Environmental Effects of Ozone Depletion and Its Interactions with Climate Change: 2010 Assessment

Total Page:16

File Type:pdf, Size:1020Kb

Environmental Effects of Ozone Depletion and Its Interactions with Climate Change: 2010 Assessment University of Wollongong Research Online Faculty of Science - Papers (Archive) Faculty of Science, Medicine and Health 2010 Environmental Effects of Ozone Depletion and its Interactions with Climate Change: 2010 Assessment Sharon A. Robinson University of Wollongong, [email protected] Stephen R. Wilson University of Wollongong, [email protected] Follow this and additional works at: https://ro.uow.edu.au/scipapers Part of the Life Sciences Commons, Physical Sciences and Mathematics Commons, and the Social and Behavioral Sciences Commons Recommended Citation Robinson, Sharon A. and Wilson, Stephen R.: Environmental Effects of Ozone Depletion and its Interactions with Climate Change: 2010 Assessment 2010. https://ro.uow.edu.au/scipapers/456 Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: [email protected] Environmental Effects of Ozone Depletion and its Interactions with Climate Change: 2010 Assessment Abstract This quadrennial Assessment was prepared by the Environmental Effects Assessment Panel (EEAP) for the Parties to the Montreal Protocol. The Assessment reports on key findings on environment and health since the last full Assessment of 2006, paying attention to the interactions between ozone depletion and climate change. Simultaneous publication of the Assessment in the scientific literature aims to inform the scientific community how their data, modeling and interpretations are playing a role in information dissemination to the Parties to the Montreal Protocol, other policymakers and scientists. Keywords GeoQUEST Disciplines Life Sciences | Physical Sciences and Mathematics | Social and Behavioral Sciences Publication Details This report was originally publsihed as Andrady, AL, Aucamp, PJ, Austin, A, Bais, AF, Ballare,́ CL, Björn, LO, Bornman JF, Caldwell, MM, Cullen, AP, de Gruijl, FR, Erickson III, DJ, Flint, SD, Häder, D-P, Hamid, H, Ilyas, S, M, Longstreth, J, Lucas, R, Madronich, S, McKenzie, RL, Norval, M, Paul ND, Robinson, SA, Shao, M, Solomon KR, Sulzberger, B, Takizawa, Y, Tang X, Torikai, A, van der Leun, JC, Williamson, CE, Wilson, SR, Worrest, RC & Zepp RG, Environmental Effects of Ozone Depletion: 2010 Assessment, United Nations Environment Programme, Kenya, 2010, 328 pages. Original report available here. This report is available at Research Online: https://ro.uow.edu.au/scipapers/456 UNITED NATIONS ENVIRONMENT PROGRAMME ENVIRONMENTAL EFFECTS OF OZONE DEPLETION AND ITS INTERACTIONS WITH CLIMATE CHANGE: 2010 ASSESSMENT Pursuant to Article 6 of the Montreal Protocol on Substances that Deplete the Ozone Layer under the Auspices of the United Nations Environment Programme (UNEP). Copies of the report are available from United Nations Environment Programme (UNEP) P. O. Box 30552 Nairobi, Kenya Published December 2010 by the Secretariat for The Vienna Convention for the Protection of the Ozone Layer and The Montreal Protocol on Substances that Deplete the Ozone Layer, United Nations Environment Programme (UNEP) United Nations Environment Programme (UNEP), P. O. Box 30552, Nairobi, Kenya UNEP, Environmental Effects of Ozone Depletion: 2010 Assessment, United Nations Environment Programme ISBN 92-807-2312-X The Environmental Effects Assessment Panel Report for 2010 iii iv The Environmental Effects Assessment Panel Report for 2010 Environmental effects of ozone depletion and its interactions with climate change: 2010 assessment Introduction This quadrennial Assessment was prepared by the Environmental Effects Assessment Panel (EEAP) for the Parties to the Montreal Protocol. The Assessment reports on key findings on environment and health since the last full Assessment of 2006, paying attention to the interactions between ozone depletion and climate change. Simultaneous publication of the Assessment in the scientific literature aims to inform the scientific community how their data, modeling and interpretations are playing a role in information dissemination