Diagnosing IAQ Problems

Total Page:16

File Type:pdf, Size:1020Kb

Diagnosing IAQ Problems Diagnosing IAQ Problems he goal of the diagnostic building T Start (reason for concern) investigation is to identify and solve the indoor air quality complaint in a way that t 6 prevents it from recurring and that does not Initial walkthrough n preparation create other problems. This section n visual inspection describes a method for discovering the n talk with occupants and staff cause of the complaint and presents a t “toolbox” of diagnostic activities to assist Do you have Yes you in collecting information. an explanation Just as a carpenter uses only the tools for the complaint ? that are needed for any given job, an IAQ No investigator should use only the investiga- t Collect additional tive techniques that are needed. Many information about indoor air quality complaints can be n building occupants resolved without using all of the diagnostic n the HVAC system n pollutant pathways tools described in this chapter. For n pollutant sources example, it may be easy to identify the (sample contaminants if needed) source of cooking odors that are annoying t nearby office workers and solve the Develop one or more hypotheses problem by controlling pressure relation- to explain the problem. Test by ships (e.g., installing exhaust fans) in the manipulating building conditions or exposure, or by performing food preparation area. Similarly, most appropriate tests. mechanical or carpentry problems prob- ably require only a few of the many tools t t you have available and are easily accom- Do results Attempt plished with in-house expertise. No Yes Follow-up support your a control validation The use of in-house personnel builds hypothesis ? strategy skills that will be helpful in minimizing and resolving future problems. On the t other hand, some jobs may be best handled Is the by contractors who have specialized No problem Yes knowledge and experience. In the same solved ? way, diagnosing some indoor air quality problems may require equipment and skills t that are complex and unfamiliar. Your FIGURE 6-1: Make necessary Conducting an IAQ Investigation changes so that knowledge of your organization and the problem will building operations will help in selecting Note: Outside assistance may be needed at any not recur. the right tools and deciding whether in- point in the investigation, depending upon the complexity of the problem, the skills available in- t house personnel or outside professionals house, time pressures, or other factors. Finish should be used in responding to the specific IAQ problem. Diagnosing IAQ Problems 45 OVERVIEW: CONDUCTING AN tions of the IAQ complaint. Building IAQ INVESTIGATION occupants and operating staff are often a good source of ideas about the causes of An IAQ investigation begins with one or the problem. For example, they can more reasons for concern, such as occu- describe changes in the building that may pant complaints. Some complaints can be have occurred shortly before the IAQ resolved very simply (e.g., by asking a few problem was noticed (e.g., relocated The IAQ investigation common sense questions of occupants and partitions, new furniture or equipment). facility staff during the walkthrough). At is often a repetitive Hypothesis development is a process the other extreme, some problems could cycle of information- of identifying and narrowing down require detailed testing by an experienced gathering, hypothesis possibilities by comparing them with your IAQ professional. In this section “the observations. Whenever a hypothesis formation, and investigator” refers to in-house staff suggests itself, it is reasonable to pause hypothesis testing. responsible for conducting the IAQ and consider it. Is the hypothesis investigation. consistent with the facts collected so far? The flowchart on page 45 shows that You may be able to test your hypothesis the IAQ investigation is a cycle of infor- by modifying the HVAC system or mation-gathering, hypothesis formation, attempting to control the potential source and hypothesis testing. The goal of the or pollutant pathway to see whether you investigation is to understand the IAQ can relieve the symptoms or other condi- problem well enough so that you can solve tions in the building. If your hypothesis it. Many IAQ problems have more than successfully predicts the results of your one cause and may respond to (or require) manipulations, then you may be ready to several corrective actions. take corrective action. Sometimes it is difficult or impossible to manipulate the Initial Walkthrough factors you think are causing the IAQ An initial walkthrough of the problem area problem; in that case, you may be able to provides information about all four of the test the hypothesis by trying to predict how basic factors influencing indoor air quality building conditions will change over time (occupants, HVAC system, pollutant (e.g., in response to extreme outdoor pathways, and contaminant sources). The temperatures). initial walkthrough may provide enough information to resolve the problem. At