<<

MINERALOGY AND MINERAL CHEMISTRY OF SOUTHEASTERN PIEDMONT

SOAPSTONES: IMPLICATIONS FOR SOURCING PREHISTORIC SOAPSTONE

ARTIFACTS

by

NICHOLAS CYRIL RADKO

(Under the direction of Samuel E. Swanson)

ABSTRACT

Soapstone is a soft, carvable metamorphic of ultramafic protolith that has been quarried for millennia by cultures around the globe to be fashioned into functional, decorative, and ritual objects. Archaeologists have long sought a methodology to reliably source soapstone artifacts to their geologic origin in order to better understand routes and mechanisms of exchange. This study uses traditional geologic methods to characterize prehistoric soapstone quarries in the Piedmont of the southeastern U.S. A combination of modal mineralogy and mineral chemistry data has been successful in uniquely characterizing three Late Archaic quarries—two from Soapstone Ridge, GA and one from the Hammett Grove Meta-igneous Suite,

SC. A total of 10 Late Archaic soapstone vessel sherds from the Ocmulgee, Oconee, and Satilla drainages in the Georgia Coastal Plain were also analyzed for comparison. Modal mineralogy, low-Ca and ilmenite compositions proved most useful in distinguishing samples.

INDEX WORDS: Soapstone, Steatite, Mineralogy, Microprobe, Late Archaic

MINERALOGY AND MINERAL CHEMISTRY OF SOUTHEASTERN PIEDMONT

SOAPSTONES: IMPLICATIONS FOR SOURCING PREHISTORIC SOAPSTONE

ARTIFACTS

by

NICHOLAS CYRIL RADKO

B.S., The University of Virginia, 2008

A Thesis Submitted to the Graduate Faculty of The University of Georgia in Partial Fulfillment

of the Requirements for the Degree

MASTER OF SCIENCE

ATHENS, GEORGIA

2011

© 2011

Nicholas Cyril Radko

All Rights Reserved

MINERALOGY AND MINERAL CHEMISTRY OF SOUTHEASTERN PIEDMONT

SOAPSTONES: IMPLICATIONS FOR SOURCING PREHISTORIC SOAPSTONE

ARTIFACTS

by

NICHOLAS CYRIL RADKO

Major Professor: Sam Swanson

Committee: Ervan Garrison Paul A. Schroeder

Electronic Version Approved:

Maureen Grasso Dean of the Graduate School The University of Georgia May 2011

ACKNOWLEGEMENTS

First and foremost, I would like to extend my most sincere thanks to Dr. Sam Swanson.

His constant efforts to guide me through my research and provide insightful and constructive feedback have, without a doubt, been the most reliable and important source of encouragement

(as well as assistance) throughout my thesis work. Dr. Swanson is the most dedicated teacher and advisor that I have encountered in my academic career, and his selfless commitment to his students, graduate and undergraduate, has never failed to amaze and inspire me.

Next I would like to acknowledge and thank my committee members, Dr. Ervan Garrison and Dr. Paul Schroeder. Their instruction in and outside the classroom has been invaluable to me during my time here at UGA, I am much obliged to them for all of their help and support.

I would be remiss to overlook the assistance and patience of Chris Fleisher, who’s guidance in the probe lab was irreplaceable. The independence I was afforded instilled much confidence.

Staying in the basement, I must thank all of my graduate student colleagues for making the academic and extracurricular pursuits comprising my life for the past two years most enjoyable. In particular, I’d like to acknowledge those students who matriculated in the Fall of

2009.

Finally, I want to thank the Department of Geology, not only for funding my project through the Miriam Watts-Wheeler Graduate Studies Student Fund, but also for providing so many wonderful opportunities and resources, not the least of which has been the chance to teach geology during my tenure as a student and beyond.

! "#!

