Wanless 1980D
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Checklist of the Non -Acarine Arachnids
Original Research A CHECKLIST OF THE NON -A C A RINE A R A CHNIDS (CHELICER A T A : AR A CHNID A ) OF THE DE HOOP NA TURE RESERVE , WESTERN CA PE PROVINCE , SOUTH AFRIC A Authors: ABSTRACT Charles R. Haddad1 As part of the South African National Survey of Arachnida (SANSA) in conserved areas, arachnids Ansie S. Dippenaar- were collected in the De Hoop Nature Reserve in the Western Cape Province, South Africa. The Schoeman2 survey was carried out between 1999 and 2007, and consisted of five intensive surveys between Affiliations: two and 12 days in duration. Arachnids were sampled in five broad habitat types, namely fynbos, 1Department of Zoology & wetlands, i.e. De Hoop Vlei, Eucalyptus plantations at Potberg and Cupido’s Kraal, coastal dunes Entomology University of near Koppie Alleen and the intertidal zone at Koppie Alleen. A total of 274 species representing the Free State, five orders, 65 families and 191 determined genera were collected, of which spiders (Araneae) South Africa were the dominant taxon (252 spp., 174 genera, 53 families). The most species rich families collected were the Salticidae (32 spp.), Thomisidae (26 spp.), Gnaphosidae (21 spp.), Araneidae (18 2 Biosystematics: spp.), Theridiidae (16 spp.) and Corinnidae (15 spp.). Notes are provided on the most commonly Arachnology collected arachnids in each habitat. ARC - Plant Protection Research Institute Conservation implications: This study provides valuable baseline data on arachnids conserved South Africa in De Hoop Nature Reserve, which can be used for future assessments of habitat transformation, 2Department of Zoology & alien invasive species and climate change on arachnid biodiversity. -
Predatory Behavior of Jumping Spiders
Annual Reviews www.annualreviews.org/aronline Annu Rev. Entomol. 19%. 41:287-308 Copyrighl8 1996 by Annual Reviews Inc. All rights reserved PREDATORY BEHAVIOR OF JUMPING SPIDERS R. R. Jackson and S. D. Pollard Department of Zoology, University of Canterbury, Christchurch, New Zealand KEY WORDS: salticids, salticid eyes, Portia, predatory versatility, aggressive mimicry ABSTRACT Salticids, the largest family of spiders, have unique eyes, acute vision, and elaborate vision-mediated predatory behavior, which is more pronounced than in any other spider group. Diverse predatory strategies have evolved, including araneophagy,aggressive mimicry, myrmicophagy ,and prey-specific preycatch- ing behavior. Salticids are also distinctive for development of behavioral flexi- bility, including conditional predatory strategies, the use of trial-and-error to solve predatory problems, and the undertaking of detours to reach prey. Predatory behavior of araneophagic salticids has undergone local adaptation to local prey, and there is evidence of predator-prey coevolution. Trade-offs between mating and predatory strategies appear to be important in ant-mimicking and araneo- phagic species. INTRODUCTION With over 4000 described species (1 l), jumping spiders (Salticidae) compose by Fordham University on 04/13/13. For personal use only. the largest family of spiders. They are characterized as cursorial, diurnal predators with excellent eyesight. Although spider eyes usually lack the struc- tural complexity required for acute vision, salticids have unique, complex eyes with resolution abilities without known parallels in animals of comparable size Annu. Rev. Entomol. 1996.41:287-308. Downloaded from www.annualreviews.org (98). Salticids are the end-product of an evolutionary process in which a small silk-producing animal with a simple nervous system acquires acute vision, resulting in a diverse array of complex predatory strategies. -
Natural Variation in Condition-Dependent Display Colour Does Not Predict Male Courtship Success in a Jumping Spider
