EBC Annex 68) Subtask 4: Current Challenges, Selected Case Studies and Innovative Solutions Covering Indoor Air Quality, Ventilation Design and Control in Residences
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Investigation of the Impact of Commercial Building Envelope Airtightness on HVAC Energy Use
NISTIR 7238 Investigation of the Impact of Commercial Building Envelope Airtightness on HVAC Energy Use Steven J. Emmerich Tim McDowell Wagdy Anis NISTIR 7238 Investigation of the Impact of Commercial Building Envelope Airtightness on HVAC Energy Use Steven J. Emmerich Building and Fire Research Laboratory Timothy P. McDowell TESS, Inc. Wagdy Anis Shepley Bulfinch Richardson and Abbott Prepared for: U.S. Department of Energy Office of Building Technologies June 2005 U.S. Department of Commerce Carlos M. Gutierrez, Secretary Technology Administration Phillip J. Bond, Under Secretary of Commerce for Technology National Institute of Standards and Technology Hratch Semerjian, Acting Director ABSTRACT This report presents a simulation study of the energy impact of improving envelope airtightness in U.S. commercial buildings. Despite common assumptions, measurements have shown that typical U.S. commercial buildings are not particularly airtight. Past simulation studies have shown that commercial building envelope leakage can result in significant heating and cooling loads. To evaluate the potential energy savings of an effective air barrier requirement, annual energy simulations were prepared for three nonresidential buildings (a two-story office building, a one-story retail building, and a four-story apartment building) in 5 U.S. cities. A coupled multizone airflow and building energy simulation tool was used to predict the energy use for the buildings at a target tightness level relative to a baseline level based on measurements in existing buildings. Based on assumed blended national average heating and cooling energy prices, predicted potential annual heating and cooling energy cost savings ranged from 3 % to 36 % with the smallest savings occurring in the cooling-dominated climates of Phoenix and Miami. -
Airbase 6142... [1248Kb]
House Airtightness Variation with Age M.R. Bassett Building Physicist, Building Research Association of New Zealand Total number of pages( excluding cover page)= 5 Full address/phone/fax Building Research Association of New Zealand Private Bag 50908, Porirua, New Zealand Ph (04)235-7600 Fax (04)235-6070 SUMMARY - This paper focuses on changes to the air tightness of houses in the first year after construction. Monthly blower door results for 7 houses are presented and the seasonal and longer term effects compared with equivalent measurements in a variety of overseas climates. The picture that emerges is of small airtightness changes in stable coastal climates and larger seasonal swings where the summer to winter temperature differences are more extreme. There are some exceptions in the New Zealand data, however, that could be attributed to water leaks in the roofs of two houses .. 1. AIR INFILTRATION AND HOUSE VENTILATION if they exist, or used in comparisons of buildings of different types, age or location around the world. The airtightness of housing has been studied because background air leakage can contribute to ventilation, and hence to building energy efficiency and indoor air quality. There have been considerable changes in building materials and construction methods over the years, and the background ventilation provided by air infiltration has been shown by Bassett (1992) to have generally declined. This has provided the motivation to design and build ventilation systems that more accurately cater for energy efficiency and indoor air quality. There are no targets for house airtightness in NZ building codes, and yet when windows are kept closed for security or soundisolationreasons, air infiltration will be the sole provider of ventilation. -
What Impacts Does Increasing Airtightness Have on Mould, Condensation and Measures of Indoor Air Quality?