the Collecting Additional least, it will direct further investigation. Information For example, if the complaint concerns an If your hypothesis does not seem to be a odor from an easily-identified source (e.g., good predictor of what is happening in the cooking odors from a kitchen), you may building, you probably need to collect want to study pollutant pathways as a next more information about the occupants, step, rather than interviewing occupants HVAC system, pollutant pathways, or about their patterns of discomfort. contaminant sources. Under some circumstances, detailed or sophisticated Developing and Testing measurements of pollutant concentrations Hypotheses or ventilation quantities may be required. As you develop an understanding of how Outside assistance may be needed if the building functions, where pollutant repeated efforts fail to produce a successful sources are located, and how pollutants hypothesis or if the information required move within the building, you may think calls for instruments and procedures that of many “hypotheses,” potential explana- are not available in-house. 46 Section 6 Results of the Investigation serious IAQ problem. You are best able to make the judgment of when to bring in an Analysis of the information collected outside consultant. See Section 8 for a during your IAQ investigation could discussion of hiring professional assistance produce any of the following results: to solve an IAQ problem. The apparent cause(s) of the complaint(s) are identified. INITIAL WALKTHROUGH Remedial action and follow-up evaluation An investigation may require one or many will confirm whether the hypothesis is visits to the complaint area. The amount correct. of preparatory work needed before the Other IAQ problems are identified that initial walkthrough varies with the nature are not related to the original complaints. and scope of the complaint and the These problems (e.g., HVAC malfunc- expertise of the investigator, among other tions, strong pollutant sources) should be factors. For example, an in-house investi- corrected when appropriate. gator who is already familiar with the layout and mechanical system in the A better understanding of potential IAQ building may begin responding to a problems is needed in order to develop a complaint about discomfort by going plan for corrective action. directly to the complaint area to check the It may be necessary to collect more thermostat setting and see whether air is detailed information and/or to expand the flowing from the supply outlets. scope of the investigation to include If the investigator is not familiar with building areas that were previously the building or is responding to complaints overlooked. Outside assistance may be that suggest a serious health problem, more needed. preparation may be needed before the initial walkthrough. The activities listed The cause of the original complaint below can be directed at a localized cannot be identified. “problem area” or extended to include the A thorough investigation has found no entire building: deficiencies in HVAC design or operation or in the control of pollutant sources, and Collect easily-available information about there have been no further complaints. In the history of the building and of the the absence of new complaints, the original complaints. complaint may have been due to a single, Identify known HVAC zones and com- unrepeated event or to causes not directly plaint areas. related to IAQ. Begin to identify potential sources and pollutants (e.g., special use areas near the Using Outside Assistance complaint location). Having a copy of Some indoor air quality problems may be mechanical and floor plans can be helpful difficult or impossible for in-house at this stage, especially if they are investigators to resolve. Special skills or reasonably up-to-date. instruments may be needed. Other factors Notify the building occupants of the can also be important, such as the benefit upcoming investigation. of having an impartial outside opinion or the need to reduce potential liability from a Tell them what it means and what to expect. Diagnosing IAQ Problems 47 Identify key individuals needed for access to describe the operating schedule of and information. equipment. Obvious problems (e.g., A person familiar with the HVAC systems blocked diffusers, malfunctioning air in the building should be available to assist handlers) can be corrected to see if the the investigator at any time during the complaints disappear. The walkthrough onsite phase. Individuals who have can solve many routine IAQ problems and complained or who are in charge of will suggest directions for a more complex potential sources (e.g., housekeeping, non- investigation, should one be necessary. HVAC equipment) should be aware that Some investigators avoid taking any their information is important and should measurements during the initial walk- be contacted for appointments or telephone through so that they are not distracted from interviews if they will not be available “getting the big picture.” Others find that during the onsite visit.
