APPENDIX B Plant Species List

Total Page:16

File Type:pdf, Size:1020Kb

APPENDIX B Plant Species List APPENDIX B Plant Species List Table B1 Plant Species in the Study Area Common Name Family Genus Species Indicator Grasses and Forbs American mannagrass Poaceae Glyceria grandis OBL American skunk cabbage Araceae Lysichiton americanum OBL American speedwell Scrophulariaceae Veronica americana OBL American speedwell Scrophulariaceae Veronica americana OBL American vetch Fabaceae Vicia americana FAC annual bluegrass Poaceae Poa Annua FAC bentgrass Poaceae Agrostis Sp. NI bigflower tellima Saxifragaceae Tellima glandiflora UPL bird's-foot trefoil Fabaceae Lotus corniculatus FAC black medic Fabaceae Medicago lupulina FAC bleeding heart Fumariaceae Dicentra formosa FACU Bluegrass (species unid’d) Poaceae Poa sp. NI bracken fern Dennstaedtiaceae Pteridium aquilinum FACU Canadian thistle Asteraceae Cirsium arvense FACU+ cleavers bedstraw Rubiaceae Galium aparine FACU clover Fabaceae Trifolium NI coastal brookfoam Saxifragaceae Boykinia elata FAC colonial bentgrass Poaceae Agrostis capillaris (tenuis) FAC common cattail Typhaceae Typha latifolia OBL common dandelion Asteraceae Taraxacum officinale FACU common plantain Plantaginaceae Plantago major NI common rush Juncaceae Juncus effusus FACW common spikerush Cyperaceae Eleocharis palustris OBL common velvetgrass Poaceae Holcus lanatus FAC common vetch Fabaceae Vicia sativa UPL Cooley’s hedgenettle Lamiaceae Stachys Cooleyae FACW creeping buttercup Ranunculaceae Ranunculus repens FACW crested dogstail grass Poaceae Cynosurus cristatus UPL curly dock Polygonaceae Rumex crispus FAC+ cutleaf blackberry Rosaceae Rubus laciniatus FACU+ Dewey's sedge Cyperaceae Carex deweyana FAC+ false lily-of-the-valley Liliaceae Maianthemum dilatatum FAC field horsetail Equisetaceae Equisetum arvense FAC fireweed Onagraceae Epilobium angustifolium FACU+ foothill sedge Cyperaceae Carex tumulicola FACU fowl bluegrass Poaceae Poa palustris FAC Foxtail (species unid’d) Poaceae Alopecurus sp. NI fringecup Saxifragaceae Tellima grandiflora FAC giant horsetail Equisetaceae Equisetum telmateia FACW hairy catsear Asteraceae Hypochaeris radicata FACU Hawkbit (species unid’d) Asteraceae Leontodon sp. NI Gateway Pacific Terminal B-2 February 2008 591M153880 P:\15338-A GPT Nat Res\Wetland Delineation 2006\Report\FINAL\20080222 GPTWetland Delineation_FINAL_.doc Common Name Family Genus Species Indicator lady fern Dryopteridaceae Athyrium filix-femina FAC largeleaf avens Rosaceae Geum macrophyllum FACW- meadow foxtail Poaceae Alopecurus pratensis FACW narrowleaf plantain Plantaginaceae Plantago lanceolata FAC orchard grass Poaceae Dactylis glomerata FACU Pacific bleeding heart Fumariaceae Dicenta Formosa FACU Pacific silverweed Rosaceae Potentilla anserina OBL panicled bulrush Cyperaceae Scirpus microcarpus OBL pig-a-back Saxifragaceae Tolmiea menziesii FAC plantain Plantaginaceae Plantago NI quackgrass Poaceae Agropyron repens FAC- red clover Fabaceae Trifolium pratense FACU red clover Fabaceae Trifolium repens FACU+ red fescue Poaceae Festuca rubra FAC+ reed canarygrass Poaceae Phalaris arundinacea FACW rock dandelion Asteraceae Taraxacum laevigatum UPL ryegrass Poaceae Lolium NI saltgrass Poaceae Distichlis spicata FACW sheep sorrel Polygonaceae Rumex acetosella FACU skunk cabbage Araceae Lysichiton americanus OBL slough sedge Cyperaceae Carex obnupta OBL soft rush Juncaceae Juncus effuses FACW small-fruited bulrush