subboreal of aptychi research, a great number of formal species and ammonites are characterized by a very thin calcareous non- genera have been described.
    [Show full text]
  • On the Oxfordian/Kimmeridgian Boundary and Its GSSP – Current State of Knowledge
    Volumina Jurassica, 2010, Viii: 177–182 On the Oxfordian/Kimmeridgian boundary and its GSSP – current state of knowledge Andrzej WIERZBOWSKI1 (Convenor of the Kimmeridgian W.G.) An ample report presenting the current progress in recognition of the Global Stratotype Section and Point (GSSP) for the base of the Kimmeridgian Stage has been presented in the last issue of ISJS Newsletter (Wierzbowski, 2008). It should be remembered that the Flodigarry section at Staffin Bay in Skye, northern Scotland, has been accepted both by the Kimmeridgian Working Group, and the International Subcommission on Jurassic Stratigraphy as the pri- mary standard for the Kimmeridgian Stage with its base located at the base of the Subboreal Baylei ammonite Zone. The only problem (and the most complicated one) which is still unresolved is which of the two ammonite horizons based on successive members of the genus Pictonia marks the base of the Baylei Zone: the flodigarriensishorizon or, lying directly above, the densicostata horizon (Fig. 1; see also Matyja et al., 2006; Wierzbowski et al., 2006 where the horizons and the section in question are described in detail). New biostratigraphical data from other sections (cores from Barents Sea and Norwegian Sea, the Nordvik section of northern Siberia, the Unzha River section of the Kostroma District of Russian Platform) revealed a larger correla- tion potential for the base of the flodigarriensis horizon than the base of the densicostata horizon, and thus its larger significance in recognition of the base of the Kimmeridgian Stage in the Subboreal and Boreal areas of Arctic, as well as northern Europe and northern Asia (Wierzbowski, Smelror, 1993; Wierzbowski et al., 2002; Rogov, Wierzbowski, 2009; Głowniak et al., 2010).
    [Show full text]