Recommended publications
  • Healthy Climate® Indoor Air Quality Systems
    HEPA Bypass Air Filtration Systems Healthy Climate® Indoor Air Quality Systems HEPA-20 HEPA-40 HEPA-60 The best possible air filtration. High-Efficiency Particulate Air (HEPA) Filtration Systems ® 99.97% efficiency rating Pollutants like dust, pollen, bacteria and viruses find their way into your for removal of all small, home’s air every day. These pollutants can cause poor indoor air quality, breathable particles, airborne mold spores, bacteria and which impacts both your home environment and health. At the very least, Place. viruses, down to 0.3 micron poor air quality can make your home uncomfortable. And, if you’re one of Bypass configuration quietly circulates and cleans the air more than 50 million Americans who suffer from allergies, poor air quality throughout the home can make your home very unhealthy. Designed for easy integration BETTER with Lennox® heating and HIGHLY EFFECTIVE AIR FILTRATION FOR A CLEANER, cooling systems for total HEALTHIER HOME ENVIRONMENT. home comfort …A A Healthy Climate® high-efficiency particulate air (HEPA) bypass filtration Best possible air-filtration performance system can go a long way toward improving the air you breathe. Using the same filtration technology found in hospital operating rooms and HOME science labs, a HEPA system removes nearly all allergy-inducing contaminants, including even the smallest particles and bacteria. It filters and freshens the air, so you can breathe easier. Highly effective filtration. THREE CLASSES OF AIR CONTAMINANTS Lennox makes your With a particle-efficiency rating of 99.97%, this system captures and Particles—Pollen, dust mites, dirt, pet dander. filters particles and bioaerosols as Particles are any small as 0.3 micron—contaminants substances measuring less than 100 microns that standard filtration systems in diameter.
    [Show full text]
  • ASHRAE Position Document on Filtration and Air Cleaning
    ASHRAE Position Document on Filtration and Air Cleaning Approved by ASHRAE Board of Directors January 29, 2015 Reaffirmed by Technology Council January 13, 2018 Expires January 23, 2021 ASHRAE 1791 Tullie Circle, NE • Atlanta, Georgia 30329-2305 404-636-8400 • fax: 404-321-5478 • www.ashrae.org © 2015 ASHRAE (www.ashrae.org). For personal use only. Additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE's prior written permission. COMMITTEE ROSTER The ASHRAE Position Document on Filtration and Air Cleaning was developed by the Society's Filtration and Air Cleaning Position Document Committee formed on January 6, 2012, with Pawel Wargocki as its chair. Pawel Wargocki, Chair Dean A. Saputa Technical University of Denmark UV Resources Kongens Lyngby, Denmark Santa Clarita, CA Thomas H. Kuehn William J. Fisk University of Minnesota Lawrence Berkeley National Laboratory Minneapolis, MN Berkeley, CA H.E. Barney Burroughs Jeffrey A. Siegel Building Wellness Consultancy, Inc. The University of Toronto Johns Creek, GA Toronto, ON, Canada Christopher O. Muller Mark C. Jackson Purafil Inc. The University of Texas at Austin Doraville, GA Austin, TX Ernest A. Conrad Alan Veeck BOMA International National Air Filtration Association Washington DC Virginia Beach, VA Other contributors: Dean Tompkins Madison, WI for his contribution on photocatalytic oxidizers Paul Francisco, Ex-Officio Cognizant Committee Chair Environmental Health Committee University of Illinois Champaign, IL ASHRAE is a registered trademark in the U.S. Patent and Trademark Office, owned by the American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. © 2015 ASHRAE (www.ashrae.org). For personal use only.