Cyperaceae scirpus microcarpus OBL springbeauty Portulacaceae Claytonia (Montia) NI stinging nettle Urticaceae Urtica dioica FAC+ stinging nettle Urticaceae Utrica dioica sweet vernalgrass Poaceae Anthoxanthum odoratum FACU sword fern Dryopteridaceae Polystichum munitum FACU swordleaf rush Juncaceae Juncus ensifolius FACW tall buttercup Ranunculaceae Ranunculus acris FACW- tall fescue Poaceae Festuca arundinacea FACU- tall fescue Poaceae Shedenorus (Festuca) phoenix FAC- (arundinacea) thick-head sedge Cyperaceae Carex pacheystachya FAC true forget-me-not Boraginaceae Myosotis scorpioides FACW vetch Fabaceae Vicia NI water parsley Apiaceae Oenanthe sarmentosa OBL western sword fern Dryopteridaceae Polystichum munitum FACU white clover Fabaceae Trifolium repens FAC wood fern Dryopteridaceae Dryopteris expansa UPL youth on age Saxifragaceae Tolmiea menziesii FAC Gateway Pacific Terminal B-3 February 2008 591M153880 P:\15338-A GPT Nat Res\Wetland Delineation 2006\Report\FINAL\20080222 GPTWetland Delineation_FINAL_.doc Shrubs, Vines, and Small Trees Common Name Family Genus Species Indicator American black nightshade Solanaceae Solanum americanum FAC- black hawthorne Rosaceae Crataegus douglasii FAC cascara buckthorn Rhamnaceae Frangula purshiana FAC- (Rhamnus) cluster rose Rosaceae Rosa pisocarpa FAC common snowberry Caprifoliaceae Symphoricarpos albus FACU currant Grossulariaceae Ribes NI Douglas spirea Rosaceae Spirea douglasii FACW English holly Aquifoliaceae Ilex aquifolium FACU evergreen blackberry Rosaceae Rubus laciniatus FACU+ Himalayan blackberry Rosaceae Rubus armeniacus FACU (discolor) Indian plum Rosaceae Oemleria cerasiformis FACU nootka Rose Rosaceae Rosa nutkana FAC ocean spray Rosaceae Holodiscus discolor UPL Pacific willow Salicaceae Salix lucida FACW+ prickly current Grossulariaceae Ribes lacustre FAC+ red alder Betulaceae Alnus rubra FAC red elderberry Caprifoliaceae Sambucus racemosa FACU red-osier dogwood Cornaceae Cornus sericea FACW (stolonifera) rose spirea Rosaceae Spiraea douglasii FACW salmonberry Rosaceae Rubus spectabilis FAC+ Scouler willow Salicaceae Salix scoulerana FAC Serviceberry Rosaceae Amelanchier alnifolia FACU Sitka willow Salicaceae Salix sitchensis FACW straggly gooseberry Grossulariaceae Ribes FAC thimbleberry Rosaceae Rubus parviflorus FAC- trailing blackberry Rosaceae Rubus ursinus FACU twinberry Caprifoliaceae Lonicera invoucrata FAC+ vine maple Aceraceae Acer circinatum FAC- western crabapple Rosaceae Pyrus fusca FAC willow Salicaceae Salix Spp. NI Trees Common Name Family Genus Species Indicator big leaf maple Aceraceae Acer macrophyllum FACU black cottonwood Salicaceae Populus balsamifera FAC Douglas fir Pinaceae Pseudotsuga menziesii FACU grand fir Pinaceae Abies grandis FAC- pacific ninebark Rosaceae Physocarpus capitatus FACW- quaking aspen Salicaceae Populus tremuloides FAC+ Common Name Family Genus Species Indicator Gateway Pacific Terminal B-4 February 2008 591M153880 P:\15338-A GPT Nat Res\Wetland Delineation 2006\Report\FINAL\20080222 GPTWetland Delineation_FINAL_.doc Trees (Continued) red alder Betulaceae Alnus rubra FAC Rocky Mountain maple Aceraceae Acer glabrum FAC Western hemlock Pinaceae Tsuga heterophylla FACU- western paper birch Betulaceae Betula papyrifera FAC Western red cedar Cupressaceae Thuja plicata FAC Gateway Pacific Terminal B-5 February 2008 591M153880 P:\15338-A GPT Nat Res\Wetland Delineation 2006\Report\FINAL\20080222 GPTWetland Delineation_FINAL_.doc .