to the Parties to the Montreal Protocol, other policymakers and scientists. The 2010 Assessment will be published in the journal, Photochemical & Photobiological Sciences, 10, 2011. Janet F. Bornman Nigel Paul, Xiaoyan Tang Co-Chairs of the Environmental Effects Assessment Panel United Nations Environment Programme PO Box 30552 Nairobi, Kenya http://www.unep.org/ozone http://www.unep.ch/ozone Acknowledgments: This assessment would not have been possible without the contributions of the following reviewers (in alphabetical order) all of whom made written and/or verbal comments on the content of the Chapters in this assessment. We thank them for their generous contribution of time and knowledge: Dr Pedro J. Aphalo; Dr Amy T. Austin; Dr Germar Bernhard; Dr Marianne Berwick; Prof. Wolfgang Bilger; Dr Natalia Chubarova; Dr Thomas P. Coohill; Dr Sandra L. Cooke; Dr Susana Diaz; Prof. Brian Diffey; Prof. Nils Ekelund; Dr Auroop R. Ganguly; Dr Kunshan Gao; Dr W.D. Grant; Dr R. Elizabeth M. Griffin; Prof. Michaela Hegglin; Prof. Dag Hessen; Dr Rainer Hofmann; Dr Marcel A. K. Jansen; Prof. Jennifer Y. King; Dr Margaret Kripke; Prof. G. Kulandaivelu; Dr Shaoshan Li; Prof. Lawrence E. Licht; Mr. B. Liley; Dr Kevin K. Newsham; Dr Madan Pal; Dr Barrie M. Peake; Dr Norma D. Searle; Prof. Günther Seckmeyer; Dr Anna Maria Siani; Dr Rajeshwar Sinha; Dr Harry Slaper; Prof. Ruben Sommaruga; Dr J. Richard Soulen; Dr Johannes Stratmann; Dr Åke Strid; Prof. Hugh R. Taylor; Dr Anssi Vähätalo; Dr John Wargent; Dr Ann R. Webb; Prof. Huixiang Xie The Environmental Effects Assessment Panel Report for 2010 v vi The Environmental Effects Assessment Panel Report for 2010 Table of Contents Abbreviations and Glossary ...................................................................................................... viii Executive Summary .................................................................................................................... xv Chapter 1. Ozone depletion and climate change: Impacts on UV radiation .......................... 1 Chapter 2. The human health effects of ozone depletion and in-teractions with climate change ................................................................................................................................. 30 Chapter 3. Effects of solar ultraviolet radiation on terrestrial ecosystems. Patterns, mechanisms, and interactions with climate change........................................................ 83 Chapter 4. Effects of UV radiation on aquatic ecosystems and in-teractions with climate change. ................................................................................................................. 113 Chapter 5. Effects of solar UV radiation and climate change on biogeochemical cycling: Interactions and feedbacks. .............................................................................. 151 Chapter 6. Changes in air quality and tropospheric composition due to depletion of stratospheric ozone and interactions with climate. ...................................................... 187 Chapter 7. Effects of solar UV and climate change on materials. ....................................... 211 Members of the 2010 Environmental Effects Assessment Panel and UNEP representatives ................................................................................................................. 229 Reviewers of the 2010 UNEP Environmental Effects Assessment Report .......................... 233 Appendix 2-1: Health risks associated with the use of substitutes for ozone depleting substances ........................................................................................................................ A-1 Questions and Answers about the Environmental Effects of the Ozone Layer Depletion and Climate Change: 2010 Update ......................................................... Q&A-1 The Environmental Effects Assessment Panel Report for 2010 vii Abbreviations and Glossary Abbreviation Complete term 1,25(OH)2D 1,25-dihydroxyvitamin D 25(OH)D 25-hydroxyvitamin D AK Actinic keratosis AO Arctic Oscillation. A large-scale variation in Arctic wind patterns AOD Aerosol optical