Animal Behaviour 93 (2014) 267e278 Contents lists available at ScienceDirect Animal Behaviour journal homepage: www.elsevier.com/locate/anbehav Natural variation in condition-dependent display colour does not predict male courtship success in a jumping spider * Lisa A. Taylor a, b, , David L. Clark c, Kevin J. McGraw b a Florida Museum of Natural History, University of Florida, Gainesville, FL, U.S.A. b School of Life Sciences, Arizona State University, Tempe, AZ, U.S.A. c Department of Biology, Alma College, Alma, MI, U.S.A. article info In many animals, males display costly, condition-dependent ornaments to choosy females. Indicator Article history: models of sexual selection predict that females should choose mates based on natural variation in such Received 23 November 2013 traits. In Habronattus pyrrithrix jumping spiders, males have conspicuous, condition-dependent red faces Initial acceptance 27 February 2014 and green legs that they display to cryptically coloured females during courtship. In a correlational study Final acceptance 16 April 2014 using field-collected spiders, we paired individual males with virgin females in the laboratory and found Available online that natural variation in male coloration did not predict mating success (likelihood of copulation) or MS. number: A13-00972R levels of female aggression. Rather, mating success was best predicted by male body condition. We then conducted an outdoor experiment under natural sunlight where we gave both virgin and mated females Keywords: the choice between two simultaneously courting males, one with his facial coloration experimentally animal coloration reduced and the other that received a sham treatment. Again, we found no relationship between male condition dependence coloration and courtship success. -
SA Spider Checklist
REVIEW ZOOS' PRINT JOURNAL 22(2): 2551-2597 CHECKLIST OF SPIDERS (ARACHNIDA: ARANEAE) OF SOUTH ASIA INCLUDING THE 2006 UPDATE OF INDIAN SPIDER CHECKLIST Manju Siliwal 1 and Sanjay Molur 2,3 1,2 Wildlife Information & Liaison Development (WILD) Society, 3 Zoo Outreach Organisation (ZOO) 29-1, Bharathi Colony, Peelamedu, Coimbatore, Tamil Nadu 641004, India Email: 1 [email protected]; 3 [email protected] ABSTRACT Thesaurus, (Vol. 1) in 1734 (Smith, 2001). Most of the spiders After one year since publication of the Indian Checklist, this is described during the British period from South Asia were by an attempt to provide a comprehensive checklist of spiders of foreigners based on the specimens deposited in different South Asia with eight countries - Afghanistan, Bangladesh, Bhutan, India, Maldives, Nepal, Pakistan and Sri Lanka. The European Museums. Indian checklist is also updated for 2006. The South Asian While the Indian checklist (Siliwal et al., 2005) is more spider list is also compiled following The World Spider Catalog accurate, the South Asian spider checklist is not critically by Platnick and other peer-reviewed publications since the last scrutinized due to lack of complete literature, but it gives an update. In total, 2299 species of spiders in 67 families have overview of species found in various South Asian countries, been reported from South Asia. There are 39 species included in this regions checklist that are not listed in the World Catalog gives the endemism of species and forms a basis for careful of Spiders. Taxonomic verification is recommended for 51 species. and participatory work by arachnologists in the region. -
Spiders As Potential Indicators of Elephantinduced Habitat Changes In
Spiders as potential indicators of elephant-induced habitat changes in endemic sand forest, Maputaland, South Africa Charles R. Haddad1*, Allet S. Honiball2, Anna S. Dippenaar-Schoeman3,2, Rob Slotow4 and Berndt J. van Rensburg5 1Department of Zoology & Entomology, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa, 2Department of Zoology & Entomology, University of Pretoria, Pretoria 0002, South Africa, 3Biosystematics: Arachnology, ARC – Plant Protection Research Institute, Private Bag X134, Queenswood 0121, South Africa, 4Amarula Elephant Research Programme, School of Biological and Conservation Sciences, University of KwaZulu-Natal, Durban 4041, South Africa and 5Centre for Invasion Biology and Department of Zoology & Entomology, University of Pretoria, Pretoria 0002, South Africa Abstract Re´sume´ Elephant impacts on spider assemblages, and the potential L’impact des e´le´phants sur les assemblages d’araigne´es, use of spiders as indicators of habitat changes was assessed et l’utilisation e´ventuelle des araigne´es comme indica- in central Maputaland, South Africa. Three habitats, teurs de changements des habitats, ont e´te´ e´value´s dans namely undisturbed sand forest, elephant disturbed sand le centre du Maputaland, en Afrique du Sud. Trois forest and mixed woodland, were sampled. To ensure a habitats ont e´te´ e´chantillonne´s, a` savoir la foreˆt sableuse thorough representation of all spider guilds, spiders were intacte, la foreˆt sableuse perturbe´e par des e´le´phants et collected by tree beating, sweep netting, active searching, la foreˆt mixte. Pour garantir une repre´sentation comple`te leaf litter sifting and pitfall traps. In total, 2808 individual de toutes les guildes d’araigne´es, on a re´colte´ des ara- spiders, representing 36 families, 144 determined genera igne´es en frappant sur les arbres, en agitant des filets, en and 251 species were collected. -