Recommended publications
  • Analysis of Flavonoids in Rubus Erythrocladus and Morus Nigra Leaves Extracts by Liquid Chromatography and Capillary Electrophor
    Revista Brasileira de Farmacognosia 25 (2015) 219–227 www.sbfgnosia.org.br/revista Original Article Analysis of flavonoids in Rubus erythrocladus and Morus nigra leaves extracts by liquid chromatography and capillary electrophoresis a a b c Luciana R. Tallini , Graziele P.R. Pedrazza , Sérgio A. de L. Bordignon , Ana C.O. Costa , d e a,∗ Martin Steppe , Alexandre Fuentefria , José A.S. Zuanazzi a Departamento de Produc¸ ão de Matéria Prima, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil b Centro Universitário La Salle, Canoas, RS, Brazil c Departamento de Ciência e Tecnologia de Alimentos, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil d Departamento de Produc¸ ão e Controle de Medicamentos, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil e Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil a a b s t r a c t r t i c l e i n f o Article history: This study uses high performance liquid chromatography and capillary electrophoresis as analytical tools Received 15 January 2015 to evaluate flavonoids in hydrolyzed leaves extracts of Rubus erythrocladus Mart., Rosaceae, and Morus Accepted 30 April 2015 nigra L., Moraceae. For phytochemical analysis, the extracts were prepared by acid hydrolysis and ultra- Available online 17 June 2015 sonic bath and analyzed by high performance liquid chromatography using an ultraviolet detector and by capillary electrophoresis equipped with a diode-array detector. Quercetin and kaempferol were iden- Keywords: tified in these extracts. The analytical methods developed were validated and applied.
    [Show full text]
  • Family Fabaceae
    CATNIP classes, Acme Botanical Services 2013 Fabaceae (Pea Family, Bean Family, Legume Family) The third largest family of angiosperms (behind the aster family (Asteraceae) and the orchid family (Orchidaceae), the Fabaceae includes somewhere between 16.000 and 20,000 species. It rivals the grass family (Poaceae) in terms of economic importance. The Fabaceae includes plants of all growth forms, from trees and shrubs down to annual and perennial herbs. Members are easy to recognize on the basis of the foliage, which involves compound leaves of various kinds; the flowers, which are of three types (see subfamilies below); and the fruit, which is a single-chambered dry pod. Three subfamilies are recognized. All three are well represented in the Capital area. Mimosoideae. In this subfamily, the leaves are twice-pinnately compound. The flowers are tightly packed into heads or spikes. The flowers are regular (radially symmetrical), but the perianth (corolla and calyx) is so tiny as to be scarcely noticeable. The stamens are the conspicuous part of the flower, usually numerous and 10 times or more as long as the corolla. In many species, such as Nuttall’s sensitive- briar (Mimosa nuttallii, right), the flower heads resemble pink pom-poms. Caesalpinoideae. Plants of this group have even-pinnate or odd-pinnate leaves. The flowers have a conspicuous corolla with 5 separate petals. The stamens are separate and visible (i.e., not concealed by the corolla. Most of the species in our area have yellow petals. Roemer’s two-leaf senna (Senna roemeriana, right) is typical. Papilionideae. This is the largest subfamily in our area, and the one with the bilaterally symmetrical two-lipped flowers that come to mind any time the pea family is mentioned.
