Alvarado J TESIS.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Alvarado J TESIS.Pdf Programa de Estudios de Posgrado HISTORIA DE VIDA DE Homalonychus selenopoides (ARANEAE: HOMALONYCHIDAE) EN EL DESIERTO DE SONORA TESIS Que para obtener el grado de Doctor en Ciencias Uso, Manejo y Preservación de los Recursos Naturales ( Orientación en Ecología ) P r e s e n t a JOSÉ ANDRÉS ALVARADO CASTRO La Paz, Baja California Sur, Agosto de 2011 iii COMITÉ TUTORIAL Dra. María Luisa Jiménez Jiménez Directora de Tesis Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR) Dr. Yann Lucien Hénaut Seguin Co-Tutor El Colegio de la Frontera Sur (ECOSUR) Dra. Aurora Margarita Breceda Solís Cámara Co-Tutora Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR) Dra. María del Cármen Blázquez Moreno Co-Tutora Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR) Dr. Alejandro Manuel Maeda Martínez Co-Tutor Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR) iv COMITÉ REVISOR DE TESIS Dra. María Luisa Jiménez Jiménez (CIBNOR) Dr. Yann Lucien Hénaut Seguin (ECOSUR) Dra. Aurora Margarita Breceda Solís Cámara (CIBNOR) Dra. María del Cármen Blázquez Moreno (CIBNOR) Dr. Alejandro Manuel Maeda Martínez (CIBNOR) JURADO DE LA DEFENSA DE TESIS Dra. María Luisa Jiménez Jiménez (CIBNOR) Dr. Alejandro Manuel Maeda Martínez (CIBNOR) Dr. Ricardo Rodríguez Estrella (CIBNOR) Dra. Sara Cecilia Díaz Castro (CIBNOR) Dra. Yolanda Maya Delgado (CIBNOR) SUPLENTE Dra. Patricia Galina Tessaro (CIBNOR). v RESUMEN Homalonychus selenopoides Marx, 1891 es una especie de araña endémica de las planicies costeras del Desierto Sonorense en el estado de Sonora, México y del suroeste de los Estados Unidos de Norteamérica. Aunque la especie fue descrita taxonómicamente hace más de un siglo, nada se sabe acerca de su biología y ecología. El propósito general del presente trabajo fue caracterizar la historia de vida de esta especie; particularmente, su fenología y microhábitat en el campo, y su comportamiento reproductivo, defensivo, y ciclo de vida en el laboratorio. Estos rasgos fueron comparados con los reportados para H. theologus para inferir sobre su valor adaptativo. Durante el 2008 se recolectaron 473 especímenes y 67 ovisacos en el sur del Desierto Sonorense, en México. En el campo, el ciclo de vida es anual y la fenología es marcadamente estacional. Los ovisacos, al igual que los reclutas, ocurren en el campo sólo de abril a julio, juveniles todo el año, machos de noviembre a abril y hembras de noviembre a mayo. Se encontró una correlación lineal negativa entre las temperaturas promedio y la abundancia de adultos (R = -0.9353; P < 0.0001), como un posible indicador de la influencia de la temperatura en el entorno biótico de la región. Se criaron dos lotes de arañas para el estudio de ciclo de vida. Después de la oviposición, las arañuelas de instar II tardan ~50 días en emerger del ovisaco. Los machos maduran después de 8-10 mudas y las hembras después de 9-11 mudas. Los machos maduraron más rápido (577.3 ± 35.9 días) que las hembras (622 ± 11.6 días) (t = 4.499; P < 0.0001). El tiempo de desarrollo de los instares ninfales no se incrementó progresivamente sino que fue irregular, y diferente entre ellos (Lote 1: H = 196.525; P = 0.0000; Lote 2: H = 132.544; P = 0.0000). Las temperaturas promedio del laboratorio y el porcentaje de mudas por mes estuvieron lineal y positivamente correlacionados (Lote 1: R = 0.6633; P < 0.005; Lote 2: R = 0.8466; P < 0.0001). Un alto porcentaje de arañas murieron antes de alcanzar el estado adulto (69.6% en el Lote 1 y 85.9% en el Lote 2); esta mortalidad estuvo asociada principalmente a la muda (69.6% en el Lote 1 y 65.6% en el Lote 2). Una proporción importante de estas muertes se asoció a ataques de larvas de Tenebrio contra las arañas antes o durante la muda. Las curvas de sobrevivencia resultaron intermedias entre el Tipo