Indoor Air Quality Backgrounder: the Basics

Total Page:16

File Type:pdf, Size:1020Kb

Indoor Air Quality Backgrounder: the Basics Indoor Air Quality Backgrounder: The Basics I ndoor air quality (IAQ) is an Failure to prevent or respond promptly to increasingly important issue in schools IAQ problems can: across the nation. IAQ can directly affect • Increase potential for long- and short- the health and comfort of students and term health problems for students and staff. There are many ways that school staff. occupants can help to improve air quality. EPA developed the Indoor Air • Negatively impact student attendance, Quality Tools for Schools (IAQ TfS) comfort, and performance. Program to help schools address many IAQ issues using practical and often • Reduce teacher and staff comfort and performance. low-cost measures (such as unblocking ventilation supply vents to improve • Accelerate deterioration and reduce airflow). efficiency of school facilities and Good IAQ helps to equipment. By simply reviewing this Indoor Air provide a healthy Quality Backgrounder and completing • Increase potential for school closings and productive envi- the IAQ checklists, occupants can learn or relocation of occupants. ronment for students, how to make a significant impact on teachers, and staff IAQ and provide a healthy learning and • Strain relationships among school working environment. administration, parents, and staff. in order to assist a school in its This guidance is based on the • Create negative publicity. following principles: • Impact community trust. core mission— educating children. • Most IAQ problems can be prevented • Create liability problems. and resolved by school staff through simple, inexpensive measures. UNDERSTANDING IAQ • The cost and effort needed to prevent PROBLEMS AND SOLUTIONS most IAQ problems is significantly To understand IAQ problems and less than the cost and effort required solutions, it is important to know what to resolve problems after they factors affect IAQ. These include: develop. • Sources of indoor air pollutants. WHY IAQ IS IMPORTANT TO • Heating, ventilation, and air YOUR SCHOOL conditioning (HVAC) systems. Most people are aware that outdoor • Building occupants. air pollution can impact their health, but indoor air pollution can also have • Pollutant pathways. significant, harmful effects. EPA studies of human exposure to air SOURCES OF INDOOR AIR pollutants indicate that indoor levels of POLLUTANTS pollutants may be two to five times— Indoor air contaminants can originate and occasionally more than 100 times— within the building or be drawn in from higher than outdoor levels. EPA and its outdoors. Air pollutants consist of Science Advisory Board consistently numerous particulates, fibers, mists, rank indoor air pollution among the top bioaerosols, and gases. It is important to five environmental health risks to the control air pollutant sources (see the table public. on the next page), or IAQ problems can This is especially important to schools, arise—even if the HVAC system is as children may be more susceptible to properly operating. air pollutants. 1 of 5 A complicating factor is that indoor air Not all HVAC systems accomplish all of pollutant concentration levels can vary by: these functions. Some buildings rely only on natural ventilation. Others lack • Time (for example, weekly, during floor mechanical cooling equipment, and many stripping); and function with little or no humidity control. • Location (within a school or even The two most common HVAC designs in within a single classroom). schools are unit ventilators and central air- HVAC System Design and handling systems. Both can perform the Operation same HVAC functions, but a unit ventilator serves a single room while a Properly designed HVAC equipment in a central air-handling unit serves multiple school helps to: rooms. • Control temperature and humidity to The diagrams on page 5 of this Indoor Air provide thermal comfort. Quality Backgrounder show how three • Distribute adequate amounts of outdoor typical HVAC designs circulate air air to meet ventilation needs of school through classrooms. As shown in the occupants. diagrams, it is important that all rooms have both an air supply and exhaust. • Isolate and remove odors and pollutants through pressure control, filtration, and exhaust fans. TYPICAL SOURCES OF INDOOR AIR POLLUTANTS Outdoor Sources Building Equipment Components and Other Indoor Furnishings Sources Polluted Outdoor Air HVAC Equipment • Pollen, dust, fungal • Microbiological growth Components • Science laboratory spores in drip pans, ductwork, • Microbiological growth supplies • Industrial emissions coils, and humidifiers on or in soiled or water- • Vocational art supplies • Vehicle emissions • Improper venting of damaged materials • Copy/print areas combustion products Nearby Sources • Dry traps that allow the • Food prep areas • Dust or debris in passage of sewer gas • Loading docks ductwork • Smoking lounges • Materials containing • Cleaning materials • Odors from dumpsters Other Equipment volatile organic • Emissions from trash • Unsanitary debris or • Emissions from office compounds, inorganic building exhausts near equipment (volatile compounds, or damaged • Pesticides outdoor air intakes organic compounds, asbestos • Odors and volatile Underground Sources ozone) • Materials that produce organic compounds • Radon • Emissions from shop, particles (dust) from paint, chalk, • Pesticides lab, and cleaning Furnishings adhesives • Leakage from equipment • Emissions from new • Occupants with underground storage furnishings and communicable diseases tanks floorings • Dry-erase markers and • Microbiological growth similar pens on or in soiled or water- • Insects and other pests damaged furnishings • Personal care products 2 of 5 Building Occupants SIX BASIC CONTROL The effects of IAQ problems on school STRATEGIES occupants—including staff, students, and There are six basic control methods that others—are often non-specific symptoms can lower concentrations of indoor air rather than clearly-defined illnesses. pollutants. Specific applications of these Symptoms commonly attributed to IAQ basic control strategies may be noted in problems include: the attached checklist(s). • Headache, fatigue, and shortness of breath. 1. Source Management - Management of pollutant sources includes: • Sinus congestion, cough, and sneezing. • Source removal - Eliminating • Eye, nose, throat, and skin irritation. pollutant sources or not allowing them • Dizziness and nausea. to enter the school. Examples include not allowing buses to idle, not placing These symptoms could be caused by air garbage in rooms with HVAC quality deficiencies, but may also be equipment, and replacing moldy linked to other factors—poor lighting, materials. stress, noise, and more. Due to varying sensitivities among school occupants, IAQ • Source substitution - Replacing problems may affect a group of people or pollutant sources. Examples include just one individual. In addition, IAQ selecting less- or non-toxic art problems may affect people in different materials or interior paints. ways. Individuals that may be particularly • Source encapsulation - Placing a susceptible to effects of indoor air barrier around the source so that it contaminants include, but are not limited releases fewer pollutants into the to, people with: indoor air. Examples include covering • Asthma, allergies, or chemical pressed wood cabinetry with sealed or sensitivities. laminated surfaces or using plastic sheeting to contain contaminants when • Respiratory diseases. renovating. • Suppressed immune systems (due to 2. Local Exhaust - Removing point sources radiation, chemotherapy, or disease). of indoor pollutants (through exhausting • Contact lenses. fume hoods and local exhaust fans to the outside) before they disperse. Examples Pollutant Pathways and include exhaust systems for restrooms and Driving Forces kitchens, science labs, storage rooms, Airflow patterns in buildings are printing and duplicating rooms, and determined by the combined forces of vocational/industrial areas (such as welding mechanical ventilation systems, human booths and firing kilns). activity, and natural effects. Air pressure 3. Ventilation - Lowering pollutant differences created by these forces move concentrations by using cleaner (outdoor) airborne pollutants from areas of higher air to dilute polluted (indoor) air. Local pressure to areas of lower pressure building codes likely specify the quantity through any available openings in building (and sometimes quality) of outdoor air that walls, ceilings, floors, doors, windows, should be continuously supplied in your and HVAC systems. For instance, as long school, as do voluntary standards set by the as the opening to an inflated balloon is American Society of Heating, kept shut, no air will flow. When opened, Regrigerating, and Air-Conditioning however, air will move from the inside Engineers (ASHRAE). Temporarily (area of higher pressure) to the outside increasing ventilation coupled with proper (area of lower pressure). use of the exhaust system while painting or Even if the opening is small, air will move applying pesticides, for example, can be until the inside pressure is equal to the useful in diluting the concentration of outside pressure. noxious fumes in the air. 3 of 5 4. Exposure Control - Adjusting the time and • Symptoms are widespread within a IAQ Checklists location of pollutant exposure. An example class or school. Available of time control is scheduling floor stripping • Symptoms disappear when the and waxing (with the ventilation system • Teacher’s students or staff leave
Recommended publications
  • Soil Contamination and Human Health: a Major Challenge For