Arachnida, Araneae) of the Savanna Biome in South Africa
The faunistic diversity of spiders (Arachnida, Araneae) of the Savanna Biome in South Africa S.H. Foord1, A.S. Dippenaar-Schoeman2& C.R Haddad3 1Department of Zoology, Centre for Invasion Biology, University of Venda, Private Bag X5050, Thohoyandou, 0950, South Africa 2 ARC-Plant Protection Research Institute, Private Bag X134, Queenswood 0121/Department of Zoology &Entomology, University of Pretoria, Pretoria 0001, South Africa 3Department of Zoology & Entomology, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa Invertebrates include more than 80% of all animals, yet they are severely under-represented in studies of southern African diversity. Site biodiversity estimates that do not consider invertebrates, not only omit the greatest part of what they are attempting to measure, but also ignore major contributors to essential ecosystem processes. All available information on spider species distribution in the South African Savanna Biome was compiled. This is the largest biome in the country,occupying over one third of the surface area.A total of 1230 species represented by 381genera and 62 families are known from the biome. The last decade has seen an exponential growth in the knowledge of the group in South Africa, but there certainly are several more species that have to be discovered, and the distribution patterns of those listed are partly unknown. Information is summarized for all quarter degree squares of the biome and reveals considerable inequalities in knowledge. At a large scale the eastern region is much better surveyed than the western parts, but at smaller scales throughout the region, several areas have little information. -
From Singapore, with a Description of a New Cladiella Species
THE RAFFLES BULLETIN OF ZOOLOGY 2010 THE RAFFLES BULLETIN OF ZOOLOGY 2010 58(1): 1–13 Date of Publication: 28 Feb.2010 © National University of Singapore ON SOME OCTOCORALLIA (CNIDARIA: ANTHOZOA: ALCYONACEA) FROM SINGAPORE, WITH A DESCRIPTION OF A NEW CLADIELLA SPECIES Y. Benayahu Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel Email: [email protected] (Corresponding author) L. M. Chou Department of Biological Sciences, Faculty of Science, National University of Singapore, 14 Science Drive 4, Singapore 117543 Email: [email protected] ABSTRACT. – Octocorallia (Cnidaria: Anthozoa) from Singapore were collected and identifi ed in a survey conducted in 1999. Colonies collected previously, between 1993 and 1997, were also studied. The entire collection of ~170 specimens yielded 25 species of the families Helioporidae, Alcyoniidae, Paraclcyoniidae, Xeniidae and Briareidae. Their distribution is limited to six m depth, due to high sediment levels and limited light penetration. The collection also yielded Cladiella hartogi, a new species (family Alcyonacea), which is described. All the other species are new zoogeographical records for Singapore. A comparison of species composition of octocorals collected in Singapore between 1993 and 1977 and those collected in 1999 revealed that out of the total number of species, 12 were found in both periods, whereas seven species, which had been collected during the earlier years, were no longer recorded in 1999. Notably, however, six species that are rare on Singapore reefs were recorded only in the 1999 survey and not in the earlier ones. It is not yet clear whether these differences in species composition indeed imply changes over time in the octocoral fauna, or may refl ect a sampling bias. -
Revision, Molecular Phylogeny and Biology of the Spider Genus Micaria Westring, 1851 (Araneae: Gnaphosidae) in the Afrotropical Region