    [Show full text]
  • Improving Air Quality for Operators of Mobile Machines in Underground Mines
    atmosphere Article Improving Air Quality for Operators of Mobile Machines in Underground Mines Andrzej Szczurek 1, Monika Maciejewska 1,*, Marcin Przybyła 2 and Wacław Szetelnicki 2 1 Faculty of Environmental Engineering, Wroclaw University of Science and Technology, Wybrze˙zeWyspia´nskiego27, 50-370 Wrocław, Poland; [email protected] 2 Centrum Bada´nJako´scisp. zo. o., ul. M. Skłodowskiej-Curie 62, 59-301 Lubin, Poland; [email protected] (M.P.); [email protected] (W.S.) * Correspondence: [email protected]; Tel.: +48-7132-028-68 Received: 12 November 2020; Accepted: 9 December 2020; Published: 18 December 2020 Abstract: In underground mines, mobile mining equipment is critical for the production system. The microenvironment inside the mobile machine may cause exposure to strongly polluted mine air, which adversely affects the health and working performance of the operator. Harmful pollutants may access the cabin together with the ventilation air delivered from the machine’s surroundings. This work proposes a solution that is able to ensure that the air for the machine operator is of proper quality. The proposal emerged from an analysis of the compliance of cabins of mobile machines working underground in mines with occupational health and safety (H&S) standards. An analytical model of air quality in a well-mixed zone was utilized for this purpose. The cabin atmosphere was investigated with regard to the concentration of gaseous species in the surrounding air, the cabin ventilation rate, and human breathing parameters. The analysis showed that if currently available ventilation approaches are used, compliance with multiple H&S standards cannot be attained inside the cabin if standards are exceeded in the surroundings of the machine.
    [Show full text]
  • Indoor Air Quality
    Indoor Air Quality Poor indoor air quality can cause a stuffy nose, sore throat, coughing or wheezing, headache, burning eyes, or skin rash. People with asthma or other breathing problems or who have allergies may have severe reactions. Common Indoor Air Pollutants Poor indoor air quality comes from many sources, including: » Tobacco smoke » Mold » Pollen » Allergens such as those from cats, dogs, mice, dust mites, and cockroaches » Smoke from fireplaces and woodstoves » Formaldehyde in building materials, textiles, and furniture » Carbon monoxide from gas furnaces, ovens, and other appliances » Use of household products such as cleaners and bug sprays » Outdoor air pollution from factories, vehicles, wildfires, and other sources How to Improve Indoor Air Quality » Open windows to let in fresh air. • However, if you have asthma triggered by outdoor air pollution or pollen, opening windows might not be a good idea. In this case, use exhaust fans and non-ozone-producing air cleaners to reduce exposure to these triggers. » Clean often to get rid of dust, pet fur, and other allergens. • Use a vacuum cleaner equipped with a HEPA filter. • Wet or damp mopping is better than sweeping. » Take steps to control mold and pests. » Do not smoke, and especially do not smoke indoors. If you think poor indoor air is making you sick, please see or call a doctor or other health care provider. About CDC CDC is a federal public health agency based in Atlanta, GA. Our mission is to promote health and quality of life by preventing and controlling disease, injury and disability. For More Information We want to help you to stay healthy.
    [Show full text]
  • WHO Guidelines for Indoor Air Quality : Selected Pollutants
    WHO GUIDELINES FOR INDOOR AIR QUALITY WHO GUIDELINES FOR INDOOR AIR QUALITY: WHO GUIDELINES FOR INDOOR AIR QUALITY: This book presents WHO guidelines for the protection of pub- lic health from risks due to a number of chemicals commonly present in indoor air. The substances considered in this review, i.e. benzene, carbon monoxide, formaldehyde, naphthalene, nitrogen dioxide, polycyclic aromatic hydrocarbons (especially benzo[a]pyrene), radon, trichloroethylene and tetrachloroethyl- ene, have indoor sources, are known in respect of their hazard- ousness to health and are often found indoors in concentrations of health concern. The guidelines are targeted at public health professionals involved in preventing health risks of environmen- SELECTED CHEMICALS SELECTED tal exposures, as well as specialists and authorities involved in the design and use of buildings, indoor materials and products. POLLUTANTS They provide a scientific basis for legally enforceable standards. World Health Organization Regional Offi ce for Europe Scherfi gsvej 8, DK-2100 Copenhagen Ø, Denmark Tel.: +45 39 17 17 17. Fax: +45 39 17 18 18 E-mail: [email protected] Web site: www.euro.who.int WHO guidelines for indoor air quality: selected pollutants The WHO European Centre for Environment and Health, Bonn Office, WHO Regional Office for Europe coordinated the development of these WHO guidelines. Keywords AIR POLLUTION, INDOOR - prevention and control AIR POLLUTANTS - adverse effects ORGANIC CHEMICALS ENVIRONMENTAL EXPOSURE - adverse effects GUIDELINES ISBN 978 92 890 0213 4 Address requests for publications of the WHO Regional Office for Europe to: Publications WHO Regional Office for Europe Scherfigsvej 8 DK-2100 Copenhagen Ø, Denmark Alternatively, complete an online request form for documentation, health information, or for per- mission to quote or translate, on the Regional Office web site (http://www.euro.who.int/pubrequest).