    Soil contamination and human health : A major challenge for global soil security Florence Carre, Julien Caudeville, Roseline Bonnard, Valérie Bert, Pierre Boucard, Martine Ramel To cite this version: Florence Carre, Julien Caudeville, Roseline Bonnard, Valérie Bert, Pierre Boucard, et al.. Soil con- tamination and human health : A major challenge for global soil security. Global Soil Security Sympo- sium, May 2015, College Station, United States. pp.275-295, 10.1007/978-3-319-43394-3_25. ineris- 01864711 HAL Id: ineris-01864711 https://hal-ineris.archives-ouvertes.fr/ineris-01864711 Submitted on 30 Aug 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Human Health as another major challenge of Global Soil Security Florence Carré, Julien Caudeville, Roseline Bonnard, Valérie Bert, Pierre Boucard, Martine Ramel Abstract This chapter aimed to demonstrate, by several illustrated examples, that Human Health should be considered as another major challenge of global soil security by emphasizing the fact that (a) soil contamination is a worldwide issue, estimations can be done based on local contamination but the extent and content of diffuse contamination is largely unknown; (b) although soil is able to store, filter and reduce contamination, it can also transform and make accessible soil contaminants and their metabolites, contributing then to human health impacts.
    [Show full text]
  • What's in the Air Gets Around Poster
    Air pollution comes AIR AWARENESS: from many sources, Our air contains What's both natural & manmade. a combination of different gasses: OZONE (GOOD) 78% nitrogen, 21% oxygen, in the is a gas that occurs forest fires, vehicle exhaust, naturally in the upper plus 1% from carbon dioxide, volcanic emissions smokestack emissions atmosphere. It filters water vapor, and other gasses. the sun's ultraviolet rays and protects AIRgets life on the planet from the Air moves around burning Around! when the wind blows. rays. Forests can be harmed when nutrients are drained out of the soil by acid rain, and trees can't Air grow properly. pollution ACID RAIN Water The from one place can forms when sulfur cause problems oxides and nitrogen oxides falls from 1 air is in mix with water vapor in the air. constant motion many miles from clouds that form where it Because wind moves the air, acid in the air. Pollutants around the earth (wind). started. rain can fall hundreds of miles from its AIR MONITORING: and tiny bits of soil are As it moves, it absorbs source. Acid rain can make lakes so acidic Scientists check the quality of carried with it to the water from lakes, rivers that plants and animals can't live in the water. our air every day and grade it using the Air Quality Index (AQI). ground below. and oceans, picks up soil We can check the daily AQI on the from the land, and moves Internet or from local 2 pollutants in the air. news sources. Greenhouse gases, sulfur oxides and Earth's nitrogen oxides are added to the air when coal, oil and natural gas are CARS, TRUCKS burned to provide Air energy.
    [Show full text]
  • Healthy Climate® Indoor Air Quality Systems
    HEPA Bypass Air Filtration Systems Healthy Climate® Indoor Air Quality Systems HEPA-20 HEPA-40 HEPA-60 The best possible air filtration. High-Efficiency Particulate Air (HEPA) Filtration Systems ® 99.97% efficiency rating Pollutants like dust, pollen, bacteria and viruses find their way into your for removal of all small, home’s air every day. These pollutants can cause poor indoor air quality, breathable particles, airborne mold spores, bacteria and which impacts both your home environment and health. At the very least, Place. viruses, down to 0.3 micron poor air quality can make your home uncomfortable. And, if you’re one of Bypass configuration quietly circulates and cleans the air more than 50 million Americans who suffer from allergies, poor air quality throughout the home can make your home very unhealthy. Designed for easy integration BETTER with Lennox® heating and HIGHLY EFFECTIVE AIR FILTRATION FOR A CLEANER, cooling systems for total HEALTHIER HOME ENVIRONMENT. home comfort …A A Healthy Climate® high-efficiency particulate air (HEPA) bypass filtration Best possible air-filtration performance system can go a long way toward improving the air you breathe. Using the same filtration technology found in hospital operating rooms and HOME science labs, a HEPA system removes nearly all allergy-inducing contaminants, including even the smallest particles and bacteria. It filters and freshens the air, so you can breathe easier. Highly effective filtration. THREE CLASSES OF AIR CONTAMINANTS Lennox makes your With a particle-efficiency rating of 99.97%, this system captures and Particles—Pollen, dust mites, dirt, pet dander. filters particles and bioaerosols as Particles are any small as 0.3 micron—contaminants substances measuring less than 100 microns that standard filtration systems in diameter.