“What impacts does increasing airtightness have on mould, condensation and measures of indoor air quality?” Rapid Review Report V 2.0 Authors Leela Kempton, Daniel Daly, Mark Dewsbury Sustainable Buildings Research Centre, University of Wollongong [email protected] [email protected] Title What impacts does increasing airtightness have on mould, condensation and measures of indoor air quality? ISBN Date September 2020 Keywords Airtightness, Ventilation, Indoor air quality, mould, moisture, condensation Publisher CRC LCL Preferred citation Kempton, L, Daly, D, Dewsbury, M (2020), Rapid Review: What impacts does increasing airtightness have on mould, condensation and measures of indoor air quality? CRC Low Carbon Living, Sydney. Rapid Review - Airtightness 2 Acknowledgements This research is funded by the CRC for Low Carbon Living Ltd supported by the Cooperative Research Centres program, an Australian Government initiative Disclaimer Any opinions expressed in this document are those of the authors. They do not purport to reflect the opinions or views of the CRCLCL or its partners, agents or employees. The CRCLCL gives no warranty or assurance and makes no representation as to the accuracy or reliability of any information or advice contained in this document, or that it is suitable for any intended use. The CRCLCL, its partners, agents and employees, disclaim any and all liability for any errors or omissions or in respect of anything or the consequences of anything done or omitted to be done in reliance upon the whole or any part of this document. Peer review statement The CRCLCL recognises the value of knowledge exchange and the importance of objective peer review. -
An Overview of the State of Microgeneration Technologies in the UK
An overview of the state of microgeneration technologies in the UK Nick Kelly Energy Systems Research Unit Mechanical Engineering University of Strathclyde Glasgow Drivers for Deployment • the UK is a signatory to the Kyoto protocol committing the country to 12.5% cuts in GHG emissions • EU 20-20-20 – reduction in EU greenhouse gas emissions of at least 20% below 1990 levels; 20% of all energy consumption to come from renewable resources; 20% reduction in primary energy use compared with projected levels, to be achieved by improving energy efficiency. • UK Climate Change Act 2008 – self-imposed target “to ensure that the net UK carbon account for the year 2050 is at least 80% lower than the 1990 baseline.” – 5-year ‘carbon budgets’ and caps, carbon trading scheme, renewable transport fuel obligation • Energy Act 2008 – enabling legislation for CCS investment, smart metering, offshore transmission, renewables obligation extended to 2037, renewable heat incentive, feed-in-tariff • Energy Act 2010 – further CCS legislation • plus more legislation in the pipeline .. Where we are in 2010 • in the UK there is very significant growth in large-scale renewable generation – 8GW of capacity in 2009 (up 18% from 2008) – Scotland 31% of electricity from renewable sources 2010 • Microgeneration lags far behind – 120,000 solar thermal installations [600 GWh production] – 25,000 PV installations [26.5 Mwe capacity] – 28 MWe capacity of CHP (<100kWe) – 14,000 SWECS installations 28.7 MWe capacity of small wind systems – 8000 GSHP systems Enabling Microgeneration -
Healthy Climate® Indoor Air Quality Systems
HEPA Bypass Air Filtration Systems Healthy Climate® Indoor Air Quality Systems HEPA-20 HEPA-40 HEPA-60 The best possible air filtration. High-Efficiency Particulate Air (HEPA) Filtration Systems ® 99.97% efficiency rating Pollutants like dust, pollen, bacteria and viruses find their way into your for removal of all small, home’s air every day. These pollutants can cause poor indoor air quality, breathable particles, airborne mold spores, bacteria and which impacts both your home environment and health. At the very least, Place. viruses, down to 0.3 micron poor air quality can make your home uncomfortable. And, if you’re one of Bypass configuration quietly circulates and cleans the air more than 50 million Americans who suffer from allergies, poor air quality throughout the home can make your home very unhealthy. Designed for easy integration BETTER with Lennox® heating and HIGHLY EFFECTIVE AIR FILTRATION FOR A CLEANER, cooling systems for total HEALTHIER HOME ENVIRONMENT. home comfort …A A Healthy Climate® high-efficiency particulate air (HEPA) bypass filtration Best possible air-filtration performance system can go a long way toward improving the air you breathe. Using the same filtration technology found in hospital operating rooms and HOME science labs, a HEPA system removes nearly all allergy-inducing contaminants, including even the smallest particles and bacteria. It filters and freshens the air, so you can breathe easier. Highly effective filtration. THREE CLASSES OF AIR CONTAMINANTS Lennox makes your With a particle-efficiency rating of 99.97%, this system captures and Particles—Pollen, dust mites, dirt, pet dander. filters particles and bioaerosols as Particles are any small as 0.3 micron—contaminants substances measuring less than 100 microns that standard filtration systems in diameter. -
ASHRAE Position Document on Filtration and Air Cleaning