    [Show full text]
  • Urera Kaalae
    Plants Opuhe Urera kaalae SPECIES STATUS: Federally Listed as Endangered Genetic Safety Net Species J.K.Obata©Smithsonian Inst., 2005 IUCN Red List Ranking – Critically Endangered (CR D) Hawai‘i Natural Heritage Ranking ‐ Critically Imperiled (G1) Endemism – O‘ahu Critical Habitat ‐ Designated SPECIES INFORMATION: Urera kaalae, a long‐lived perennial member of the nettle family (Urticaceae), is a small tree or shrub 3 to 7 m (10 to 23 ft) tall. This species can be distinguished from the other Hawaiian species of the genus by its heart‐shaped leaves. DISTRIBUTION: Found in the central to southern parts of the Wai‘anae Mountains on O‘ahu. ABUNDANCE: The nine remaining subpopulations comprise approximately 40 plants. LOCATION AND CONDITION OF KEY HABITAT: Urera kaalae typically grows on slopes and in gulches in diverse mesic forest at elevations of 439 to 1,074 m (1,440 to 3,523 ft). The last 12 known occurrences are found on both state and privately owned land. Associated native species include Alyxia oliviformis, Antidesma platyphyllum, Asplenium kaulfusii, Athyrium sp., Canavalia sp., Charpentiera sp., Chamaesyce sp., Claoxylon sandwicense, Diospyros hillebrandii, Doryopteris sp., Freycinetia arborea, Hedyotis acuminata, Hibiscus sp., Nestegis sandwicensis, Pipturus albidus, Pleomele sp., Pouteria sandwicensis, Psychotria sp., Senna gaudichaudii (kolomona), Streblus pendulinus, Urera glabra, and Xylosma hawaiiense. THREATS: Habitat degradation by feral pigs; Competition from alien plant species; Stochastic extinction; Reduced reproductive vigor due to the small number of remaining individuals. CONSERVATION ACTIONS: The goals of conservation actions are not only to protect current populations, but also to establish new populations to reduce the risk of extinction.
    [Show full text]
  • F a C T S H E E T Blackberries
    JEFFERSON COUNTY NOXIOUS WEED CONTROL BOARD F A C T S H E E T BLACKBERRIES Himalayan blackberry (Rubus armeniacus) and evergreen blackberry (Rubus laciniatus) Himalayan blackberry stems (canes) can grow to 9 feet in height but often trail along the ground, growing 20-40 feet long. Thorns grow along the stems as well as on the leaves and leaf stalks. Himalayan blackberries have five distinct leaflets; each leaflet has a toothed margin and is generally oval in shape. Canes start producing berries in their second year. Himalayan blackberry can be evergreen, depending on the site. Rose family. Himalayan blackberry Himalayan blackberry Evergreen blackberry The leaflets of evergreen blackberry are deeply lobed, making it easy to distinguish from WHY BE CONCERNED? Himalayan blackberry. Both Himalayan and evergreen DISTRIBUTION: blackberries form impenetrable Himalayan blackberry is extremely visible in thickets, consisting of both dead and most of Jefferson County, growing along live canes. These thickets out-compete roadsides, over fences and other vegetation, and native vegetation and are a good invading many open areas. Evergreen source of food and shelter for rats. blackberry is more common in the West end of the county, where it has been seen to invade Both Himalayan and evergreen riparian areas. blackberries are Class C Weeds 380 Jefferson Street, Port Townsend WA 98368 (360) 379-5610 Ext. 205 [email protected] http://www.co.jefferson.wa.us/WeedBoard ECOLOGY: . Seeds can be spread by birds, humans and other mammals. The canes often cascade outwards, forming mounds, and can root at the tip when they hit the ground, expanding the infestation .
