The Middle Oxfordian to Lowermost Kimmeridgian Ammonite
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Post-Carboniferous Stratigraphy, Northeastern Alaska by R
Post-Carboniferous Stratigraphy, Northeastern Alaska By R. L. DETTERMAN, H. N. REISER, W. P. BROSGE,and]. T. DUTRO,JR. GEOLOGICAL SURVEY PROFESSIONAL PAPER 886 Sedirnentary rocks of Permian to Quaternary age are named, described, and correlated with standard stratigraphic sequences UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON 1975 UNITED STATES DEPARTMENT OF THE INTERIOR ROGERS C. B. MORTON, Secretary GEOLOGICAL SURVEY V. E. McKelvey, Director Library of Congress Cataloging in Publication Data Detterman, Robert L. Post-Carboniferous stratigraphy, northeastern Alaska. (Geological Survey Professional Paper 886) Bibliography: p. 45-46. Supt. of Docs. No.: I 19.16:886 1. Geology-Alaska. I. Detterman, Robert L. II. Series: United States. Geological Survey. Professional Paper 886. QE84.N74P67 551.7'6'09798 74-28084 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 Stock Number 024-001-02687-2 CONTENTS Page Page Abstract __ _ _ _ _ __ __ _ _ _ _ _ _ _ _ _ _ _ _ __ __ _ _ _ _ _ _ __ __ _ _ __ __ __ _ _ _ _ __ 1 Stratigraphy__:_Continued Introduction __________ ----------____ ----------------____ __ 1 Kingak Shale ---------------------------------------- 18 Purpose and scope ----------------------~------------- 1 Ignek Formation (abandoned) -------------------------- 20 Geographic setting ------------------------------------ 1 Okpikruak Formation (geographically restricted) ________ 21 Previous work and acknowledgments ------------------ 1 Kongakut Formation ---------------------------------- -
The Middle Jurassic of Western and Northern Europe: Its Subdivisions, Geochronology and Correlations
The Middle Jurassic of western and northern Europe: its subdivisions, geochronology and correlations John H. Callomon The palaeogeographic settings of Denmark and East Greenland during the Middle Jurassic are outlined. They lay in the widespread epicontinental seas that covered much of Europe in the post-Triassic transgression. It was a period of continuing eustatic sea-level rise, with only distant connections to world oceans: to the Pacific, via the narrow Viking Straits between Greenland and Norway and hence the arctic Boreal Sea to the north; and to the subtropical Tethys, via some 1200 km of shelf-seas to the south. The sedimentary history of the region was strongly influenced by two factors: tectonism and climate. Two modes of tectonic movement governed basinal evolution: crustal extension lead- ing to subsidence through rifting, such as in the Viking and Central Grabens of the North Sea; and subcrustal thermal upwelling, leading to domal uplift and the partition of marine basins through emergent physical barriers, as exemplified by the Central North Sea Dome with its associated volcanics. The climatic gradient across the 30º of temperate latitude spanned by the European seas governed biotic diversity and biogeography, finding expression in rock-forming biogenic carbonates that dominate sediments in the south and give way to largely siliciclastic sediments in the north. Geochronology of unrivalled finesse is provided by standard chronostratigraphy based on the biostratigraphy of ammonites. The Middle Jurassic saw the onset of considerable bioprovincial endemisms in these guide-fossils, making it necessary to construct parallel standard zonations for Boreal, Subboreal or NW European and Submediterranean Provinces, of which the NW European zonation provides the primary international standard. -
Information About the Authors