I y el Tipo II de Pearl (1928). La longevidad de machos y hembras recolectados en campo como instares tardíos fue de 82.9 ± 23.8 días y de 481.4 ± 183.5 días, respectivamente. El comportamiento reproductivo fue analizado en el laboratorio, para lo cual se grabó con una cámara infrarroja, principalmente en la noche. La inducción de esperma es de tipo indirecto; los machos tejieron una tela espermática de aproximadamente 2 cm2 cerca del suelo. Los machos y las hembras elaboran hilos de seda y arena, como rastros. El comportamiento de cortejo fue intermedio entre los niveles I y II, y la posición de cópula fue de Tipo 3 modificado, donde el macho ata las patas de la hembra con seda antes de copular. El canibalismo sexual puede ocurrir durante o después de la cópula. Las hembras inician la construcción de su ovisaco ~11 días después del copular y lo concluyen en ~15 h, incluyendo la oviposición. La lámina externa del ovisaco contiene arena, y el saco estuvo rodeado por una guarnición de cordones de seda y arena, posiblemente para proteger a los huevos de la desecación y como una barrera contra vi parásitos y depredadores. Los juveniles, los subadultos y los adultos exhiben todos los actos del comportamiento de empolvado y enterramiento. Aunque los machos exhiben estos comportamientos, las partículas de suelo no se adhieren a las sedas de su cutícula. El trampeo pitfall fue ineficiente para la recolecta general de individuos de esta especie, pero resultó valioso para indicar su época reproductiva. Esta es una de las pocas especies de arañas que son activas en invierno y que los adultos ocurren y tienen su actividad sexual en este periodo. Su comportamiento reproductivo, defensivo, su ciclo de vida y su fenología le confieren aptitud y especialidad para existir en el Desierto Sonorense. Palabras clave: Comportamiento reproductivo, ciclo de vida, fenología. Resumen aprobado por ___________________________________ Dra. María Luisa Jiménez Jiménez Directora de tesis vii ABSTRACT Homalonychus selenopoides Marx, 1891 is an endemic spider species to the coast plains of the Sonoran Desert. It is distributed from Sonora, México to the southeastern part of the United States. Although this species was described for more than a century, nothing is known about its biology and ecology. The overall purpose of this study was to characterize the life history of this species, particularly its phenology and microhabitat in the field, and its reproductive and defensive behavior and life cycle in the laboratory. These features were compared with those reported for H. theologus to infer about its adaptive value. Throughout 2008 we collected 473 spiders and 67 egg sacs at the southern part of the Sonoran Desert in México. In the field the species’ life cycle is annual and its phenology is markedly seasonal. Egg sacs and recruits occur in the field only from April-July, juveniles throughout the year, males from November to April and females from November to May. Average temperature and adult frequency were negatively correlated (R = -0.9353; P < 0.0001) as a possible indicator of the temperature influence on the surrounding biotic environment. Two trials of spiders were reared to the life cycle survey. After oviposition, the spiderlings of the second instar took ~50 days to emerge from the egg sac. Males matured after 8-10 molts and females after 9-11 molts. Males matured faster (577.3 ± 35.9 days) than females (622 ± 11.6 days) (t = 4.499; P < 0.0001). Development time of the nymph instars did not increase gradually, but it was irregular and different between them (Trial 1: H = 196.525; P = 0.0000; Trial 2: H = 132.544; P = 0.0000). Lab mean temperature and monthly molt percentage were lineal and positively correlated (Trial 1: R = 0.6633; P < 0.005; Trial 2: R = 0.8466; P < 0.0001). A high percentage of spiders died before maturity (69.6% in