    [Show full text]
  • ASHRAE Position Document on Filtration and Air Cleaning
    ASHRAE Position Document on Filtration and Air Cleaning Approved by ASHRAE Board of Directors January 29, 2015 Reaffirmed by Technology Council January 13, 2018 Expires January 23, 2021 ASHRAE 1791 Tullie Circle, NE • Atlanta, Georgia 30329-2305 404-636-8400 • fax: 404-321-5478 • www.ashrae.org © 2015 ASHRAE (www.ashrae.org). For personal use only. Additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE's prior written permission. COMMITTEE ROSTER The ASHRAE Position Document on Filtration and Air Cleaning was developed by the Society's Filtration and Air Cleaning Position Document Committee formed on January 6, 2012, with Pawel Wargocki as its chair. Pawel Wargocki, Chair Dean A. Saputa Technical University of Denmark UV Resources Kongens Lyngby, Denmark Santa Clarita, CA Thomas H. Kuehn William J. Fisk University of Minnesota Lawrence Berkeley National Laboratory Minneapolis, MN Berkeley, CA H.E. Barney Burroughs Jeffrey A. Siegel Building Wellness Consultancy, Inc. The University of Toronto Johns Creek, GA Toronto, ON, Canada Christopher O. Muller Mark C. Jackson Purafil Inc. The University of Texas at Austin Doraville, GA Austin, TX Ernest A. Conrad Alan Veeck BOMA International National Air Filtration Association Washington DC Virginia Beach, VA Other contributors: Dean Tompkins Madison, WI for his contribution on photocatalytic oxidizers Paul Francisco, Ex-Officio Cognizant Committee Chair Environmental Health Committee University of Illinois Champaign, IL ASHRAE is a registered trademark in the U.S. Patent and Trademark Office, owned by the American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. © 2015 ASHRAE (www.ashrae.org). For personal use only.
    [Show full text]
  • Improving Air Quality for Operators of Mobile Machines in Underground Mines
    atmosphere Article Improving Air Quality for Operators of Mobile Machines in Underground Mines Andrzej Szczurek 1, Monika Maciejewska 1,*, Marcin Przybyła 2 and Wacław Szetelnicki 2 1 Faculty of Environmental Engineering, Wroclaw University of Science and Technology, Wybrze˙zeWyspia´nskiego27, 50-370 Wrocław, Poland; [email protected] 2 Centrum Bada´nJako´scisp. zo. o., ul. M. Skłodowskiej-Curie 62, 59-301 Lubin, Poland; [email protected] (M.P.); [email protected] (W.S.) * Correspondence: [email protected]; Tel.: +48-7132-028-68 Received: 12 November 2020; Accepted: 9 December 2020; Published: 18 December 2020 Abstract: In underground mines, mobile mining equipment is critical for the production system. The microenvironment inside the mobile machine may cause exposure to strongly polluted mine air, which adversely affects the health and working performance of the operator. Harmful pollutants may access the cabin together with the ventilation air delivered from the machine’s surroundings. This work proposes a solution that is able to ensure that the air for the machine operator is of proper quality. The proposal emerged from an analysis of the compliance of cabins of mobile machines working underground in mines with occupational health and safety (H&S) standards. An analytical model of air quality in a well-mixed zone was utilized for this purpose. The cabin atmosphere was investigated with regard to the concentration of gaseous species in the surrounding air, the cabin ventilation rate, and human breathing parameters. The analysis showed that if currently available ventilation approaches are used, compliance with multiple H&S standards cannot be attained inside the cabin if standards are exceeded in the surroundings of the machine.