    [Show full text]
  • Factors Affecting Indoor Air Quality
    Factors Affecting Indoor Air Quality The indoor environment in any building the categories that follow. The examples is a result of the interaction between the given for each category are not intended to site, climate, building system (original be a complete list. 2 design and later modifications in the Sources Outside Building structure and mechanical systems), con- struction techniques, contaminant sources Contaminated outdoor air (building materials and furnishings, n pollen, dust, fungal spores moisture, processes and activities within the n industrial pollutants building, and outdoor sources), and n general vehicle exhaust building occupants. Emissions from nearby sources The following four elements are involved n exhaust from vehicles on nearby roads Four elements— in the development of indoor air quality or in parking lots, or garages sources, the HVAC n loading docks problems: system, pollutant n odors from dumpsters Source: there is a source of contamination pathways, and or discomfort indoors, outdoors, or within n re-entrained (drawn back into the occupants—are the mechanical systems of the building. building) exhaust from the building itself or from neighboring buildings involved in the HVAC: the HVAC system is not able to n unsanitary debris near the outdoor air development of IAQ control existing air contaminants and ensure intake thermal comfort (temperature and humidity problems. conditions that are comfortable for most Soil gas occupants). n radon n leakage from underground fuel tanks Pathways: one or more pollutant pathways n contaminants from previous uses of the connect the pollutant source to the occu- site (e.g., landfills) pants and a driving force exists to move n pesticides pollutants along the pathway(s).
    [Show full text]
  • Indoor Air Quality in Commercial and Institutional Buildings
    Indoor Air Quality in Commercial and Institutional Buildings OSHA 3430-04 2011 Occupational Safety and Health Act of 1970 “To assure safe and healthful working conditions for working men and women; by authorizing enforcement of the standards developed under the Act; by assisting and encouraging the States in their efforts to assure safe and healthful working conditions; by providing for research, information, education, and training in the field of occupational safety and health.” This publication provides a general overview of a particular standards-related topic. This publication does not alter or determine compliance responsibili- ties which are set forth in OSHA standards, and the Occupational Safety and Health Act of 1970. More- over, because interpretations and enforcement poli- cy may change over time, for additional guidance on OSHA compliance requirements, the reader should consult current administrative interpretations and decisions by the Occupational Safety and Health Review Commission and the courts. Material contained in this publication is in the public domain and may be reproduced, fully or partially, without permission. Source credit is requested but not required. This information will be made available to sensory- impaired individuals upon request. Voice phone: (202) 693-1999; teletypewriter (TTY) number: 1-877- 889-5627. Indoor Air Quality in Commercial and Institutional Buildings Occupational Safety and Health Administration U.S. Department of Labor OSHA 3430-04 2011 The guidance is advisory in nature and informational in content. It is not a standard or regulation, and it neither creates new legal obligations nor alters existing obligations created by OSHA standards or the Occupational Safety and Health Act.