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS ...... iv

LIST OF FIGURES...... vii

CHAPTER

1 INTRODUCTION...... 1

2 GEOLOGY...... 3

ORIGIN OF SOAPSTONE...... 3

SOAPSTONE IN THE SOUTHEAST...... 4

3 ARCHAEOLOGY...... 11

SOAPSTONE NOMENCLATURE...... 11

SOURCING STUDIES ...... 12

SOAPSTONE AND SOUTHEASTERN PREHISTORY ...... 14

HISTORY OF SOAPSTONE RESEARCH...... 16

STUDY QUARRIES...... 19

4 METHODS...... 30

SAMPLE SELECTION AND PREPARATION ...... 30

MODAL MINERALOGY...... 32

ELECTRON MICROPROBE ANALYSIS (EMPA)...... 32

X-RAY DIFFRACTION (XRD)...... 34

5 RESULTS...... 36

! "! MODAL MINERALOGY...... 36

MINERAL CHEMISTRY...... 40

X-RAY DIFFRACTION (XRD)...... 58

6 DISCUSSION...... 61

QUARRIES ...... 61

ARTIFACTS ...... 63

7 CONCLUSIONS ...... 67

REFERENCES CITED ...... 69

APPENDICES...... 74

A MINERALOGY AND X-RAY DIFFRACTION (XRD) ...... 75

A.1 MODAL MINERALOGY...... 76

A.2 MINERALOGY ...... 77

A.3 X-RAY DIFFRACTION (XRD) ...... 81

A.4 BULK CHEMISTRY ...... 89

B MINERAL CHEMISTRY ...... 90

B.1 - CHLORITE ...... 91

B.2 - CALCIC AMPHIBOLE ...... 116

B.3 - NON-CALCIC AMPHIBOLE ...... 152

B.4 - MAGNETITE...... 184

B.5 - ILMENITE ...... 224

B.6 - RUTILE...... 248

B.7 - ...... 256

! "#!

LIST OF FIGURES

Page

Figure 1: Soapstone deposits in the Southeast with study quarry locations...... 6

Figure 2: Location and general geology of SSR ...... 8

Figure 3: Location and general geology of HGMS ...... 9

Figure 4

a: Bowl blank at PA with the author for scale...... 20

b: Bowl scar at PA...... 20

c: Unfinished vessel at PA...... 21

Figure 5: Detail of PA (38Sp12) study area ...... 21

Figure 6: Regional watersheds and sample locations...... 23

Figure 7: SSR showing LO (9Da139) and CW (9Da248)...... 24

Figure 8: LO (9Da139) and CW (9Da248) quarries ...... 25

Figure 9: Provenience of LO samples ...... 27

Figure 10: CW quarry site (9Da248a) ...... 29

Figure 11

a: Ternary diagram of talc, chlorite, and amphibole modes ...... 37

b: Quarry sample modal ranges represented by ellipses...... 37

Figure 12

a: Ternary diagram of talc, chlorite, and opaque phase modes ...... 38

b: Quarry sample modal ranges represented by ellipses...... 38

! "##! Figure 13: Chlorite types after the classification of Zane and Weiss (1998) ...... 41

Figure 14: Chlorite species after the classification of Hey (1954)...... 42

Figure 15: Variation of chlorite compositions based on total Al, Mg, and Fe ...... 44

Figure 16: Cr content in chlorite ...... 45

Figure 17: Low-Ca amphibole after Leake et al. (1997) ...... 47

Figure 18: High-Ca amphibole species after Leake et al. (1997)...... 48

Figure 19: Acicular low-Al in PA1...... 49

Figure 20: Cr content in high-Ca ...... 50

Figure 21: Al content in high-Ca amphiboles ...... 52

Figure 22: Mn content in low-Ca amphiboles...... 53

Figure 23: Backscatter electron image showing ilmenite with magnetite...... 54

Figure 24: Fe+3 versus Cr in magnetite...... 55

Figure 25: Mg versus Mn in ilmenite ...... 57

! "###!

CHAPTER 1

INTRODUCTION

Soapstone is a low- to medium-grade of ultramafic protolith that contains an appreciable amount of the phyllosilicates talc and/or chlorite (moh’s hardness: 1 and

2-2.5, respectively) which lend its trademark softness and carvability. This defining characteristic, in addition to its high capacity for heat afforded by the presence of these hydrous phases, has made soapstone a popular material for manufacturing functional, decorative, and ritual objects around the globe, throughout history and into pre-history.

Considering the wide geographic distribution of archaeological soapstone, geological sources of soapstone are relatively rare. Where soapstone does occur, it typically forms belts or clusters of small bodies, pods, or lenses associated with orogenic mountain belts (Hess, 1955).