Trial 1 and 85.9% in Trial 2), mainly during molting, including attacks by Tenebrio larvae before or during molting. Survivorship curves were intermediate between Type I and Type II of Pearl (1928). Longevity of male and females collected in the field as late instars was 82.9 ± 23.8 days and 481.4 ± 183.5 days, respectively. The species’ reproductive behavior was recorded mainly at night with an infrared camera and analyzed in the laboratory. Sperm induction is indirect; males wove a spermatic web about 2 cm2 in size near the ground. Males and females make silk threads and sand. Courtship behavior was considered between levels I and II; mating position was Type 3 modified, where the male ties the female’s legs with silk before mating. Sexual cannibalism can take place during or after mating. Females began to spin their egg sac ~11 days after mating and completed it in ~15 h, including oviposition. The outer layer of the egg sac contained sand; the egg sac was surrounded by a garniture of cords of silk and sand, most likely to protect the eggs from desiccation and as a barrier against predators and parasites. Juveniles, sub-adults, and adults show self-burying behavior and self-covering with sand. Although males show these behaviors, their setae do not retain soil particles. Pitfall sampling was inefficient to general collection of these spiders, but it was invaluable to know their reproductive season. This is one of the few spider species that are active in winter, and adults are viii also sexually active during this season. Their reproductive and defensive behavior, life cycle and phenology are adaptations to survive and to be a successful spider species in the Sonoran Desert. Key words: Reproductive behavior, life cycle, phenology. ix DEDICATORIA Con mucho amor a mi Familia. A mi esposa Sandra, quien ha sabido llevar varios años de abandono.
Recommended publications
  • Predatory Behavior of Jumping Spiders
    Annual Reviews www.annualreviews.org/aronline Annu Rev. Entomol. 19%. 41:287-308 Copyrighl8 1996 by Annual Reviews Inc. All rights reserved PREDATORY BEHAVIOR OF JUMPING SPIDERS R. R. Jackson and S. D. Pollard Department of Zoology, University of Canterbury, Christchurch, New Zealand KEY WORDS: salticids, salticid eyes, Portia, predatory versatility, aggressive mimicry ABSTRACT Salticids, the largest family of spiders, have unique eyes, acute vision, and elaborate vision-mediated predatory behavior, which is more pronounced than in any other spider group. Diverse predatory strategies have evolved, including araneophagy,aggressive mimicry, myrmicophagy ,and prey-specific preycatch- ing behavior. Salticids are also distinctive for development of behavioral flexi- bility, including conditional predatory strategies, the use of trial-and-error to solve predatory problems, and the undertaking of detours to reach prey. Predatory behavior of araneophagic salticids has undergone local adaptation to local prey, and there is evidence of predator-prey coevolution. Trade-offs between mating and predatory strategies appear to be important in ant-mimicking and araneo- phagic species. INTRODUCTION With over 4000 described species (1 l), jumping spiders (Salticidae) compose by Fordham University on 04/13/13. For personal use only. the largest family of spiders. They are characterized as cursorial, diurnal predators with excellent eyesight. Although spider eyes usually lack the struc- tural complexity required for acute vision, salticids have unique, complex eyes with resolution abilities without known parallels in animals of comparable size Annu. Rev. Entomol. 1996.41:287-308. Downloaded from www.annualreviews.org (98). Salticids are the end-product of an evolutionary process in which a small silk-producing animal with a simple nervous system acquires acute vision, resulting in a diverse array of complex predatory strategies.