Ярославский педагогический вестник – 2015 – № 6 INFORMATION ABOUT THE AUTHORS Abaturova Vera Sergeevna – Candidate of Peda- Belkina Tamara Leonidovna – Candidate of gogical Sciences, Head of the Educational and In- Philosophic Sciences, Associate Professor, Professor formation Technologies Department of the Southern of the Philosophy and Political Science Department Mathematical Institute of Vladikavkaz Scientific of FSBEI HPE «Kostroma State University named Center of the Russian Academy of Sciences, the Re- after N. A. Nekrasov». 156961, Kostroma, 1-st May public of Noth Ossetia – Alania. 362027, Vladikav- Street, 14. kaz, Markus Street, 22. E-mail: [email protected] E-mail: [email protected] Belova Irina Sergeevna – Candidate of Philo- Azov Andrey Vadimovich – Doctor of Philosoph- sophic Sciences, Professor of the General Humani- ic Sciences, Professor, Head of the Philosophy De- ties and Study of Theatre Department of FSBEI HPE partment of FSBEI HPE «Yaroslavl State Pedagogi- «Yaroslavl State Theatrical Institute». 150000, Ya- cal University named after K. D. Ushinsky». roslavl, Pervomayskaya Street, 43. 150000, Yaroslavl, Respublikanskaya Street, 108. E-mail: [email protected] E-mail: [email protected] Budakhina Nadezhda Leonidovna – Candidate Bazikov Mikhail Vasilievich – an applicant of of Pedagogical Sciences, Associate Professor of the the General and Social Psychology Department of Economics and Management Department of FSBEI FSBEI HPE «Yaroslavl State Pedagogical Universi- HPE «Yaroslavl State Pedagogical University -
New Records of Lichens and Allied Fungi from the Kostroma Region, Russia
Folia Cryptog. Estonica, Fasc. 56: 53–62 (2019) https://doi.org/10.12697/fce.2019.56.06 New records of lichens and allied fungi from the Kostroma Region, Russia Irina Urbanavichene1 & Gennadii Urbanavichus2 1Komarov Botanical Institute RAS, Professor Popov Str. 2, 197376 St Petersburg, Russia. E-mail: [email protected] 2Institute of North Industrial Ecology Problems, Kola Science Centre RAS, Akademgorodok 14a, 184209 Apatity, Murmansk Region, Russia. E-mail: [email protected] Abstract: 29 species of lichens, 3 non-lichenized calicioid fungi and 3 lichenicolous fungi are reported for the first time from the Kostroma Region. Among them, 15 species are new for the Central Federal District, including Myrionora albidula – a rare species with widely scattered locations, previously known only from the Southern Urals Mts in European Russia. The most important discoveries are confined to old-growth coniferous Picea sp. and Abies sibirica forests in the Kologriv Forest Nature Reserve. Two species (Leptogium burnetiae and Menegazzia terebrata) are included in the Red Data Book of Russian Federation. The distribution, ecology, taxonomic characters and conservation status of rare species and of those new for the Central Federal District are provided. Keywords: Biatora mendax, Myrionora albidula, old-growth forests, southern taiga, Kologriv Forest Reserve, Central European Russia INTRODUCTION The Kostroma Region is a large (60,211 km2), berniya, listing 39 and 54 taxa, respectively. most northeastern part of the Central Federal The recent published additions to the Kostroma District in European Russia situated between lichen flora are from the Kologriv District by Ivanovo, Yaroslavl, Vologda, Kirov and Nizhniy Novgorod regions (Fig. -
Schmitz, M. D. 2000. Appendix 2: Radioisotopic Ages Used In