    [Show full text]
  • Federal Programs Related to Indoor Pollution by Chemicals
    Federal Programs Related to Indoor Pollution by Chemicals Linda-Jo Schierow Specialist in Environmental Policy David M. Bearden Specialist in Environmental Policy July 23, 2012 Congressional Research Service 7-5700 www.crs.gov R42620 CRS Report for Congress Prepared for Members and Committees of Congress Federal Programs Related to Indoor Pollution by Chemicals Summary “Toxic” drywall, formaldehyde emissions, mold, asbestos, lead-based paint, radon, PCBs in caulk, and many other indoor pollution problems have concerned federal policy makers and regulators during the last 30 years. Some problems have been resolved, others remain of concern, and new indoor pollution problems continually emerge. This report describes common indoor pollutants and health effects that have been linked to indoor pollution, federal statutes that have been used to address indoor pollution, key issues, and some general policy options for Congress. Indoor pollutants are chemicals that are potentially harmful to people and found in the habitable portions of buildings, including homes, schools, offices, factories, and other public gathering places. Some indoor pollutants, like lead or ozone, are also outdoor pollutants. Others, like formaldehyde or asbestos, are primarily indoor pollutants. Indoor pollutants may be natural (for example, carbon monoxide or radon) or synthetic (polychlorinated biphenyls [PCBs]), and may originate indoors or outdoors. They may be deliberately produced, naturally occurring, or inadvertent byproducts of human activities. For example, they may arise indoors as uncontrolled emissions from building materials, paints, or furnishings, from evaporation following the use of cleaning supplies or pesticides, or as a combustion byproduct as a result of heating or cooking. Some pollution that originates outdoors infiltrates through porous basements (e.g., radon) or is inadvertently brought into indoor spaces, perhaps through heating or air conditioning systems or in contaminated drinking water.
    [Show full text]
  • Indoor Air Quality Information by State December 2003
    Indoor Air Quality Information by State December 2003 The following links are to offices or programs identified by each state as dealing with indoor air-related health inquiries. Some of these links may be to general air quality programs. Alabama • The University of Alabama Safe State Environmental Programs http://bama.ua.edu/~deip/safe_state_environmental.htm Alaska • Alaska Department of Health and Social Services http://www.ahfc.state.ak.us/Workshops/mold-hazards-workshop.htm • Alaska Department of Environmental Conservation http://www.state.ak.us/dec/dawq/aqi/anpms/Main Pages/atasgroup/idair.htm Arizona • Arizona Office of Environmental Health http://www.hs.state.az.us/phs/oeh/invsurv/air_qual/index.htm Arkansas • Arkansas Department of Environmental Quality http://www.adeq.state.ar.us/ California • California Department of Health Services http://www.cal-iaq.org • California Air Resources Board http://www.arb.ca.gov/research/indoor/indoor.htm Colorado • Colorado Department of Public Health and Environment http://www.cdphe.state.co.us/ap/IAQhom.asp 1 Connecticut • Connecticut Department of Public Health http://www.dph.state.ct.us/BCH/EEOH/iaqcm.htm Delaware • Delaware Health and Social Services Division of Public Health http://www.state.de.us/dhss/dph/btd/home.htm District of Columbia • District of Columbia Department of Health http://dchealth.dc.gov/services/administration_offices/environmental/services2/air_quality/service sindoorair.shtm Florida • Florida Department of Health http://www.doh.state.fl.us/environment/facility/iaq/index.html
    [Show full text]
  • Improving Ventilation and Indoor Air Quality During Wildfire Smoke Events Recommendations for Schools and Buildings with Mechanical Ventilation
    Improving Ventilation and Indoor Air Quality during Wildfire Smoke Events Recommendations for Schools and Buildings with Mechanical Ventilation Overview • Smoke is a complex mixture of carbon dioxide (CO2), water vapor, carbon monoxide (CO), hydrocarbons, other organic chemicals, nitrogen oxides (NOX), trace minerals, and particulate matter. o Particulate matter consists of solid particles and liquid droplets suspended in the air. Particles with diameters less than 10 microns (PM10) are upper respiratory tract and eye irritants. o Smaller particles (PM2.5) are the greatest health concern – they can be inhaled deep into the lungs, and can affect respiratory and heart health. o Carbon monoxide, a colorless, odorless gas produced by incomplete combustion, is a particular health concern and levels are highest during the smoldering stages of a fire. • Outdoor (ambient) air pollutants, including smoke, enter and leave buildings in three primary ways: 1. Mechanical ventilation systems, which actively draw in outdoor air through intake vents and distribute it throughout the building. 2. Natural ventilation (opening of doors or windows). 3. Infiltration, the passive entry of unfiltered outdoor air through small cracks and gaps in the building shell. • Tightly closed buildings reduce exposure to outdoor air pollution. Upgrading the filter efficiency of the heating, ventilating, and air-conditioning (HVAC) system and changing filters frequently during smoke events greatly improves indoor air quality. Supplementing with HEPA filters, particularly those with activated charcoal or other adsorbents, improves air quality even more. • During long-term smoke events, take advantage of periods of improved air quality (such as during rain or shifts in wind) to use natural ventilation to flush-out the building.