    [Show full text]
  • Plant Taxonomy Table
    COMMON AND LATIN NAMES OF IMPORTANT PLANT TAXA LATIN NAME* COMMON NAME Abies Fir Acer Maple Acer negundo Box elder Aesculus Buckeye; Horse Chestnut Alnus Alder Ambrosia Ragweed Apiaceae [Umbelliferae] Carrot or parsley family Artemisia Sagebrush; sage; wormwood Asteraceae [Compositae] Aster or Sunflower Family Betula Birch Boraginaceae Borage family Brassicaceae [Cruciferae} Mustard family Caryophyllaceae Pinks Castanea Chestnut Compositae (Asteraceae) Aster or Sunflower family Cornus Dogwood Corylus Filbert; hazelnut Cruciferae (Brassicaceae) Mustard family Cupressaceae Junipers, cypresses, "cedars", others Cyperaceae Sedge family Ericaceae Heath family Fabaceae [Leguminosae] Pea family Fagus Beech Fraxinus Ash Gramineae (Poaceae) Grass family Juglans Walnut; butternut Labiatae (Lamiaceae) Mint family Larix Larch; tamarack Leguminosae (Fabaceae) Pea family Liliaceae Lily family Liriodendron Tulip tree or yellow poplar Nuphar Water lily Onagraceae Evening primrose family Papaveraceae Poppy family Picea Spruce Pinus Pine Plantago Plantain Poaceae [Gramineae] Grass family Polemonium Jacob's ladder Polygonaceae Buckwheat family Populus Poplar; cottonwood; aspen Potamogeton Pondweed Primulaceae Primrose family Quercus Oak Ranunculaceae Buttercup family Rosaceae Rose family Rhus sumac, incl. poison ivy, etc. Salix Willow Saxifragaceae Saxifrage family Scrophulariaceae Snapdragon family Sparganium Bur reed Thalictrum Meadow rue Tilia Linden or basswood Tsuga Hemlock Typha Cattail Ulmus Elm Umbelliferae (Apiaceae) Carrot or parsley family * Names of genera are always italicized; family names are given in Roman characters. All proper plant family name ends in -aceae; family names above that don't have this ending are old names, and the proper modern name is included in parentheses. .
    [Show full text]
  • Outline of Angiosperm Phylogeny
    Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese
    [Show full text]
  • Rubus Idaeus (Raspberry ) Size/Shape
    Rubus idaeus (raspberry ) Raspberry is an upright deciduous shrub.The shrub has thorns be careful. It ha pinatelly compound leaves with a toothed edge. The plant has two different types of shoots ( canes) One which produces fruits in the given year and one which grows leaves only but will be the next year productive shoot. The fruits are small but very juicy. It grows best in full fun and moderately fertile soil. The best to grow raspberry in a raised bed or in area where any frame or trellis can be put around the plants , otherwise it will fall on the ground. Landscape Information French Name: Framboisier, ﻋﻠﻴﻖ ﺃﺣﻤﺮ :Arabic Name Plant Type: Shrub Origin: North America, Europe, Asia Heat Zones: 4, 5, 6, 7, 8 Hardiness Zones: 4, 5, 6, 7, 8 Uses: Screen, Border Plant, Mass Planting, Edible, Wildlife Size/Shape Growth Rate: Fast Tree Shape: Upright Canopy Symmetry: Symmetrical Plant Image Canopy Density: Medium Canopy Texture: Medium Height at Maturity: 1 to 1.5 m Spread at Maturity: 1 to 1.5 meters Time to Ultimate Height: 2 to 5 Years Rubus idaeus (raspberry ) Botanical Description Foliage Leaf Arrangement: Alternate Leaf Venation: Pinnate Leaf Persistance: Deciduous Leaf Type: Odd Pinnately compund Leaf Blade: 5 - 10 cm Leaf Shape: Ovate Leaf Margins: Double Serrate Leaf Textures: Rough Leaf Scent: No Fragance Color(growing season): Green Flower Image Color(changing season): Brown Flower Flower Showiness: True Flower Size Range: 1.5 - 3 Flower Type: Raceme Flower Sexuality: Monoecious (Bisexual) Flower Scent: No Fragance Flower Color:
    [Show full text]
  • Here Are Over 2,100 Native Rare Plant Finds at 11 Bear Run Nature Plant Species in Pennsylvania, and About Reserve 800 Species Are of Conservation Concern
    Pennsylvania Natural Heritage Program informationinformation forfor thethe conservationconservation ofof biodiversitybiodiversity WILD HERITAGE NEWS Summer 2018 Tough Nuts to Crack Inside This Issue Zeroing in on Some of Our Most Mysterious Plant Species by Tough Nuts to Crack 1 Jessica McPherson Emerging Invasive 6 Scientific understanding of our native Cleveland Museum of Natural History. Plant Threats biodiversity is a constant work in progress. The stories of some of these species EYE Con Summer 8 We continue to uncover the intricacies of illustrate the interesting complexities of Camp our native plant species habitat our native diversity, some trends in Spotted Turtle 8 requirements, biological needs, and conservation, and some of the data gaps Conservation ecological interrelationships such as animal that often challenge our ability to assess State Park Vernal Pool 9 pollinators and seed dispersers. To the conservation needs of plant species. Surveys determine the conservation needs