    [Show full text]
  • Indoor Air Quality
    Indoor Air Quality Poor indoor air quality can cause a stuffy nose, sore throat, coughing or wheezing, headache, burning eyes, or skin rash. People with asthma or other breathing problems or who have allergies may have severe reactions. Common Indoor Air Pollutants Poor indoor air quality comes from many sources, including: » Tobacco smoke » Mold » Pollen » Allergens such as those from cats, dogs, mice, dust mites, and cockroaches » Smoke from fireplaces and woodstoves » Formaldehyde in building materials, textiles, and furniture » Carbon monoxide from gas furnaces, ovens, and other appliances » Use of household products such as cleaners and bug sprays » Outdoor air pollution from factories, vehicles, wildfires, and other sources How to Improve Indoor Air Quality » Open windows to let in fresh air. • However, if you have asthma triggered by outdoor air pollution or pollen, opening windows might not be a good idea. In this case, use exhaust fans and non-ozone-producing air cleaners to reduce exposure to these triggers. » Clean often to get rid of dust, pet fur, and other allergens. • Use a vacuum cleaner equipped with a HEPA filter. • Wet or damp mopping is better than sweeping. » Take steps to control mold and pests. » Do not smoke, and especially do not smoke indoors. If you think poor indoor air is making you sick, please see or call a doctor or other health care provider. About CDC CDC is a federal public health agency based in Atlanta, GA. Our mission is to promote health and quality of life by preventing and controlling disease, injury and disability. For More Information We want to help you to stay healthy.
    [Show full text]
  • Diagnosing IAQ Problems
    Diagnosing IAQ Problems he goal of the diagnostic building T Start (reason for concern) investigation is to identify and solve the indoor air quality complaint in a way that t 6 prevents it from recurring and that does not Initial walkthrough n preparation create other problems. This section n visual inspection describes a method for discovering the n talk with occupants and staff cause of the complaint and presents a t “toolbox” of diagnostic activities to assist Do you have Yes you in collecting information. an explanation Just as a carpenter uses only the tools for the complaint ? that are needed for any given job, an IAQ No investigator should use only the investiga- t Collect additional tive techniques that are needed. Many information about indoor air quality complaints can be n building occupants resolved without using all of the diagnostic n the HVAC system n pollutant pathways tools described in this chapter. For n pollutant sources example, it may be easy to identify the (sample contaminants if needed) source of cooking odors that are annoying t nearby office workers and solve the Develop one or more hypotheses problem by controlling pressure relation- to explain the problem. Test by ships (e.g., installing exhaust fans) in the manipulating building conditions or exposure, or by performing food preparation area. Similarly, most appropriate tests. mechanical or carpentry problems prob- ably require only a few of the many tools t t you have available and are easily accom- Do results Attempt plished with in-house expertise. No Yes Follow-up support your a control validation The use of in-house personnel builds hypothesis ? strategy skills that will be helpful in minimizing and resolving future problems.