ASHRAE Position Document on Filtration and Air Cleaning Approved by ASHRAE Board of Directors January 29, 2015 Reaffirmed by Technology Council January 13, 2018 Expires January 23, 2021 ASHRAE 1791 Tullie Circle, NE • Atlanta, Georgia 30329-2305 404-636-8400 • fax: 404-321-5478 • www.ashrae.org © 2015 ASHRAE (www.ashrae.org). For personal use only. Additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE's prior written permission. COMMITTEE ROSTER The ASHRAE Position Document on Filtration and Air Cleaning was developed by the Society's Filtration and Air Cleaning Position Document Committee formed on January 6, 2012, with Pawel Wargocki as its chair. Pawel Wargocki, Chair Dean A. Saputa Technical University of Denmark UV Resources Kongens Lyngby, Denmark Santa Clarita, CA Thomas H. Kuehn William J. Fisk University of Minnesota Lawrence Berkeley National Laboratory Minneapolis, MN Berkeley, CA H.E. Barney Burroughs Jeffrey A. Siegel Building Wellness Consultancy, Inc. The University of Toronto Johns Creek, GA Toronto, ON, Canada Christopher O. Muller Mark C. Jackson Purafil Inc. The University of Texas at Austin Doraville, GA Austin, TX Ernest A. Conrad Alan Veeck BOMA International National Air Filtration Association Washington DC Virginia Beach, VA Other contributors: Dean Tompkins Madison, WI for his contribution on photocatalytic oxidizers Paul Francisco, Ex-Officio Cognizant Committee Chair Environmental Health Committee University of Illinois Champaign, IL ASHRAE is a registered trademark in the U.S. Patent and Trademark Office, owned by the American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. © 2015 ASHRAE (www.ashrae.org). For personal use only. -
Improving Air Quality for Operators of Mobile Machines in Underground Mines
atmosphere Article Improving Air Quality for Operators of Mobile Machines in Underground Mines Andrzej Szczurek 1, Monika Maciejewska 1,*, Marcin Przybyła 2 and Wacław Szetelnicki 2 1 Faculty of Environmental Engineering, Wroclaw University of Science and Technology, Wybrze˙zeWyspia´nskiego27, 50-370 Wrocław, Poland; [email protected] 2 Centrum Bada´nJako´scisp. zo. o., ul. M. Skłodowskiej-Curie 62, 59-301 Lubin, Poland; [email protected] (M.P.); [email protected] (W.S.) * Correspondence: [email protected]; Tel.: +48-7132-028-68 Received: 12 November 2020; Accepted: 9 December 2020; Published: 18 December 2020 Abstract: In underground mines, mobile mining equipment is critical for the production system. The microenvironment inside the mobile machine may cause exposure to strongly polluted mine air, which adversely affects the health and working performance of the operator. Harmful pollutants may access the cabin together with the ventilation air delivered from the machine’s surroundings. This work proposes a solution that is able to ensure that the air for the machine operator is of proper quality. The proposal emerged from an analysis of the compliance of cabins of mobile machines working underground in mines with occupational health and safety (H&S) standards. An analytical model of air quality in a well-mixed zone was utilized for this purpose. The cabin atmosphere was investigated with regard to the concentration of gaseous species in the surrounding air, the cabin ventilation rate, and human breathing parameters. The analysis showed that if currently available ventilation approaches are used, compliance with multiple H&S standards cannot be attained inside the cabin if standards are exceeded in the surroundings of the machine. -
The Potential Air Quality Impacts from Biomass Combustion
AIR QUALITY EXPERT GROUP The Potential Air Quality Impacts from Biomass Combustion Prepared for: Department for Environment, Food and Rural Affairs; Scottish Government; Welsh Government; and Department of the Environment in Northern Ireland AIR QUALITY EXPERT GROUP The Potential Air Quality Impacts from Biomass Combustion Prepared for: Department for Environment, Food and Rural Affairs; Scottish Government; Welsh Government; and Department of the Environment in Northern Ireland This is a report from the Air Quality Expert Group to the Department for Environment, Food and Rural Affairs; Scottish Government; Welsh Government; and Department of the Environment in Northern Ireland, on the potential air quality impacts from biomass combustion. The information contained within this report represents a review of the understanding and evidence available at the time of writing. © Crown copyright 2017 Front cover image credit: left – Jamie Hamel-Smith, middle – Katie Chase, right – Tom Rickhuss on Stocksnap.io. Used under Creative Commons. United Kingdom air quality information received from the automatic monitoring sites and forecasts may be accessed via the following media: Freephone Air Pollution Information 0800 556677 Service Internet http://uk-air.defra.gov.uk PB14465 Terms of reference The Air Quality Expert Group (AQEG) is an expert committee of the Department for Environment, Food and Rural Affairs (Defra) and considers current knowledge on air pollution and provides advice on such things as the levels, sources and characteristics of air pollutants in the UK. AQEG reports to Defra’s Chief Scientific Adviser, Defra Ministers, Scottish Ministers, the Welsh Government and the Department of the Environment in Northern Ireland (the Government and devolved administrations). -
Indoor Air Quality
Indoor Air Quality Poor indoor air quality can cause a stuffy nose, sore throat, coughing or wheezing, headache, burning eyes, or skin rash. People with asthma or other breathing problems or who have allergies may have severe reactions. Common Indoor Air Pollutants Poor indoor air quality comes from many sources, including: » Tobacco smoke » Mold » Pollen » Allergens such as those from cats, dogs, mice, dust mites, and cockroaches » Smoke from fireplaces and woodstoves » Formaldehyde in building materials, textiles, and furniture » Carbon monoxide from gas furnaces, ovens, and other appliances » Use of household products such as cleaners and bug sprays » Outdoor air pollution from factories, vehicles, wildfires, and other sources How to Improve Indoor Air Quality » Open windows to let in fresh air. • However, if you have asthma triggered by outdoor air pollution or pollen, opening windows might not be a good idea. In this case, use exhaust fans and non-ozone-producing air cleaners to reduce exposure to these triggers. » Clean often to get rid of dust, pet fur, and other allergens. • Use a vacuum cleaner equipped with a HEPA filter. • Wet or damp mopping is better than sweeping. » Take steps to control mold and pests. » Do not smoke, and especially do not smoke indoors. If you think poor indoor air is making you sick, please see or call a doctor or other health care provider. About CDC CDC is a federal public health agency based in Atlanta, GA. Our mission is to promote health and quality of life by preventing and controlling disease, injury and disability. For More Information We want to help you to stay healthy. -