    [Show full text]
  • Natural Variation in Condition-Dependent Display Colour Does Not Predict Male Courtship Success in a Jumping Spider
    Animal Behaviour 93 (2014) 267e278 Contents lists available at ScienceDirect Animal Behaviour journal homepage: www.elsevier.com/locate/anbehav Natural variation in condition-dependent display colour does not predict male courtship success in a jumping spider * Lisa A. Taylor a, b, , David L. Clark c, Kevin J. McGraw b a Florida Museum of Natural History, University of Florida, Gainesville, FL, U.S.A. b School of Life Sciences, Arizona State University, Tempe, AZ, U.S.A. c Department of Biology, Alma College, Alma, MI, U.S.A. article info In many animals, males display costly, condition-dependent ornaments to choosy females. Indicator Article history: models of sexual selection predict that females should choose mates based on natural variation in such Received 23 November 2013 traits. In Habronattus pyrrithrix jumping spiders, males have conspicuous, condition-dependent red faces Initial acceptance 27 February 2014 and green legs that they display to cryptically coloured females during courtship. In a correlational study Final acceptance 16 April 2014 using field-collected spiders, we paired individual males with virgin females in the laboratory and found Available online that natural variation in male coloration did not predict mating success (likelihood of copulation) or MS. number: A13-00972R levels of female aggression. Rather, mating success was best predicted by male body condition. We then conducted an outdoor experiment under natural sunlight where we gave both virgin and mated females Keywords: the choice between two simultaneously courting males, one with his facial coloration experimentally animal coloration reduced and the other that received a sham treatment. Again, we found no relationship between male condition dependence coloration and courtship success.
    [Show full text]
  • Spiders As Potential Indicators of Elephantinduced Habitat Changes In
    Spiders as potential indicators of elephant-induced habitat changes in endemic sand forest, Maputaland, South Africa Charles R. Haddad1*, Allet S. Honiball2, Anna S. Dippenaar-Schoeman3,2, Rob Slotow4 and Berndt J. van Rensburg5 1Department of Zoology & Entomology, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa, 2Department of Zoology & Entomology, University of Pretoria, Pretoria 0002, South Africa, 3Biosystematics: Arachnology, ARC – Plant Protection Research Institute, Private Bag X134, Queenswood 0121, South Africa, 4Amarula Elephant Research Programme, School of Biological and Conservation Sciences, University of KwaZulu-Natal, Durban 4041, South Africa and 5Centre for Invasion Biology and Department of Zoology & Entomology, University of Pretoria, Pretoria 0002, South Africa Abstract Re´sume´ Elephant impacts on spider assemblages, and the potential L’impact des e´le´phants sur les assemblages d’araigne´es, use of spiders as indicators of habitat changes was assessed et l’utilisation e´ventuelle des araigne´es comme indica- in central Maputaland, South Africa. Three habitats, teurs de changements des habitats, ont e´te´ e´value´s dans namely undisturbed sand forest, elephant disturbed sand le centre du Maputaland, en Afrique du Sud. Trois forest and mixed woodland, were sampled. To ensure a habitats ont e´te´ e´chantillonne´s, a` savoir la foreˆt sableuse thorough representation of all spider guilds, spiders were intacte, la foreˆt sableuse perturbe´e par des e´le´phants et collected by tree beating, sweep netting, active searching, la foreˆt mixte. Pour garantir une repre´sentation comple`te leaf litter sifting and pitfall traps. In total, 2808 individual de toutes les guildes d’araigne´es, on a re´colte´ des ara- spiders, representing 36 families, 144 determined genera igne´es en frappant sur les arbres, en agitant des filets, en and 251 species were collected.