    [Show full text]
  • Monitoring of Airborne Contamination Using Mobile Equipment
    STUK-A130 FEBRUARY 1996 9- Monitoring of Airborne Contamination Using Mobile Equipment T. Honkamaa, H. Toivonen, M. Nikkinen 1 0 r 1 v. f STUK-A130 FEBRUARY 1996 Monitoring of Airborne Contamination Using Mobile Equipment T. Honkamaa, H. Toivonen, M. Nikkinen FINNISH CENTRE FOR RADIATION AND NUCLEAR SAFETY P.O.BOX 14 FIN-00881 HELSINKI Finland Tel. +358 0 759881 NEXT PAGE(S) left BLANK FINNISH CENTRE FOR RADIATION STUK-A130 AND NUCLEAR SAFETY T. Honkamaa, H. Toivonen, M. Nikkinen. Monitoring of Airborne Contamination Using Mobile Equipment. Helsinki 1996, 65 pp. ISBN 951-712-094-X ISSN 0781-1705 Key words Radioactive particles, in-field gamma-ray spectrometry, emergency preparedness ABSTRACT Rapid and accurate measurements must be carried out in a nuclear disaster that releases radioactive material into the atmosphere. To evaluate the risk to the people, .external dose rate and nuclide-specific activity concentrations in air must be determined. The Finnish Centre for Radiation and Nuclear Safety (STUK) has built an emergency vehicle to accomplish these tasks in the field. The present paper describes the systems and methods to determine the activity concentration in air. Airborne particulate sampling and gamma-ray spectrometric analysis are quantitative and sensitive tools to evaluate the nuclide-specific concentrations in air. The vehicle is equipped with a pump sampler which sucks air through a glassfiber filter (flow about 10 1 s"1). Representative sampling of airborne particles from a moving vehicle is a demanding task. According to the calculations the total collection efficiency in calm air is 60 -140% for the particle size range of 0.1 - 30 um.
    [Show full text]
  • HEPA) Filter - Ultra Low Penetration Air (ULPA) Filter (Also Referred to As Extended Media
    EPA-452/F-03-023 Air Pollution Cocntrol Technology Fact Sheet Name of Technology: Paper/Nonwoven Filter - High Efficiency Particle Air (HEPA) Filter - Ultra Low Penetration Air (ULPA) Filter (also referred to as Extended Media) Type of Technology: Control Device - Capture/Disposal Applicable Pollutants: Submicron Particulate Matter (PM) greater than or equal to 0.3 micrometer (µm) in aerodynamic diameter, and PM greater than or equal to 0.12 µm in aerodynamic diameter that is chemically, biologically, or radioactively toxic; hazardous air pollutants (HAPs) that are in particulate form, such as most metals (mercury is the notable exception, as a significant portion of emissions are in the form of elemental vapor). Achievable Emission Limits/Reductions: HEPA and ULPA filters are classified by their minimum collection efficiency. Many international standards and classes currently exist for high efficiency filters (Osborn, 1989). In general, HEPA and ULPA filters are defined as having the following minimum efficiency rating (Heumann, 1997): HEPA: 99.97% efficiency for the removal of 0.3 µm diameter or larger PM, ULPA: 99.9995% efficiency for the removal of 0.12 µm diameter or larger PM. Some extended media filters are capable of much higher efficiencies. Commercially available filters can control PM with 0.01 µm diameter at efficiencies of 99.99+% and PM with 0.1 µm diameter at efficiencies of 99.9999+% (Gaddish, 1989; Osborn, 1989). Several factors determine HEPA and ULPA filter collection efficiency. These include gas filtration, velocity, particle characteristics, and filter media characteristics. In general, the collection efficiency increases with increasing filtration velocity and particle size.
    [Show full text]
  • 4 Air Pollution Impacts on Forests in a Changing Climate
    GLOBAL ENVIRONMENTAL CHANGES 4 Air Pollution Impacts on Forests in a Changing Climate Convening lead author: Martin Lorenz Lead authors: Nicholas Clarke and Elena Paoletti Contributing authors: Andrzej Bytnerowicz, Nancy Grulke, Natalia Lukina, Hiroyuki Sase and Jeroen Staelens Abstract: Growing awareness of air pollution effects on forests has, from the early 1980s on, led to intensive forest damage research and monitoring. This has fostered air pollution control, especially in Europe and North America, and to a smaller extent also in other parts of the world. At several forest sites in these regions, there are first indications of a recovery of forest soil and tree conditions that may be attributed to improved air quality. This caused a decrease in the attention paid by politicians and the public to air pollution effects on forests. But air pollution continues to affect the structure and functioning of forest ecosystems not only in Europe and North America but even more so in parts of Russia, Asia, Latin America, and Africa. At the political level, however, attention to climate change is focussed on questions of CO2 emission and carbon sequestration. But ecological interactions between air pollution including CO2 and O3 concentrations, extreme temperatures, drought, insects, pathogens, and fire, as well as the impact of ecosystem management practices, are still poorly under- stood. Future research should focus on the interacting impacts on forest trees and ecosystems. The integrative effects of air pollution and climatic change, in particular elevated O3, altered nutrient, temperature, water availability, and elevated CO2, will be key issues for impact research. An important improvement in our understanding might be obtained by the combination of long-term multidisciplinary experiments with ecosystem-level monitoring, and the integration of the results with ecosystem modelling within a multiple-constraint framework.