depth APase Alkaline phosphatase APC Antigen presenting cell ASL Above sea level BCC Basal cell carcinoma(s) Br Bromine (an ozone depleting chemical) BrO Bromine monoxide BSWF Biological spectral weighting functions BWF Biological weighting function CAS Chemical Abstracts Service CAT Catalase CC Cortical cataract(s) CCM Chemistry-climate model (used to predict future changes in atmospheric composition) CDFA Chlorodifluoroacetic acid CDK Climatic droplet keratopathy CDOC Coloured dissolved organic carbon CDOM Coloured (or chromophoric) dissolved organic matter CFC Chlorofluorocarbon. Ozone depleting substance (e.g., CFC12 radical and dichlorodifluoromethane or Freon-12 (CCl2F2)), now controlled under the Montreal Protocol CH Contact hypersensitivity CH4 Methane (a greenhouse gas) viii The Environmental Effects Assessment Panel Report for 2010 Abbreviation Complete term CIE Commission Internationale de l'Eclairage (International Commission on Illumination) Cl Chlorine (an ozone depleting substance) CM Cutaneous melanoma CO Carbon monoxide CO2 Carbon dioxide (a greenhouse gas) COS carbonyl sulfide CPD Cyclobutane pyrimidine dimer Cu Copper (Cu(I) and Cu(II) being different oxidation states) DIC Dissolved inorganic carbon DMS Dimethylsulfide DMSP Dimethylsulfoniopropionate DNA Deoxyribonucleic acid DOC Dissolved organic carbon DOM Dissolved organic matter
Recommended publications
  • Climate Change and Human Health: Risks and Responses
    Climate change and human health RISKS AND RESPONSES Editors A.J. McMichael The Australian National University, Canberra, Australia D.H. Campbell-Lendrum London School of Hygiene and Tropical Medicine, London, United Kingdom C.F. Corvalán World Health Organization, Geneva, Switzerland K.L. Ebi World Health Organization Regional Office for Europe, European Centre for Environment and Health, Rome, Italy A.K. Githeko Kenya Medical Research Institute, Kisumu, Kenya J.D. Scheraga US Environmental Protection Agency, Washington, DC, USA A. Woodward University of Otago, Wellington, New Zealand WORLD HEALTH ORGANIZATION GENEVA 2003 WHO Library Cataloguing-in-Publication Data Climate change and human health : risks and responses / editors : A. J. McMichael . [et al.] 1.Climate 2.Greenhouse effect 3.Natural disasters 4.Disease transmission 5.Ultraviolet rays—adverse effects 6.Risk assessment I.McMichael, Anthony J. ISBN 92 4 156248 X (NLM classification: WA 30) ©World Health Organization 2003 All rights reserved. Publications of the World Health Organization can be obtained from Marketing and Dis- semination, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel: +41 22 791 2476; fax: +41 22 791 4857; email: [email protected]). Requests for permission to reproduce or translate WHO publications—whether for sale or for noncommercial distribution—should be addressed to Publications, at the above address (fax: +41 22 791 4806; email: [email protected]). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries.
    [Show full text]
  • Fundamentals of Global Warming Science (PCC 587): Midterm Review
    Fundamentals of Global Warming Science (PCC 587): Midterm Review DARGAN M. W. FRIERSON UNIVERSITY OF WASHINGTON, DEPARTMENT OF ATMOSPHERIC SCIENCES DAY 13: 11/6/12 The Instrumental Temperature Record Global temperature since 1880 Stevenson screens to measure temps on land, ocean temps from buckets or intake. Groups attempt to remove inhomogeneity in the datasets Other signs of (global) warming - melting mountain glaciers - decrease in winter snow cover - increasing atmospheric water vapor - warming of global oceans - warming of upper atmosphere - rising sea level (due to warming and ice-melt) - timing of seasonal events e.g. earlier thaws, later frosts - thinning and disappearing Arctic sea ice Every one of these data sets can be questioned to some extent. " Taken together, the totality of evidence of global warming is quite convincing." Solar vs Terrestrial Radiation Solar (blue) vs terrestrial (red) radiation: Very little overlap: solar (“shortwave”) and Earth (“longwave”) Solar Radiation and Earth When the Sun’s radiation reaches the Earth’s atmosphere, several things can happen: ¡ Scattering/reflection of solar radiation ¡ Absorption ¡ Transmission Most solar radiation makes it straight to the surface ¡ 50% of top-of-atmosphere (TOA) radiation is absorbed at the surface ¡ 20% is absorbed in atmosphere (17% in troposphere, 3% in stratosphere) ¡ 30% is reflected back to space (25% by atmosphere, 5% by surface) What does the reflection? Clouds reflect the most solar radiation by far ¡ 2/3 reflection by clouds ¡ 1/6 reflection by