    [Show full text]
  • Wanless 1980D
    A revision of the spider genera Asemonea and Pandisus (Araneae : Salticidae) F. R. Wanless Department of Zoology, British Museum (Natural History) Cromwell Road London SW7 5BD Contents Synopsis 213 Introduction 213 The genus Pandisus 217 Definition 217 Remarks 218 Diagnosis 218 Species list 218 Key to species 218 The genus Asemonea 225 Definition 225 Diagnosis 226 Species list 226 Key to species 226 The genus Goleba 245 Definition 245 Diagnosis 245 Species list 245 Remarks 245 The/7we//a-group 245 The pallens-group 249 Species Inquirenda 252 Acknowledgements 252 References 252 Synopsis The spider genera Pandisus Simon and Asemonea O. P.-Cambridge are revised and one new genus Goleba is proposed. All 2 1 known species of these genera (of which 1 1 are new) are described and figured. Distributional data are given and a key to the species of Pandisus and Asemonea is provided. Generic relationships within the subfamily Lyssomaninae are discussed and generic groups based on the structure of the male genitalia are proposed. The type material of 1 1 nominate species was examined and five lectotypes are newly designated. Four specific names are newly synonymized and three new combinations are proposed. Introduction The present paper completes a series of generic revisions on old world Salticidae classified in the subfamily Lyssomaninae. Two genera, Asemonea O. P.-Cambridge and Pandisus Simon are revised and one new genus Goleba gen. n. is proposed. The systematic position of lyssomanine spiders has been confused since Blackwall (1877) first proposed the formation of a separate family, the Lyssomanidae. In the same paper O.
    [Show full text]
  • Arachnida, Araneae) of the Savanna Biome in South Africa
    The faunistic diversity of spiders (Arachnida, Araneae) of the Savanna Biome in South Africa S.H. Foord1, A.S. Dippenaar-Schoeman2& C.R Haddad3 1Department of Zoology, Centre for Invasion Biology, University of Venda, Private Bag X5050, Thohoyandou, 0950, South Africa 2 ARC-Plant Protection Research Institute, Private Bag X134, Queenswood 0121/Department of Zoology &Entomology, University of Pretoria, Pretoria 0001, South Africa 3Department of Zoology & Entomology, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa Invertebrates include more than 80% of all animals, yet they are severely under-represented in studies of southern African diversity. Site biodiversity estimates that do not consider invertebrates, not only omit the greatest part of what they are attempting to measure, but also ignore major contributors to essential ecosystem processes. All available information on spider species distribution in the South African Savanna Biome was compiled. This is the largest biome in the country,occupying over one third of the surface area.A total of 1230 species represented by 381genera and 62 families are known from the biome. The last decade has seen an exponential growth in the knowledge of the group in South Africa, but there certainly are several more species that have to be discovered, and the distribution patterns of those listed are partly unknown. Information is summarized for all quarter degree squares of the biome and reveals considerable inequalities in knowledge. At a large scale the eastern region is much better surveyed than the western parts, but at smaller scales throughout the region, several areas have little information.
    [Show full text]
  • From Singapore, with a Description of a New Cladiella Species
    THE RAFFLES BULLETIN OF ZOOLOGY 2010 THE RAFFLES BULLETIN OF ZOOLOGY 2010 58(1): 1–13 Date of Publication: 28 Feb.2010 © National University of Singapore ON SOME OCTOCORALLIA (CNIDARIA: ANTHOZOA: ALCYONACEA) FROM SINGAPORE, WITH A DESCRIPTION OF A NEW CLADIELLA SPECIES Y. Benayahu Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel Email: [email protected] (Corresponding author) L. M. Chou Department of Biological Sciences, Faculty of Science, National University of Singapore, 14 Science Drive 4, Singapore 117543 Email: [email protected] ABSTRACT. – Octocorallia (Cnidaria: Anthozoa) from Singapore were collected and identifi ed in a survey conducted in 1999. Colonies collected previously, between 1993 and 1997, were also studied. The entire collection of ~170 specimens yielded 25 species of the families Helioporidae, Alcyoniidae, Paraclcyoniidae, Xeniidae and Briareidae. Their distribution is limited to six m depth, due to high sediment levels and limited light penetration. The collection also yielded Cladiella hartogi, a new species (family Alcyonacea), which is described. All the other species are new zoogeographical records for Singapore. A comparison of species composition of octocorals collected in Singapore between 1993 and 1977 and those collected in 1999 revealed that out of the total number of species, 12 were found in both periods, whereas seven species, which had been collected during the earlier years, were no longer recorded in 1999. Notably, however, six species that are rare on Singapore reefs were recorded only in the 1999 survey and not in the earlier ones. It is not yet clear whether these differences in species composition indeed imply changes over time in the octocoral fauna, or may refl ect a sampling bias.