Appendix 2 Radioisotopic ages used in GTS2020 M.D. SCHMITZ 1285 1286 Appendix 2 GTS GTS Sample Locality Lat-Long Lithostratigraphy Age 6 2s 6 2s Age Type 2020 2012 (Ma) analytical total ID ID Period Epoch Age Quaternary À not compiled Neogene À not compiled Pliocene Miocene Paleogene Oligocene Chattian Pg36 biotite-rich layer; PAC- Pieve d’Accinelli section, 43 35040.41vN, Scaglia Cinerea Fm, 42.3 m above base of 26.57 0.02 0.04 206Pb/238U B2 northeastern Apennines, Italy 12 29034.16vE section Rupelian Pg35 Pg20 biotite-rich layer; MCA- Monte Cagnero section (Chattian 43 38047.81vN, Scaglia Cinerea Fm, 145.8 m above base 31.41 0.03 0.04 206Pb/238U 145.8, equivalent to GSSP), northeastern Apennines, Italy 12 28003.83vE of section MCA/84-3 Pg34 biotite-rich layer; MCA- Monte Cagnero section (Chattian 43 38047.81vN, Scaglia Cinerea Fm, 142.8 m above base 31.72 0.02 0.04 206Pb/238U 142.8 GSSP), northeastern Apennines, Italy 12 28003.83vE of section Eocene Priabonian Pg33 Pg19 biotite-rich layer; MASS- Massignano (Oligocene GSSP), near 43.5328 N, Scaglia Cinerea Fm, 14.7 m above base of 34.50 0.04 0.05 206Pb/238U 14.7, equivalent to Ancona, northeastern Apennines, 13.6011 E section MAS/86-14.7 Italy Pg32 biotite-rich layer; MASS- Massignano (Oligocene GSSP), near 43.5328 N, Scaglia Cinerea Fm, 12.9 m above base of 34.68 0.04 0.06 206Pb/238U 12.9 Ancona, northeastern Apennines, 13.6011 E section Italy Pg31 Pg18 biotite-rich layer; MASS- Massignano (Oligocene GSSP), near 43.5328 N, Scaglia Cinerea Fm, 12.7 m above base of 34.72 0.02 0.04 206Pb/238U -
Demographic, Economic, Geospatial Data for Municipalities of the Central Federal District in Russia (Excluding the City of Moscow and the Moscow Oblast) in 2010-2016
Population and Economics 3(4): 121–134 DOI 10.3897/popecon.3.e39152 DATA PAPER Demographic, economic, geospatial data for municipalities of the Central Federal District in Russia (excluding the city of Moscow and the Moscow oblast) in 2010-2016 Irina E. Kalabikhina1, Denis N. Mokrensky2, Aleksandr N. Panin3 1 Faculty of Economics, Lomonosov Moscow State University, Moscow, 119991, Russia 2 Independent researcher 3 Faculty of Geography, Lomonosov Moscow State University, Moscow, 119991, Russia Received 10 December 2019 ♦ Accepted 28 December 2019 ♦ Published 30 December 2019 Citation: Kalabikhina IE, Mokrensky DN, Panin AN (2019) Demographic, economic, geospatial data for munic- ipalities of the Central Federal District in Russia (excluding the city of Moscow and the Moscow oblast) in 2010- 2016. Population and Economics 3(4): 121–134. https://doi.org/10.3897/popecon.3.e39152 Keywords Data base, demographic, economic, geospatial data JEL Codes: J1, J3, R23, Y10, Y91 I. Brief description The database contains demographic, economic, geospatial data for 452 municipalities of the 16 administrative units of the Central Federal District (excluding the city of Moscow and the Moscow oblast) for 2010–2016 (Appendix, Table 1; Fig. 1). The sources of data are the municipal-level statistics of Rosstat, Google Maps data and calculated indicators. II. Data resources Data package title: Demographic, economic, geospatial data for municipalities of the Cen- tral Federal District in Russia (excluding the city of Moscow and the Moscow oblast) in 2010–2016. Copyright I.E. Kalabikhina, D.N.Mokrensky, A.N.Panin The article is publicly available and in accordance with the Creative Commons Attribution license (CC-BY 4.0) can be used without limits, distributed and reproduced on any medium, pro- vided that the authors and the source are indicated. -
1 GOLDEN RING TOUR – PART 3 Golden Gate, Vladimir