REVISION, MOLECULAR PHYLOGENY AND BIOLOGY OF THE SPIDER GENUS MICARIA WESTRING, 1851 (ARANEAE: GNAPHOSIDAE) IN THE AFROTROPICAL REGION by Ruan Booysen Submitted in fulfilment of the requirements for the degree MAGISTER SCIENTIAE in the Department of Zoology & Entomology, Faculty of Natural and Agricultural Sciences, University of the Free State February 2020 Supervisor: Prof. C.R. Haddad Co-Supervisor: Prof. S. Pekár 1 DECLARATION I, Ruan Booysen, declare that the Master’s research dissertation that I herewith submit at the University of the Free State, is my independent work and that I have not previously submitted it for qualification at another institution of higher education. 02.02.2020 _____________________ __________________ Ruan Booysen Date 2 Contents ABSTRACT ..................................................................................................................... 5 OPSOMMING ................................................................................................................. 7 ACKNOWLEDGEMENTS ............................................................................................... 9 CHAPTER 1 - INTRODUCTION ................................................................................... 10 1.1.) Micaria morphology ............................................................................................... 10 1.2.) Taxonomic history of Micaria................................................................................. 11 1.3.) Phylogenetic relationships ................................................................................... -
The Duration of Copulation in Spiders: Comparative Patterns
Records of the Western Australian Museum Supplement No. 52: 1-11 (1995). The duration of copulation in spiders: comparative patterns Mark A. Elgar Department of Zoology, University of Melbourne, Parkville, Victoria 3052, Australia Abstract - The duration of copulation in spiders varies both-within and between species, and in the latter by several orders of magnitude. The sources of this variation are explored in comparative analyses of the duration of copulation and other life-history variables of 135 species of spiders from 26 families. The duration of copulation is correlated with body size within several species, but the pattern is not consistent and more generally there is no inter-specific covariation between these variables. The duration of copulation within orb-weaving spiders is associated with both the location of mating and the frequency of sexual cannibalism, suggesting that the length of copulation is limited by the risk of predation. Finally, entelegyne spiders copulate for longer than haplogyne spiders, a pattern that can be interpreted in terms of male mating strategies or the complexity of their copulatory apparatus. INTRODUCTION after the copulatory organ has been inserted. In It is widely recognised that there are conflicts of species in which females mate with several males, interest between males and females in the choice of copulation may provide the male with the mating partner and the frequency of mating (e.g. opportunity to manipulate the sperm of other Elgar 1992). Thus, while the principal function of males that previously mated with that female. For copulation is to transfer gametes, the act of mating example, copulating male damselflies not only may have several additional functions, such as transfer their own sperm, but also remove the mate assessment or ensuring sperm priority, and sperm of rival males (e.g. -
Asemonea Cf. Tenuipes in Karnataka (Araneae: Salticidae: Asemoneinae)
Peckhamia 172.1 Asemonea cf. tenuipes in Karnataka 1 PECKHAMIA 172.1, 28 October 2018, 1―8 ISSN 2161―8526 (print) urn:lsid:zoobank.org:pub:F2E27581-540F-45F0-9B20-2CC30398B4EE (registered 26 OCT 2018) ISSN 1944―8120 (online) Asemonea cf. tenuipes in Karnataka (Araneae: Salticidae: Asemoneinae) Abhijith A. P. C.1 and David E. Hill 2 1 Indraprastha Organic Farm, Kalalwadi Village, Udboor Post, Mysuru-570008, Karnataka, India, email [email protected] 2 213 Wild Horse Creek Drive, Simpsonville SC 29680, USA, email [email protected] Abstract. Field observations of Asemonea cf. tenuipes in Karnataka are documented. These include a possible case of oophagy by a nesting female as well as corroboration of earlier studies that described the tendency of females to deposit their eggs in straight lines within a simple shelter on the underside of leaves. Changes in colour of the female opisthosoma that include the appearance of a pair of iridescent blue lines are discussed. Key words. Asemonea tenuipes, colour change, India, jumping spider, Lyssomanes viridis, Lyssomaninae, mimicry, nesting, oophagy, organic farming The Afroeurasian salticid subfamily Asemoneinae was recently recognized as the sister group of the Neotropical salticid subfamily Lyssomaninae, both subfamilies comprising a clade that is in turn the sister group of the subfamily Spartaeinae (Maddison et al. 2014; Maddison 2015; Maddison et al. 2017). Within the Asemoneinae the genus Asemonea presently includes 25 species, all from tropical Afroeurasia (Wanless 1980; WSC 2018). Asemonea tenuipes (O. Pickard-Cambridge 1869) is the type species and best-known representative of the genus Asemonea, ranging from India and Sri Lanka to Singapore (Roy et al 2016; WSC 2018). -