    [Show full text]
  • WHO Guidelines for Indoor Air Quality : Selected Pollutants
    WHO GUIDELINES FOR INDOOR AIR QUALITY WHO GUIDELINES FOR INDOOR AIR QUALITY: WHO GUIDELINES FOR INDOOR AIR QUALITY: This book presents WHO guidelines for the protection of pub- lic health from risks due to a number of chemicals commonly present in indoor air. The substances considered in this review, i.e. benzene, carbon monoxide, formaldehyde, naphthalene, nitrogen dioxide, polycyclic aromatic hydrocarbons (especially benzo[a]pyrene), radon, trichloroethylene and tetrachloroethyl- ene, have indoor sources, are known in respect of their hazard- ousness to health and are often found indoors in concentrations of health concern. The guidelines are targeted at public health professionals involved in preventing health risks of environmen- SELECTED CHEMICALS SELECTED tal exposures, as well as specialists and authorities involved in the design and use of buildings, indoor materials and products. POLLUTANTS They provide a scientific basis for legally enforceable standards. World Health Organization Regional Offi ce for Europe Scherfi gsvej 8, DK-2100 Copenhagen Ø, Denmark Tel.: +45 39 17 17 17. Fax: +45 39 17 18 18 E-mail: [email protected] Web site: www.euro.who.int WHO guidelines for indoor air quality: selected pollutants The WHO European Centre for Environment and Health, Bonn Office, WHO Regional Office for Europe coordinated the development of these WHO guidelines. Keywords AIR POLLUTION, INDOOR - prevention and control AIR POLLUTANTS - adverse effects ORGANIC CHEMICALS ENVIRONMENTAL EXPOSURE - adverse effects GUIDELINES ISBN 978 92 890 0213 4 Address requests for publications of the WHO Regional Office for Europe to: Publications WHO Regional Office for Europe Scherfigsvej 8 DK-2100 Copenhagen Ø, Denmark Alternatively, complete an online request form for documentation, health information, or for per- mission to quote or translate, on the Regional Office web site (http://www.euro.who.int/pubrequest).
    [Show full text]
  • Factors Affecting Indoor Air Quality
    Factors Affecting Indoor Air Quality The indoor environment in any building the categories that follow. The examples is a result of the interaction between the given for each category are not intended to site, climate, building system (original be a complete list. 2 design and later modifications in the Sources Outside Building structure and mechanical systems), con- struction techniques, contaminant sources Contaminated outdoor air (building materials and furnishings, n pollen, dust, fungal spores moisture, processes and activities within the n industrial pollutants building, and outdoor sources), and n general vehicle exhaust building occupants. Emissions from nearby sources The following four elements are involved n exhaust from vehicles on nearby roads Four elements— in the development of indoor air quality or in parking lots, or garages sources, the HVAC n loading docks problems: system, pollutant n odors from dumpsters Source: there is a source of contamination pathways, and or discomfort indoors, outdoors, or within n re-entrained (drawn back into the occupants—are the mechanical systems of the building. building) exhaust from the building itself or from neighboring buildings involved in the HVAC: the HVAC system is not able to n unsanitary debris near the outdoor air development of IAQ control existing air contaminants and ensure intake thermal comfort (temperature and humidity problems. conditions that are comfortable for most Soil gas occupants). n radon n leakage from underground fuel tanks Pathways: one or more pollutant pathways n contaminants from previous uses of the connect the pollutant source to the occu- site (e.g., landfills) pants and a driving force exists to move n pesticides pollutants along the pathway(s).
    [Show full text]