GOLDEN RING TOUR – PART 3 https://en.wikipedia.org/wiki/Golden_Gate,_Vladimir Golden Gate, Vladimir The Golden Gate of Vladimir (Russian: Zolotye Vorota, Золотые ворота), constructed between 1158 and 1164, is the only (albeit partially) preserved ancient Russian city gate. A museum inside focuses on the history of the Mongol invasion of Russia in the 13th century. 1 Inside the museum. 2 Side view of the Golden Gate of Vladimir. The Trinity Church Vladimir II Monomakh Monument, founder http://ermakvagus.com/Europe/Russia/Vladimir/trinity_church_vladimir.html https://en.wikipedia.org/wiki/Vladimir_II_Monomakh 3 https://en.wikipedia.org/wiki/Dormition_Cathedral,_Vladimir The Dormition Cathedral in Vladimir (sometimes translated Assumption Cathedral) (Russian: Собор Успения Пресвятой Богородицы, Sobor Uspeniya Presvyatoy Bogoroditsy) was a mother church of Medieval Russia in the 13th and 14th centuries. It is part of a World Heritage Site, the White Monuments of Vladimir and Suzdal. https://rusmania.com/central/vladimir-region/vladimir/sights/around-sobornaya- ploschad/andrey-rublev-monument Andrey Rublev monument 4 5 Cathedral of Saint Demetrius in Vladimir https://en.wikipedia.org/wiki/Cathedral_of_Saint_Demetrius 6 7 Building of the Gubernia’s Administration museum (constructed in 1785-1790). Since 1990s it is museum. January 28, 2010 in Vladimir, Russia. Interior of old nobility Palace (XIX century) 8 Private street vendors 9 Water tower https://www.advantour.com/russia/vladimir/water-tower.htm 10 Savior Transfiguration church https://www.tourism33.ru/en/guide/places/vladimir/spasskii-i-nikolskiy-hramy/ Cities of the Golden Ring 11 Nikolo-Kremlevskaya (St. Nicholas the Kremlin) Church, 18th century. https://www.tourism33.ru/en/guide/places/vladimir/nikolo-kremlevskaya-tcerkov/ Prince Alexander Nevsky (Невский) https://en.wikipedia.org/wiki/Alexander_Nevsky 12 Just outside of Suzdal is the village of Kideksha which is famous for its Ss Boris and Gleb Church which is one of the oldest white stone churches in Russia, dating from 1152. -
Kiyameti Beklerken: Hiristiyanlik'ta
Hitit Üniversitesi Đlahiyat Fakültesi Dergisi, 2008/2, c. 7, sayı: 14, ss. 5-36. KIYAMETİ BEKLERKEN: HIRİSTİYANLIK’TA KIYAMET BEKLENTİLERİ VE RUS ORTODOKS KİLİSESİNDEKİ YANSIMALARI Cengiz BATUK * Özet Kıyameti Beklerken: Hıristiyanlık’ta Kıyamet Beklentileri ve Rus Ortodoks Kilise- sindeki Yansımaları Bu çalışmanın amacı Hıristiyan tarihindeki kıyamet beklentilerini araştırmaktır. Hıristiyanlıktaki kıyamet beklentileri genellikle binyılcı ve Mesihçi hareketler şeklinde ortaya çıktığı için çalışmanın ilk bölümünde bu hareketlerden bir kısmı hakkında değerlendirmeler yapılmıştır. Đkinci bölümde Rus Ortodoks Kilisesi tarihinde apokaliptik hareketler hakkında incelemeler yapılmıştır. Bu hareketlerden bazıları Pyotr Kuznetsov’un kıyamet kültü, castrati ve neo-castrati tarikatları, Sergei Torop’un Son Ahit Kilisesi ve Mesihçiler/Flagellant hareketleridir. Anahtar kelimeler : Kıyamet Kültü, Binyılcılık, Apokaliptisizm, Mesihçilik, Ortodoks Kilisesi, Pyotr Kuznetsov, Sergei Torop, Skoptsy -Castrati. Abstract To Await Doomsday: Expectations of Doomsday in the Christianity and Reflections in the Russian Orthodox Church The Purpose of this article is to examine expectations of doomsday in the history of Christianity. Since expectations of doomsday in Christianity appears in form of millenarianist and messianic sects, analyzes have been done some of this sects in first chapter of the study. In second chapter, investigations have been done about apocalyptic movements in history of Russian Orthodox Church. Some of these movements are Pyotr Kuznetsov’s doomsday cult, sects of castrati and neo- castrati, Sergei Torop’s Church of the Last Testament and sect of Khristovshchina/Flagellant. Key words : Doomsday Cult, Millenarianism, Apocalypticism, Ortodox Church, Messianism, Pyotr Kuznetsov, Sergei Torop, Skoptsy–Castrati. * Yrd. Doç. Dr., Rize Üniversitesi İlahiyat Fakültesi Dinler Tarihi Anabilim Dalı. Hitit Üniversitesi Đlahiyat Fakültesi Dergisi, 2008/2, c. 7, sayı: 14 6 | Yrd. -
Palaeoecology and Palaeoenvironments of the Middle Jurassic to Lowermost Cretaceous Agardhfjellet Formation (Bathonian–Ryazanian), Spitsbergen, Svalbard