Distribution, Diversity and Ecology of Spider Species at Two Different Habitats
Research Article Int J Environ Sci Nat Res Volume 8 Issue 5 - February 2018 Copyright © All rights are reserved by IK Pai DIO: 10.19080/IJESNR.2018.08.555747 Distribution, Diversity and Ecology of Spider Species At Two Different Habitats Mithali Mahesh Halarnkar and IK Pai* Department of Zoology, Goa University, India Submission: January 17, 2018; Published: February 12, 2018 *Corresponding author: IK Pai, Department of Zoology, Goa University, Goa-403206 India; Email: Abstract The study provides a checklist and the diversity of spiders from two different habitats namely Akhada, St. Estevam, Goa, India, an island (Site-1) and the other Tivrem-Orgao, Marcela, Goa, India, a plantation area (Site-2). The study period was for nine months from June 2016 to Feb 2017. The investigation revealed the presence of 29 spider species belonging to the 8 families and 19 genera at Site-1 and 30 spider species belonging to 7 families, 18 genera at site-2. The study on difference in the distribution and diversity of the spiders was carryout and was found toKeywords: be influenced Spiders; by the Habitat; environmental Diversity; parameters, Distribution; habitat Ecology type, vegetation structure and anthropogenic activities. Introduction Goa is a tiny state on the Western Coast of India, has an Spiders are ubiquitous in distribution, except for a few area of 3,702 sq. km. enjoys a tropical climate with moderate niches, such as Arctic and Antarctica. Almost every plant has temperatures ranging from 21oC-31oC, with monsoon during the months of June to September, post monsoon during the trees during winter. They may be found at varied locations, its spider fauna, as do dead leaves, on the forest floor and on October and November winter during December to February such as under bark, beneath stones, below the fallen logs, among and summer from March till May, with an annual precipitation foliage, house dwellings, grass leaves, underground burrows of around 3000mm. -
Araneae: Salticidae: Cf. Anarrhotus) in Southwestern India
Peckhamia 182.2 Construction of orb webs by jumping spiders 1 PECKHAMIA 182.2, 26 April 2019, 1―13 ISSN 2161―8526 (print) urn:lsid:zoobank.org:pub:751C521D-F8DC-48E4-9B8A-ECB88C9451AE (registered 25 APR 2019) ISSN 1944―8120 (online) Construction of orb webs as nocturnal retreats by jumping spiders (Araneae: Salticidae: cf. Anarrhotus) in southwestern India David E. Hill1 , Abhijith A. P. C.2, Prashantha Krishna3 and Sanath Ramesh4 1 213 Wild Horse Creek Drive, Simpsonville, South Carolina 29680, USA, email [email protected] 2 Indraprastha Organic Farm, Kalalwadi Village, Udboor Post, Mysuru-570008, Karnataka, India, email abhiapc@ gmail.com 3 Sri Durgaprasda Mani, Post Permude, Kasaragod, Kerala-671324, India, email [email protected] 4 Sri Krishnakripa House, Manila Village, Nayarmoole Post, Bantwala Taluk, Dakshina Kannada Pin 574243, Karnataka, India, email [email protected] Abstract. An unidentified jumping spider (cf. Anarrhotus) from southwestern India constructs planar orb webs that serve as nocturnal retreats. These webs are not inhabited during the daytime and do not appear to play a role in prey capture by these spiders. Their construction, involving the attachment of silk lines radiating from a hub or platform that is occupied by the spider at night, resembles the early stages of web construction by orb-weaving spiders of the family Araneidae. Unlike most salticids these spiders molt while suspended from their dragline. The retreats or shelters constructed by salticid spiders are diverse, ranging from a simple layer of silk fibers on the underside of a leaf in Asemonea (Abhijith A. P. C. & Hill 2018) to the irregular cob-webs of Portia (Jackson 1982; Ahmed et al.