    [Show full text]
  • Mackenzie Climate Change Testimony
    WRITTEN TESTIMONY OF FRED T. MACKENZIE, PH.D. DEPARTMENT OF OCEANOGRAPHY SCHOOL OF OCEAN AND EARTH SCIENCE AND TECHNOLOGY UNIVERSITY OF HAWAI‘I HEARING ON CLIMATE CHANGE IMPACTS AND RESPONSES IN ISLAND COMMUNITIES BEFORE THE SENATE COMMITTEE ON COMMERCE, SCIENCE, AND TRANSPORTATION MARCH 19, 2008 Introduction Good morning Senator Inouye, members of the committee, ladies and gentlemen. Thank you for giving me the opportunity this morning to speak to you on global climate issues and how they might impact island communities. My name is Fred Mackenzie and I am an Emeritus Professor in the Department of Oceanography at the University of Hawai‘i. My research is quite broad in scope but focuses on the behavior of the Earth’s surface system of oceans, atmosphere, land, and sediments through geologic time and its future under the influence of humans, including the problems associated with greenhouse gas emissions to the atmosphere, global warming, and ocean acidification. I have been an academician for more than 45 years and published more than 250 scholarly publications, including six books and nine edited volumes in ocean, Earth and environmental science. Today you have asked me to comment on how climate change might affect island communities and on our recent work developing climate and sustainability case studies for Pacific island resources that can be used to educate and inform the community, including local decision makers. Many of my comments are derived from the report of the Pacific Islands Regional Assessment Group, for which I served as a member, entitled Preparing for a Changing Climate. The Potential Consequences of Climate Variability and Change (Shea et al., 2001), and the case study Climate Change, Water Resources, and Sustainability in the Pacific Basin: Emphasis on O‘ahu, Hawai‘i and Majuro Atoll, Republic of the Marshall Islands (Guidry and Mackenzie, 2006).
    [Show full text]
  • Radiation Dimming and Decreasing Water Clarity Fuel Underwater
    Science Bulletin 65 (2020) 1675–1684 Contents lists available at ScienceDirect Science Bulletin journal homepage: www.elsevier.com/locate/scib Article Radiation dimming and decreasing water clarity fuel underwater darkening in lakes ⇑ ⇑ Yunlin Zhang a,b, , Boqiang Qin a,b, , Kun Shi a,b, Yibo Zhang a,b, Jianming Deng a,b, Martin Wild c, Lin Li d, Yongqiang Zhou a,b, Xiaolong Yao a,b, Miao Liu a,b, Guangwei Zhu a,b, Lu Zhang a,b, Binhe Gu e, Justin D. Brookes f a Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China b University of Chinese Academy of Sciences, Beijing 100049, China c Institute for Atmospheric and Climate Science, Zurich CH-8001, Switzerland d Department of Earth Sciences, Indiana University-Purdue University, Indianapolis IN 46202, USA e Soil and Water Science Department, University of Florida, Gainesville FL 32611, USA f Water Research Centre, Environment Institute, School of Biological Science, University of Adelaide, Adelaide 5005, Australia article info abstract Article history: Long-term decreases in the incident total radiation and water clarity might substantially affect the under- Received 30 January 2020 water light environment in aquatic ecosystems. However, the underlying mechanism and relative contri- Received in revised form 3 April 2020 butions of radiation dimming and decreasing water clarity to the underwater light environment on a Accepted 5 April 2020 national or global scale remains largely unknown. Here, we present a comprehensive dataset of unprece- Available online 16 June 2020 dented scale in China’s lakes to address the combined effects of radiation dimming and decreasing water clarity on underwater darkening.