NORWEGIAN JOURNAL OF GEOLOGY Vol 99 Nr. 1 https://dx.doi.org/10.17850/njg99-1-02 Palaeoecology and palaeoenvironments of the Middle Jurassic to lowermost Cretaceous Agardhfjellet Formation (Bathonian–Ryazanian), Spitsbergen, Svalbard Maayke J. Koevoets1, Øyvind Hammer1 & Crispin T.S. Little2 1Natural History Museum, University of Oslo, P.O. Box 1172 Blindern, 0318 Oslo, Norway. 2School of Earth and Environment, University of Leeds, Leeds LS2 9JT, United Kingdom. E-mail corresponding author (Maayke J. Koevoets): [email protected] We describe the invertebrate assemblages in the Middle Jurassic to lowermost Cretaceous of the Agardhfjellet Formation present in the DH2 rock-core material of Central Spitsbergen (Svalbard). Previous studies of the Agardhfjellet Formation do not accurately reflect the distribution of invertebrates throughout the unit as they were limited to sampling discontinuous intervals at outcrop. The rock-core material shows the benthic bivalve fauna to reflect dysoxic, but not anoxic environments for the Oxfordian–Lower Kimmeridgian interval with sporadic monospecific assemblages of epifaunal bivalves, and more favourable conditions in the Volgian, with major increases in abundance and diversity of Hartwellia sp. assemblages. Overall, the new information from cores shows that abundance, diversity and stratigraphic continuity of the fossil record in the Upper Jurassic of Spitsbergen are considerably higher than indicated in outcrop studies. The inferred life positions and feeding habits of the benthic fauna refine our understanding of the depositional environments of the Agardhfjellet Formation. The pattern of occurrence of the bivalve genera is correlated with published studies of Arctic localities in East Greenland and northern Siberia and shows similarities in palaeoecology with the former but not the latter. -
Contributions in BIOLOGY and GEOLOGY
MILWAUKEE PUBLIC MUSEUM Contributions In BIOLOGY and GEOLOGY Number 51 November 29, 1982 A Compendium of Fossil Marine Families J. John Sepkoski, Jr. MILWAUKEE PUBLIC MUSEUM Contributions in BIOLOGY and GEOLOGY Number 51 November 29, 1982 A COMPENDIUM OF FOSSIL MARINE FAMILIES J. JOHN SEPKOSKI, JR. Department of the Geophysical Sciences University of Chicago REVIEWERS FOR THIS PUBLICATION: Robert Gernant, University of Wisconsin-Milwaukee David M. Raup, Field Museum of Natural History Frederick R. Schram, San Diego Natural History Museum Peter M. Sheehan, Milwaukee Public Museum ISBN 0-893260-081-9 Milwaukee Public Museum Press Published by the Order of the Board of Trustees CONTENTS Abstract ---- ---------- -- - ----------------------- 2 Introduction -- --- -- ------ - - - ------- - ----------- - - - 2 Compendium ----------------------------- -- ------ 6 Protozoa ----- - ------- - - - -- -- - -------- - ------ - 6 Porifera------------- --- ---------------------- 9 Archaeocyatha -- - ------ - ------ - - -- ---------- - - - - 14 Coelenterata -- - -- --- -- - - -- - - - - -- - -- - -- - - -- -- - -- 17 Platyhelminthes - - -- - - - -- - - -- - -- - -- - -- -- --- - - - - - - 24 Rhynchocoela - ---- - - - - ---- --- ---- - - ----------- - 24 Priapulida ------ ---- - - - - -- - - -- - ------ - -- ------ 24 Nematoda - -- - --- --- -- - -- --- - -- --- ---- -- - - -- -- 24 Mollusca ------------- --- --------------- ------ 24 Sipunculida ---------- --- ------------ ---- -- --- - 46 Echiurida ------ - --- - - - - - --- --- - -- --- - -- - - --- -
2018 FIFA WORLD CUP RUSSIA'n' WATERWAYS