    [Show full text]
  • Revision, Molecular Phylogeny and Biology of the Spider Genus Micaria Westring, 1851 (Araneae: Gnaphosidae) in the Afrotropical Region
    REVISION, MOLECULAR PHYLOGENY AND BIOLOGY OF THE SPIDER GENUS MICARIA WESTRING, 1851 (ARANEAE: GNAPHOSIDAE) IN THE AFROTROPICAL REGION by Ruan Booysen Submitted in fulfilment of the requirements for the degree MAGISTER SCIENTIAE in the Department of Zoology & Entomology, Faculty of Natural and Agricultural Sciences, University of the Free State February 2020 Supervisor: Prof. C.R. Haddad Co-Supervisor: Prof. S. Pekár 1 DECLARATION I, Ruan Booysen, declare that the Master’s research dissertation that I herewith submit at the University of the Free State, is my independent work and that I have not previously submitted it for qualification at another institution of higher education. 02.02.2020 _____________________ __________________ Ruan Booysen Date 2 Contents ABSTRACT ..................................................................................................................... 5 OPSOMMING ................................................................................................................. 7 ACKNOWLEDGEMENTS ............................................................................................... 9 CHAPTER 1 - INTRODUCTION ................................................................................... 10 1.1.) Micaria morphology ............................................................................................... 10 1.2.) Taxonomic history of Micaria................................................................................. 11 1.3.) Phylogenetic relationships ...................................................................................
    [Show full text]
  • The Duration of Copulation in Spiders: Comparative Patterns
    Records of the Western Australian Museum Supplement No. 52: 1-11 (1995). The duration of copulation in spiders: comparative patterns Mark A. Elgar Department of Zoology, University of Melbourne, Parkville, Victoria 3052, Australia Abstract - The duration of copulation in spiders varies both-within and between species, and in the latter by several orders of magnitude. The sources of this variation are explored in comparative analyses of the duration of copulation and other life-history variables of 135 species of spiders from 26 families. The duration of copulation is correlated with body size within several species, but the pattern is not consistent and more generally there is no inter-specific covariation between these variables. The duration of copulation within orb-weaving spiders is associated with both the location of mating and the frequency of sexual cannibalism, suggesting that the length of copulation is limited by the risk of predation. Finally, entelegyne spiders copulate for longer than haplogyne spiders, a pattern that can be interpreted in terms of male mating strategies or the complexity of their copulatory apparatus. INTRODUCTION after the copulatory organ has been inserted. In It is widely recognised that there are conflicts of species in which females mate with several males, interest between males and females in the choice of copulation may provide the male with the mating partner and the frequency of mating (e.g. opportunity to manipulate the sperm of other Elgar 1992). Thus, while the principal function of males that previously mated with that female. For copulation is to transfer gametes, the act of mating example, copulating male damselflies not only may have several additional functions, such as transfer their own sperm, but also remove the mate assessment or ensuring sperm priority, and sperm of rival males (e.g.