of our native species, the Natural Heritage Netted Chain Fern New Cooperative Weed 9 Program synthesizes the best available The netted chain fern (Woodwardia Management Area science on what we know a species needs areolata) was previously known almost Tick Borne Disease 10 to survive with population data and information exclusively from the coastal plain in Collaboration on any threats it faces. For plants, the Pennsylvania, but new field work suggests Indian Creek Caverns 11 sheer numbers of species pose a significant challenge; there are over 2,100 native Rare Plant Finds at 11 Bear Run Nature plant species in Pennsylvania, and about Reserve 800 species are of conservation concern. Mudpuppy Project 12 The Plant Status Update Project Spring Insect Survey 13 completed in 2016, was a focused Photo Highlights investigation of 56 plant species that DCNR determined lacked sufficient data to evaluate the appropriate conservation Photo Banner: status.
    [Show full text]
  • Identification of Bioactive Phytochemicals in Mulberries
    H OH metabolites OH Article Identification of Bioactive Phytochemicals in Mulberries Gilda D’Urso 1 , Jurriaan J. Mes 2, Paola Montoro 1 , Robert D. Hall 3,4 and Ric C.H. de Vos 3,* 1 Department of Pharmacy, University of Salerno, 84084 Fisciano SA, Italy; [email protected] (G.D.); [email protected] (P.M.) 2 Business Unit Fresh Food and Chains, Wageningen Food & Biobased Research, Wageningen University and Research, 6708 WG Wageningen, The Netherlands; [email protected] 3 Business Unit Bioscience, Wageningen Plant Research, Wageningen University and Research, 6708 PB Wageningen, The Netherlands; [email protected] 4 Laboratory of Plant Physiology, Wageningen University and Research, 6708 PB Wageningen, The Netherlands * Correspondence: [email protected]; Tel.: +31-317480841 Received: 29 November 2019; Accepted: 18 December 2019; Published: 20 December 2019 Abstract: Mulberries are consumed either freshly or as processed fruits and are traditionally used to tackle several diseases, especially type II diabetes. Here, we investigated the metabolite compositions of ripe fruits of both white (Morus alba) and black (Morus nigra) mulberries, using reversed-phase HPLC coupled to high resolution mass spectrometry (LC-MS), and related these to their in vitro antioxidant and α-glucosidase inhibitory activities. Based on accurate masses, fragmentation data, UV/Vis light absorbance spectra and retention times, 35 metabolites, mainly comprising phenolic compounds and amino sugar acids, were identified. While the antioxidant activity was highest in M. nigra, the α-glucosidase inhibitory activities were similar between species. Both bioactivities were mostly resistant to in vitro gastrointestinal digestion. To identify the bioactive compounds, we combined LC-MS with 96-well-format fractionation followed by testing the individual fractions for α-glucosidase inhibition, while compounds responsible for the antioxidant activity were identified using HPLC with an online antioxidant detection system.
    [Show full text]
  • Plant Collecting Expedition for Berry Crop Species Through Southeastern
    Plant Collecting Expedition for Berry Crop Species through Southeastern and Midwestern United States June and July 2007 Glassy Mountain, South Carolina Participants: Kim E. Hummer, Research Leader, Curator, USDA ARS NCGR 33447 Peoria Road, Corvallis, Oregon 97333-2521 phone 541.738.4201 [email protected] Chad E. Finn, Research Geneticist, USDA ARS HCRL, 3420 NW Orchard Ave., Corvallis, Oregon 97330 phone 541.738.4037 [email protected] Michael Dossett Graduate Student, Oregon State University, Department of Horticulture, Corvallis, OR 97330 phone 541.738.4038 [email protected] Plant Collecting Expedition for Berry Crops through the Southeastern and Midwestern United States, June and July 2007 Table of Contents Table of Contents.................................................................................................................... 2 Acknowledgements:................................................................................................................ 3 Executive Summary................................................................................................................ 4 Part I – Southeastern United States ...................................................................................... 5 Summary.............................................................................................................................. 5 Travelog May-June 2007.................................................................................................... 6 Conclusions for part 1 .....................................................................................................