- The 2018 FIFA World Cup will be the 21st FIFA World Cup, a quadrennial international football tournament contested by the men's national teams of the member associations of FIFA. It is scheduled to take place in Russia from 14 June to 15 July 2018,[2] 2018 FIFA WORLD CUP RUSSIA’n’WATERWAYS after the country was awarded the hosting rights on 2 December 2010. This will be the rst World Cup held in Europe since 2006; all but one of the stadium venues are in European Russia, west of the Ural Mountains to keep travel time manageable. - The nal tournament will involve 32 national teams, which include 31 teams determined through qualifying competitions and Routes from the Five Seas 14 June - 15 July 2018 the automatically quali ed host team. A total of 64 matches will be played in 12 venues located in 11 cities. The nal will take place on 15 July in Moscow at the Luzhniki Stadium. - The general visa policy of Russia will not apply to the World Cup participants and fans, who will be able to visit Russia without a visa right before and during the competition regardless of their citizenship [https://en.wikipedia.org/wiki/2018_FIFA_World_Cup]. IDWWS SECTION: Rybinsk – Moscow (433 km) Barents Sea WATERWAYS: Volga River, Rybinskoye, Ughlichskoye, Ivan’kovskoye Reservoirs, Moscow Electronic Navigation Charts for Russian Inland Waterways (RIWW) Canal, Ikshinskoye, Pestovskoye, Klyaz’minskoye Reservoirs, Moskva River 600 MOSCOW Luzhniki Arena Stadium (81.000), Spartak Arena Stadium (45.000) White Sea Finland Belomorsk [White Sea] Belomorsk – Petrozavodsk (402 km) Historic towns: Rybinsk, Ughlich, Kimry, Dubna, Dmitrov Baltic Sea Lock 13,2 White Sea – Baltic Canal, Onega Lake Small rivers: Medveditsa, Dubna, Yukhot’, Nerl’, Kimrka, 3 Helsinki 8 4,0 Shosha, Mologa, Sutka 400 402 Arkhangel’sk Towns: Seghezha, Medvezh’yegorsk, Povenets Lock 12,2 Vyborg Lakes: Vygozero, Segozero, Volozero (>60.000 lakes) 4 19 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 30 1 2 3 6 7 10 14 15 4,0 MOSCOW, Group stage 1/8 1/4 1/2 3 1 Estonia Petrozavodsk IDWWS SECTION: [Baltic Sea] St. -
Crustacea : Decapoda : Erymidae) Dans Le Jurassique
Première occurrence d’Enoploclytia M’Coy, 1849 (Crustacea : Decapoda : Erymidae) dans le Jurassique First occurence of Enoploclytia M’Coy, 1849 (Crustacea: Decapoda: Erymidae) in the Jurassic Julien Devillez Muséum national d’Histoire naturelle, Paris Centre de Recherche sur la Paléobiodiversité et les Paléoenvironnements (CR2P, UMR 7207), Sorbonne Universités, MNHN, UPMC, CNRS, 57 rue Cuvier F-75005 Paris (France) [email protected] Sylvain Charbonnier Muséum national d’Histoire naturelle, Paris Centre de Recherche sur la Paléobiodiversité et les Paléoenvironnements (CR2P, UMR 7207), Sorbonne Universités, MNHN, UPMC, CNRS, 57 rue Cuvier F-75005 Paris (France) [email protected] Jean-Philippe Pezy Normandie Univ, UNICAEN, CNRS, M2C, 14000 CAEN, France [email protected] RÉSUMÉ Parmi les Erymidae Van Straelen, 1925, connus dès le Permien supérieur (Changhsingien) et répandus au Jurassique, le genre Enoploclytia M’Coy, 1849 passe pour être apparu tardivement en raison de son absence avant le Crétacé. Jusqu’à présent, le plus ancien représentant était E. augustobonae Devillez, Charbonnier, Hyžný & Leroy, 2016 du Crétacé inférieur (Barrémien) de l’est du bassin de Paris (France). Cependant, un nouveau fossile récolté en Normandie (France), présentant une architecture des sillons de la carapace typique d’Enoploclytia, atteste de la présence du genre dès le Jurassique supérieur (Oxfordien). MOTS CLÉS Crustacé, Erymidae, France, homard, Jurassique, Mésozoïque, Normandie. ABSTRACT Among the Erymidae Van Straelen, 1925, known as early as the Late Permian (Changhsingian) and widespread in the Jurassic, the genus Enoploclytia M’Coy, 1849 seems to have a late appearance because of its lack before the Cretaceous. Until now, the oldest representative was E.