    [Show full text]
  • Global Dimming
    Agricultural and Forest Meteorology 107 (2001) 255–278 Review Global dimming: a review of the evidence for a widespread and significant reduction in global radiation with discussion of its probable causes and possible agricultural consequences Gerald Stanhill∗, Shabtai Cohen Institute of Soil, Water and Environmental Sciences, ARO, Volcani Center, Bet Dagan 50250, Israel Received 8 August 2000; received in revised form 26 November 2000; accepted 1 December 2000 Abstract A number of studies show that significant reductions in solar radiation reaching the Earth’s surface have occurred during the past 50 years. This review analyzes the most accurate measurements, those made with thermopile pyranometers, and concludes that the reduction has globally averaged 0.51 0.05 W m−2 per year, equivalent to a reduction of 2.7% per decade, and now totals 20 W m−2, seven times the errors of measurement. Possible causes of the reductions are considered. Based on current knowledge, the most probable is that increases in man made aerosols and other air pollutants have changed the optical properties of the atmosphere, in particular those of clouds. The effects of the observed solar radiation reductions on plant processes and agricultural productivity are reviewed. While model studies indicate that reductions in productivity and transpiration will be proportional to those in radiation this conclusion is not supported by some of the experimental evidence. This suggests a lesser sensitivity, especially in high-radiation, arid climates, due to the shade tolerance of many crops and anticipated reductions in water stress. Finally the steps needed to strengthen the evidence for global dimming, elucidate its causes and determine its agricultural consequences are outlined.
    [Show full text]
  • Increase in Domestic Electricity Consumption from Particulate Air Pollution
    ARTICLES https://doi.org/10.1038/s41560-020-00699-0 Increase in domestic electricity consumption from particulate air pollution Pan He 1,2,6 ✉ , Jing Liang3,6, Yueming (Lucy) Qiu 3,6 ✉ , Qingran Li4 and Bo Xing5 Accurate assessment of environmental externalities of particulate air pollution is crucial to the design and evaluation of envi- ronmental policies. Current evaluations mainly focus on direct damages resulting from exposure, missing indirect co-damages that occur through interactions among the externalities, human behaviours and technologies. Our study provides an empirical assessment of such co-damages using customer-level daily and hourly electricity data of a large sample of residential and commercial consumers in Arizona, United States. We use an instrumental variable panel regression approach and find that par- ticulate matter air pollution increases electricity consumption in residential buildings as well as in retail and recreation service industries. Air pollution also reduces the actual electricity generated by distributed-solar panels. Lower-income and minority ethnic groups are disproportionally impacted by air pollution and pay higher electricity bills associated with pollution avoid- ance, stressing the importance of incorporating the consideration of environmental justice in energy policy-making. ir pollution has resulted in many types of negative externali- in commercial buildings for longer period of time. These two effects ties, a situation that calls for policy intervention to address can cancel out, and thus we hypothesize that air pollution does not Athe associated damages. Policymakers and research are have a statistically significant impact on commercial buildings as widely concerned with increases in mortality risk, which are direct a whole.
    [Show full text]
  • Global Environmental Issues and Its Remedies
    International Journal of Sustainable Energy and Environment Vol. 1, No. 8, September 2013, PP: 120 - 126, ISSN: 2327- 0330 (Online) Available online at www.ijsee.com Research article Global Environmental Issues and its Remedies Dr. MD. Zulfequar Ahmad Khan* Address Present. Permanent Address for Correspondence *Dr. Md Zulfequar Ahmad Khan 21-B, Lane No 3, Associate Professor Jamia Nagar, Zakir Nagar, Department of Geography & Environmental Studies New Delhi-110025 Arba Minch University INDIA Arba Minch, Ethiopia. Mobile No.: +919718502867 Mobile No: +251 923934234 E-mail: [email protected] _____________________________________________________________________________________________ Abstract To the surprise of many out-spoken environmentalists, it, in fact, turns out mankind and technology actually aren’t the only significant causes of global environmental problems. However, before we start to get too comfortable and confidently assume that we as human beings are officially “off the hook,” the fact remains that several “man-made” causes play a significant role in our current, global problems trend. Many human actions affect what people value. One way in which the actions that cause global change are different from most of these is that the effects take decades to centuries to be realized. This fact causes many concerned people to consider taking action now to protect the values of those who might be affected by global environmental change in years to come. But because of uncertainty about how global environmental systems work, and because the people affected will probably live in circumstances very much different from those of today and may have different values, it is hard to know how present-day actions will affect them.