    [Show full text]
  • Asemonea Cf. Tenuipes in Karnataka (Araneae: Salticidae: Asemoneinae)
    Peckhamia 172.1 Asemonea cf. tenuipes in Karnataka 1 PECKHAMIA 172.1, 28 October 2018, 1―8 ISSN 2161―8526 (print) urn:lsid:zoobank.org:pub:F2E27581-540F-45F0-9B20-2CC30398B4EE (registered 26 OCT 2018) ISSN 1944―8120 (online) Asemonea cf. tenuipes in Karnataka (Araneae: Salticidae: Asemoneinae) Abhijith A. P. C.1 and David E. Hill 2 1 Indraprastha Organic Farm, Kalalwadi Village, Udboor Post, Mysuru-570008, Karnataka, India, email [email protected] 2 213 Wild Horse Creek Drive, Simpsonville SC 29680, USA, email [email protected] Abstract. Field observations of Asemonea cf. tenuipes in Karnataka are documented. These include a possible case of oophagy by a nesting female as well as corroboration of earlier studies that described the tendency of females to deposit their eggs in straight lines within a simple shelter on the underside of leaves. Changes in colour of the female opisthosoma that include the appearance of a pair of iridescent blue lines are discussed. Key words. Asemonea tenuipes, colour change, India, jumping spider, Lyssomanes viridis, Lyssomaninae, mimicry, nesting, oophagy, organic farming The Afroeurasian salticid subfamily Asemoneinae was recently recognized as the sister group of the Neotropical salticid subfamily Lyssomaninae, both subfamilies comprising a clade that is in turn the sister group of the subfamily Spartaeinae (Maddison et al. 2014; Maddison 2015; Maddison et al. 2017). Within the Asemoneinae the genus Asemonea presently includes 25 species, all from tropical Afroeurasia (Wanless 1980; WSC 2018). Asemonea tenuipes (O. Pickard-Cambridge 1869) is the type species and best-known representative of the genus Asemonea, ranging from India and Sri Lanka to Singapore (Roy et al 2016; WSC 2018).
    [Show full text]
  • The Evolution of Jumping Spiders (Araneae: Salticidae): a Review
    Peckhamia 75.1 Evolution of jumping spiders 1 PECKHAMIA 75.1, 17 August 2009, 1―7 ISSN 1944―8120 The evolution of jumping spiders (Araneae: Salticidae): a review David E. Hill1 and David B. Richman2 1 213 Wild Horse Creek Drive, Simpsonville, South Carolina 29680 2 Corresponding author: [email protected] Department of Entomology, Plant Pathology and Weed Science, New Mexico State University, Las Cruces, NM 88003 The following article was written as part of the yearlong celebration of the 200th birthday of Charles Darwin and the 150th Anniversary of the publication of his Origin of Species. Abstract The evolution of the family Salticidae (jumping spiders) has always puzzled arachnologists, but with modern DNA and morphological analysis, using cladistic techniques, a pattern is starting to emerge. The Salticidae apparently originated in the late Cretaceous and were derived from one of the other RTA dionychan clades, which include Philodromidae, Thomisidae, Miturgidae, Anyphaenidae, Gnaphosidae and related groups. Speciation appears to have been well along by the Oligocene―Miocene and may have been spurred on by the warm conditions of the late Paleocene―Eocene. At this point it seems wise to gather the current evidence and thinking on the origin and evolution of jumping spiders and the more “typical” Salticoida together and to give an overview of where the research currently stands. This is the main purpose of the current review. Introduction With more than 5,000 described species (Platnick 2009), the jumping spiders (Salticidae) arguably represent the most diverse family of modern spiders. Although we do not have any scientific standards for comparison of evolutionary diversity, those familiar with salticids might consider the group to be at least as diverse as the birds (Class Aves), and perhaps just as ancient in their origin.