    [Show full text]
  • Microorganisms, Mold, and Indoor Air Quality INDOOR AIR QUALITY
    Microorganisms, Mold, and Indoor Air Quality INDOOR AIR QUALITY Microorganisms, Mold, and Indoor Air Quality Contributing Authors Linda D. Stetzenbach, Ph.D., Chair, Subcommittee on Indoor Air Quality, University of Nevada, Las Vegas Harriet Amman, Ph.D., Washington Department of Ecology Eckardt Johanning, M.D., M.Sc., Occupational and Environmental Life Science Gary King, Ph.D., Chair, Committee on Environmental Microbiology, University of Maine Richard J. Shaughnessy, Ph.D., University of Tulsa About the American Society for Microbiology he American Society for Microbiology (ASM) is the largest single life science society, composed of over 42,000 scientists, teachers, physicians, and health Tprofessionals. The ASM’s mission is to promote research and research training in the microbiological sciences and to assist communication between scientists, policymakers, and the public to improve health, economic well being, and the environment.The goal of this booklet is to provide background information on indoor air quality (IAQ) and to emphasize the critical role of research in responding to IAQ and public health issues which currently confront policymakers. December 2004 Introduction Microscopic view of a cluster of Aspergillus fumigatus conidiophores and spores. ith every breath, we inhale not Although poor IAQ is often viewed as a prob- only life sustaining oxygen but also lem peculiar to modern buildings, linkages W dust, smoke, chemicals, microor- between air quality and disease have been known ganisms, and other particles and pollutants that for centuries. Long before the germ theory of dis- float in air. The average individual inhales about ease led to recognition of pathogenic microorgan- 10 cubic meters of air each day, roughly the vol- isms, foul vapors were being linked with ume of the inside of an elevator.
    [Show full text]
  • State and Local Indoor Air Quality Programs: Five Case Studies
    ENVIRONMENTAL LAW INSTITUTE RESEARCH REPORT State and Local Indoor Air Quality Programs: Five Case Studies November 1997 STATE AND LOCAL INDOOR AIR QUALITY PROGRAMS: FIVE CASE STUDIES Environmental Law Institute Copyright © 1997 Acknowledgements This report was prepared by the Environmental Law Institute (ELI) with funding from the U.S. Environmental Protection Agency (EPA) under Assistance Agreement ID No. X-824881-01. It does not represent the views of the EPA and no official endorsement should be inferred. Environmental Law Institute staff contributing to this report were Tobie Bernstein, Maura Carney, Paul Locke, Jay Pendergrass, Vanessa Reeves and Carrie Bader. Mary Becker and Michele Straube also contributed significantly to the report. The assistance of program officials from the states of California, Florida, Minnesota and Vermont, and municipal officials from Montgomery County, Maryland, is gratefully acknowledged. Copyright © 1998 Environmental Law Institute ®. A limited license is hereby granted to visitors to the ELI Web site to download, electronically or mechanically store, or retrieve and print one copy of this work in its electronic format for personal, academic research, or similar non-commercial use only, provided that notice of copyright ownership appears prominently on the copy. Electronic retransmission of the work without the express consent of the Environmental Law Institute is strictly prohibited. All other rights reserved. State and Local Indoor Air Quality Programs Copyright©, Environmental Law Institute®, 1997.
    [Show full text]