    [Show full text]
  • Chapter 1 Ozone and Climate
    1 Ozone and Climate: A Review of Interconnections Coordinating Lead Authors John Pyle (UK), Theodore Shepherd (Canada) Lead Authors Gregory Bodeker (New Zealand), Pablo Canziani (Argentina), Martin Dameris (Germany), Piers Forster (UK), Aleksandr Gruzdev (Russia), Rolf Müller (Germany), Nzioka John Muthama (Kenya), Giovanni Pitari (Italy), William Randel (USA) Contributing Authors Vitali Fioletov (Canada), Jens-Uwe Grooß (Germany), Stephen Montzka (USA), Paul Newman (USA), Larry Thomason (USA), Guus Velders (The Netherlands) Review Editors Mack McFarland (USA) IPCC Boek (dik).indb 83 15-08-2005 10:52:13 84 IPCC/TEAP Special Report: Safeguarding the Ozone Layer and the Global Climate System Contents EXECUTIVE SUMMARY 85 1.4 Past and future stratospheric ozone changes (attribution and prediction) 110 1.1 Introduction 87 1.4.1 Current understanding of past ozone 1.1.1 Purpose and scope of this chapter 87 changes 110 1.1.2 Ozone in the atmosphere and its role in 1.4.2 The Montreal Protocol, future ozone climate 87 changes and their links to climate 117 1.1.3 Chapter outline 93 1.5 Climate change from ODSs, their substitutes 1.2 Observed changes in the stratosphere 93 and ozone depletion 120 1.2.1 Observed changes in stratospheric ozone 93 1.5.1 Radiative forcing and climate sensitivity 120 1.2.2 Observed changes in ODSs 96 1.5.2 Direct radiative forcing of ODSs and their 1.2.3 Observed changes in stratospheric aerosols, substitutes 121 water vapour, methane and nitrous oxide 96 1.5.3 Indirect radiative forcing of ODSs 123 1.2.4 Observed temperature
    [Show full text]
  • HEPA) Filter - Ultra Low Penetration Air (ULPA) Filter (Also Referred to As Extended Media
    EPA-452/F-03-023 Air Pollution Cocntrol Technology Fact Sheet Name of Technology: Paper/Nonwoven Filter - High Efficiency Particle Air (HEPA) Filter - Ultra Low Penetration Air (ULPA) Filter (also referred to as Extended Media) Type of Technology: Control Device - Capture/Disposal Applicable Pollutants: Submicron Particulate Matter (PM) greater than or equal to 0.3 micrometer (µm) in aerodynamic diameter, and PM greater than or equal to 0.12 µm in aerodynamic diameter that is chemically, biologically, or radioactively toxic; hazardous air pollutants (HAPs) that are in particulate form, such as most metals (mercury is the notable exception, as a significant portion of emissions are in the form of elemental vapor). Achievable Emission Limits/Reductions: HEPA and ULPA filters are classified by their minimum collection efficiency. Many international standards and classes currently exist for high efficiency filters (Osborn, 1989). In general, HEPA and ULPA filters are defined as having the following minimum efficiency rating (Heumann, 1997): HEPA: 99.97% efficiency for the removal of 0.3 µm diameter or larger PM, ULPA: 99.9995% efficiency for the removal of 0.12 µm diameter or larger PM. Some extended media filters are capable of much higher efficiencies. Commercially available filters can control PM with 0.01 µm diameter at efficiencies of 99.99+% and PM with 0.1 µm diameter at efficiencies of 99.9999+% (Gaddish, 1989; Osborn, 1989). Several factors determine HEPA and ULPA filter collection efficiency. These include gas filtration, velocity, particle characteristics, and filter media characteristics. In general, the collection efficiency increases with increasing filtration velocity and particle size.