    [Show full text]
  • Sitirakopoulosp 2015.Pdf
    ΠΕΡΙΕΧΟΜΕΝΑ ΠΕΡΙΛΗΨΗ 3 EXTENDED SUMMARY 5 1. ΕΙΣΑΓΩΓΗ 7 1.1 Μιτοχόνδριο 7 1.1.1 Λίγα Λόγια για το DNA 7 1.1.2. Κληρονόμηση Μιτοχονδριακού DNA 9 1.1.3. Ζωικό μιτοχονδριακό DNA 9 1.1.4. Μειονεκτήματα μιτοχονδριακών γενετικών δεικτών 15 1.1.5. Φυτικό μιτοχονδριακό DNA 16 1.2 Οργανισμοί μελέτης 18 1.2.1 Γνωριμία με τους οργανισμούς 18 1.2.2. Αρθρόποδα 18 1.2.3 Χηληκεραιωτά 20 1.2.4. Αραχνίδια 20 1.2.5. Αράχνες 20 1.2.6. Λίγα λόγια για τις Οικογένειες Αραχνών της μελέτης 25 1.3 DNA Barcoding στις αράχνες 40 1.3.1. Γενικά 40 1.3.2 Παρουσίαση της ιστοσελίδας www.boldsystems.org 44 1.3.2.1 Database 46 1.3.2.2. Taxonomy 47 1.3.2.3. Identification 48 1.3.3. Παρουσίαση της ιστοσελίδας www.araneae.unibe.ch 52 1.3.4. Επιλογή των Δειγμάτων 53 1.3.5 Ελληνικές και Ξένες Μελέτες και Προγράμματα για το DNA Barcoding στις Αράχνες 53 1.4 Σκοπός της Μελέτης 56 2. ΥΛΙΚΑ και ΜΕΘΟΔΟΙ 57 2.1. Επιλογή και Συλλογή Δειγμάτων 57 2.2. Είδη, Οικογένειες και Παραομάδες 58 2.3. Πειραματική Διαδικασία 62 2.3.1. Εξαγωγή ολικού γενωμικού DNA 62 2.3.2. Πολλαπλασιασμός των γονιδίων-στόχων μέσω της PCR 64 1 2.3.3. Καθαρισμός του προιόντος της PCR 65 2.4. Επεξεργασία των αλληλουχιών 66 2.5 Εκτίμηση γενετικών αποστάσεων 66 2.6 Φυλογενετικές αναλύσεις 67 3. ΑΠΟΤΕΛΕΣΜΑΤΑ 68 3.1. Γενικά στοιχεία για τις αλληλουχίες του COI 68 3.2.
    [Show full text]
  • Evidence That Olfaction-Based Affinity for Particular Plant Species Is a Special Characteristic of Evarcha Culicivora, a Mosquit
    Evidence that olfaction-based affinity for particular plant species is a special characteristic of Evarcha culicivora, a mosquito-specialist jumping spider Running title: Plant affinity in a jumping spider Ximena J. NELSON1*, Robert R. JACKSON1,2 1School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand. 2International Centre of Insect Physiology and Ecology, Thomas Odhiambo Campus, P.0. Box 30 Mbita Point, Kenya. *Email: [email protected] Phone: 64-3-3642987 extn. 4050 Fax: 64-3-3642590 Key words: Plant-arthropod interactions, Evarcha culicivora, Lantana camara, Salticidae, olfaction ABSTRACT. Evarcha culicivora, an East African jumping spider (family Salticidae), was shown in an earlier study to have an affinity for the odor from two particular plant species, namely Lantana camara and Ricinus communis. The olfactometer used in the earlier study was designed for choice testing. Here we focus on L. camara and, by using a second olfactometer method (retention testing), add to the evidence that the odor of this plant is salient to E. culicivora. Another 17 East African salticid species, all from different genera, were investigated using the same two olfactometer designs as used when investigating E. culicivora. The number of individuals of each of these 17 species that chose L. camara odor was not significantly different from the number that chose a no-odor control and, for each species, the latency to leave a holding chamber (retention time) in the presence of L. camara odor was not significantly different from retention time in the presence of a no-odor control. Based on these findings, we conclude that, rather than being a widespread salticid characteristic, an affinity for the odor of L.
    [Show full text]