Diagnosing IAQ Problems
Diagnosing IAQ Problems he goal of the diagnostic building T Start (reason for concern) investigation is to identify and solve the indoor air quality complaint in a way that t 6 prevents it from recurring and that does not Initial walkthrough n preparation create other problems. This section n visual inspection describes a method for discovering the n talk with occupants and staff cause of the complaint and presents a t “toolbox” of diagnostic activities to assist Do you have Yes you in collecting information. an explanation Just as a carpenter uses only the tools for the complaint ? that are needed for any given job, an IAQ No investigator should use only the investiga- t Collect additional tive techniques that are needed. Many information about indoor air quality complaints can be n building occupants resolved without using all of the diagnostic n the HVAC system n pollutant pathways tools described in this chapter. For n pollutant sources example, it may be easy to identify the (sample contaminants if needed) source of cooking odors that are annoying t nearby office workers and solve the Develop one or more hypotheses problem by controlling pressure relation- to explain the problem. Test by ships (e.g., installing exhaust fans) in the manipulating building conditions or exposure, or by performing food preparation area. Similarly, most appropriate tests. mechanical or carpentry problems prob- ably require only a few of the many tools t t you have available and are easily accom- Do results Attempt plished with in-house expertise. No Yes Follow-up support your a control validation The use of in-house personnel builds hypothesis ? strategy skills that will be helpful in minimizing and resolving future problems. -
Blower Door Testing Results Speak for Themselves, and We™Re Blown Away!
Blower Door Testing Results Speak for Themselves, and We’re Blown Away! A Call for Innovation Once a city owned parking lot, the apartment complex spreads across six floors, with an average of five windows for each of the building’s 105 apartments. Sound familiar? We’re referring to the Eagles Landing DensElement® Barrier System case study in Burlington, Vermont. The one with just under 600 windows—That’s the one! Well, we decided to check in with the building envelope consultant, Zero by Degrees at the time, now known as BVH Integrated Services, upon the completion of the project to get the scoop on the performance of the DensElement® Barrier System. Mike LaCrosse, project manager, at BVH Integrated Services, provided his feedback. He said, “I was impressed with the DensElement® Barrier System, and admittedly, my experience with the system is limited, but it seems to be a respectable product, especially in comparison against a self-adhered membrane installation.” LaCrosse added, “Due to the nature of the PROSOCO material, the entire system is what I would call a highly “inspectable” system. Meaning you can visually inspect the system and identify air leakage pathways with relative ease, even without testing it, although we prefer qualitative testing regardless. The same can be true of self-adhered membrane systems, but leakage path ways are often a bit more nuanced. With the PROSOCO, there is either a hole that leaks, or there isn’t.” Between visual inspections and qualitative testing of the DensElement® Barrier System throughout construction, LaCrosse felt confident in the building’s air tightness performance. -
New Buildings and Major Renovations Version 3.2 December 2019 Includes Updated Section: Energy and Atmosphere
New Buildings and Major Renovations Version 3.2 December 2019 Includes Updated Section: Energy and Atmosphere Center for Sustainable Building Research College of Design · University of Minnesota All rights reserved. © Regents of the University of Minnesota, Twin Cities Campus, College of Design. All rights reserved. 2019 1 © Regents of the University of Minnesota, Twin Cities Campus, College of Design. All rights reserved. 2019 2 Print Version Contents Print Version Contents ............................................................................................................................................................................... 3 B3 Guideline Version History ..................................................................................................................................................................... 5 Guidelines Organization ............................................................................................................................................................................. 5 Applicability ............................................................................................................................................................................................... 6 Process ....................................................................................................................................................................................................... 8 Performance Management Guidelines ...................................................................................................................................................