    [Show full text]
  • WHO Guidelines for Indoor Air Quality : Selected Pollutants
    WHO GUIDELINES FOR INDOOR AIR QUALITY WHO GUIDELINES FOR INDOOR AIR QUALITY: WHO GUIDELINES FOR INDOOR AIR QUALITY: This book presents WHO guidelines for the protection of pub- lic health from risks due to a number of chemicals commonly present in indoor air. The substances considered in this review, i.e. benzene, carbon monoxide, formaldehyde, naphthalene, nitrogen dioxide, polycyclic aromatic hydrocarbons (especially benzo[a]pyrene), radon, trichloroethylene and tetrachloroethyl- ene, have indoor sources, are known in respect of their hazard- ousness to health and are often found indoors in concentrations of health concern. The guidelines are targeted at public health professionals involved in preventing health risks of environmen- SELECTED CHEMICALS SELECTED tal exposures, as well as specialists and authorities involved in the design and use of buildings, indoor materials and products. POLLUTANTS They provide a scientific basis for legally enforceable standards. World Health Organization Regional Offi ce for Europe Scherfi gsvej 8, DK-2100 Copenhagen Ø, Denmark Tel.: +45 39 17 17 17. Fax: +45 39 17 18 18 E-mail: [email protected] Web site: www.euro.who.int WHO guidelines for indoor air quality: selected pollutants The WHO European Centre for Environment and Health, Bonn Office, WHO Regional Office for Europe coordinated the development of these WHO guidelines. Keywords AIR POLLUTION, INDOOR - prevention and control AIR POLLUTANTS - adverse effects ORGANIC CHEMICALS ENVIRONMENTAL EXPOSURE - adverse effects GUIDELINES ISBN 978 92 890 0213 4 Address requests for publications of the WHO Regional Office for Europe to: Publications WHO Regional Office for Europe Scherfigsvej 8 DK-2100 Copenhagen Ø, Denmark Alternatively, complete an online request form for documentation, health information, or for per- mission to quote or translate, on the Regional Office web site (http://www.euro.who.int/pubrequest).
    [Show full text]
  • Emission Control Technology for Masonry Fireplaces
    Revolutionary Emission Control System for Masonry Fireplace Retro-Fits from FMI Products Emission Control Technology for Masonry Fireplaces Wood smoke emissions are currently one of the most significant health risks in the US. New regulatory standards for wood burning fireplaces are being passed to reduce smoke and particulate emissions nationwide. Wood burning fireplaces are being restricted by Clean Air Regulators in almost every state. The PureFire Wood Burning Fireplace PureFire™ Technology is designed to solve this problem. Fireplace Technology FMI Products has successfully developed a wood burning fireplace emission control technology that reduces particulate emissions by 80%. The PureFire™ system reduces airborne PM2.5 particulates in masonry fireplaces to 4.3 g/kg. This is well below the EPA Phase 2 emissions limit of 5.1 g/kg. The PureFire™ system is catalytic and uses a patented hood device to isolate the offensive pollutants and wood smoke. The particulates are then destroyed by a state-of-the-art catalytic system. The PureFire™ System can be installed in less than an hour, it doesn’t require any power or connections, it is maintenance free and it is affordable to the homeowner. The US Environmental Protection Agency promotes fireplace technologies that meet the Phase 2 emission limit of 5.1 g/kg. Existing fireplaces currently emit 12-15 g/kg of particulate pollution. There hasn’t been a technological solution for masonry wood burning fireplaces to meet the new EPA Phase 2 emissions limit. UNTIL NOW! The PureFire™ System was tested to stringent EPA requirements at Omni Test Laboratory in Portland OR.
    [Show full text]
  • Indoor Air Quality in Commercial and Institutional Buildings
    Indoor Air Quality in Commercial and Institutional Buildings OSHA 3430-04 2011 Occupational Safety and Health Act of 1970 “To assure safe and healthful working conditions for working men and women; by authorizing enforcement of the standards developed under the Act; by assisting and encouraging the States in their efforts to assure safe and healthful working conditions; by providing for research, information, education, and training in the field of occupational safety and health.” This publication provides a general overview of a particular standards-related topic. This publication does not alter or determine compliance responsibili- ties which are set forth in OSHA standards, and the Occupational Safety and Health Act of 1970. More- over, because interpretations and enforcement poli- cy may change over time, for additional guidance on OSHA compliance requirements, the reader should consult current administrative interpretations and decisions by the Occupational Safety and Health Review Commission and the courts. Material contained in this publication is in the public domain and may be reproduced, fully or partially, without permission. Source credit is requested but not required. This information will be made available to sensory- impaired individuals upon request. Voice phone: (202) 693-1999; teletypewriter (TTY) number: 1-877- 889-5627. Indoor Air Quality in Commercial and Institutional Buildings Occupational Safety and Health Administration U.S. Department of Labor OSHA 3430-04 2011 The guidance is advisory in nature and informational in content. It is not a standard or regulation, and it neither creates new legal obligations nor alters existing obligations created by OSHA standards or the Occupational Safety and Health Act.
    [Show full text]