    [Show full text]
  • Microsatellite Primers in Parietaria Judaica (Urticaceae)
    Microsatellite Primers in Parietaria judaica (Urticaceae) to Assess Genetic Diversity and Structure in Urban Landscapes Angèle Bossu, Valérie Bertaudière-Montès, Vincent Dubut, Stephanie Manel To cite this version: Angèle Bossu, Valérie Bertaudière-Montès, Vincent Dubut, Stephanie Manel. Microsatellite Primers in Parietaria judaica (Urticaceae) to Assess Genetic Diversity and Structure in Urban Landscapes. Applications in Plant Sciences, Wiley, 2014, 2 (9), pp.1400036. 10.3732/apps.1400036. hal-01769473 HAL Id: hal-01769473 https://hal-amu.archives-ouvertes.fr/hal-01769473 Submitted on 18 Apr 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial - ShareAlike| 4.0 International License ApApplicatitionsons Applications in Plant Sciences 2014 2 ( 9 ): 1400036 inin PlPlant ScienSciencesces P RIMER NOTE M ICROSATELLITE PRIMERS IN P ARIETARIA JUDAICA (URTICACEAE) TO ASSESS GENETIC DIVERSITY AND STRUCTURE 1 IN URBAN LANDSCAPES A NGÈLE B OSSU 2,5 , V ALÉRIE B ERTAUDIÈRE-MONTÈS 2 , V INCENT D UBUT 3 , AND S TÉPHANIE M ANEL 2,4 2 Aix Marseille Université, Institut de recherche pour le développement (IRD), Laboratoire Population Environnement Développement (LPED) UMR_D151, 13331 Marseille, France; 3 Aix Marseille Université, Centre national de la recherche scientifi que ( CNRS), IRD, Univ.
    [Show full text]
  • Rubus Arcticus Ssp. Acaulis Is Also Appreciated
    Rubus arcticus L. ssp. acaulis (Michaux) Focke (dwarf raspberry): A Technical Conservation Assessment Prepared for the USDA Forest Service, Rocky Mountain Region, Species Conservation Project October 18, 2006 Juanita A. R. Ladyman, Ph.D. JnJ Associates LLC 6760 S. Kit Carson Cir E. Centennial, CO 80122 Peer Review Administered by Society for Conservation Biology Ladyman, J.A.R. (2006, October 18). Rubus arcticus L. ssp. acaulis (Michaux) Focke (dwarf raspberry): a technical conservation assessment. [Online]. USDA Forest Service, Rocky Mountain Region. Available: http:// www.fs.fed.us/r2/projects/scp/assessments/rubusarcticussspacaulis.pdf [date of access]. ACKNOWLEDGMENTS The time spent and help given by all the people and institutions mentioned in the reference section are gratefully acknowledged. I would also like to thank the Wyoming Natural Diversity Database, in particular Bonnie Heidel, and the Colorado Natural Heritage Program, in particular David Anderson, for their generosity in making their records available. The data provided by Lynn Black of the DAO Herbarium and National Vascular Plant Identification Service in Ontario, Marta Donovan and Jenifer Penny of the British Columbia Conservation Data Center, Jane Bowles of University of Western Ontario Herbarium, Dr. Kadri Karp of the Aianduse Instituut in Tartu, Greg Karow of the Bighorn National Forest, Cathy Seibert of the University of Montana Herbarium, Dr. Anita Cholewa of the University of Minnesota Herbarium, Dr. Debra Trock of the Michigan State University Herbarium, John Rintoul of the Alberta Natural Heritage Information Centre, and Prof. Ron Hartman and Joy Handley of the Rocky Mountain Herbarium at Laramie, were all very valuable in producing this assessment.
    [Show full text]