The nature of this distribution makes any attempt to match soapstone artifacts to their geologic sources based on geography alone difficult. The origin of archaeological materials has important implications for determining exchange patterns of past cultures, therefore analytical methodologies designed to attribute the source of an artifact can be invaluable to researchers

(Garrison, 2003).

The role of the geoarchaeologist is to understand how geologic processes modify materials and how the modifications influence archaeological features. In the case of soapstone and other stony archaeological materials this involves a knowledge of mineralogy and geochemistry in order to characterize sources of material. Ideally, these factors can be used to classify and distinguish between sources and allow artifacts to be traced to their geologic origin.

! "! Reliable methodologies to characterize and source archaeological soapstone to geological occurrences has been sought by archaeologists worldwide. Patterns of Rare Earth Element

(REE) distributions, obtained through Neutron Activation Analysis (NAA) and Inductively-

Coupled Plasma Mass Spectroscopy (ICP-MS), have been the most common means to geochemically characterize soapstone (Luckenbach, Holland, and Allen, 1975; Moffat and

Buttler, 1986; Truncer et al., 1998; Jones et al., 2007). These approaches are plagued with issues ranging from inherently low REE abundances in soapstone, to a complete failure to account for the uneven distribution of REE in modal mineral phases during sampling and subsequent analysis. As a result of these and other factors, REE-based methodologies, often supplemented with trace and transition element-based approaches, frequently fail to geochemically distinguish geological occurrences of soapstone and source artifacts.

This study takes a more traditional geologic approach to the problem using material from

Late Archaic soapstone quarries in the Piedmont of the southeastern U.S. By focusing on mineral assemblages and mineral compositions, with an emphasis and major and minor elements, this methodology avoids many of the problems facing REE, trace, and transition element-based techniques.

! "!

CHAPTER 2

GEOLOGY

ORIGIN OF SOAPSTONE

Soapstone is a metamorphic rock, typically of an alpine-type ultramafic protolith.

Alpine-type ultramafic rocks form irregular to elliptical bodies in orogenic belts (Hess, 1955), and at least some are thought to be ophiolites (Coleman, 1977). These rocks are distributed worldwide at active and former plate boundaries, and are a common (although minor) constituent of mountain chains.

Alpine-type ultramafics are usually altered to various degrees, producing a wide range of textures and mineralogies. Less altered ultramafic rocks contain relict olivine, orthopyroxenes, clinopyroxenes, Ca-plagioclase, and spinels from their protolith and retain granular textures.

More alteration, as in the case of soapstone, can produce Ca- and Mg-amphiboles, talc, chlorite, serpentines, and carbonate in schistose textures.

Alpine ultramafic rocks are particularly succeptible to low-temperature hydrous , owing to the instability and anhydrous nature of primary ultramafic minerals.

Igneous minerals are replaced by hydrous phases such as talc, chlorite, , tremolite, and serpentine. Due to the high-Mg nature of the protolith, this process can occur nearly isochemically with an increase in volume (Raymond, 2002):

olivine + silica in solution ! serpentine

3Mg2SiO4 + H4SiO4 + 2H2O ! 2Mg3Si2O5(OH)4

! "!

Constant-volume serpentinization, with ions being removed allochemically by the metamorphic fluid, can also occur (Raymond, 2002):

olivine + water ! serpentine + Mg ion + hydroxyl ion + silica in solution

2+ - 5Mg2SiO4 + 10H2O ! 2Mg3Si2O5(OH)4 + 4Mg + 8(OH ) + H4SiO4

Talc is commonly formed from the alteration of primary ultramafic minerals or serpentine in a process called steatization (Naldrett, 1966):

Serpentine + carbon dioxide ! talc + magnesite + water

2Mg3Si2O5(OH)4 + 3CO2 ! Mg3Si4O10(OH)2 + 3MgCO3 + 3H2O

The mobility of less abundant elements during these reactions, and in particular Rare

Earth Elements, is poorly understood. Their depletion in alpine ultramafic rocks (0.001 to 0.5 times the chondrite norm) makes analytical errors a primary source of variability in many samples. Whether or not REE signatures are retained from protolith to /steatite is largely unknown (Frey, 1984).

SOAPSTONE IN THE SOUTHEAST

Two parallel chains of alpine-type ultramafic bodies occur in the southeastern U.S. as part of the Appalachian orogenic belt (Hess, 1955) (Fig. 1). The westernmost is in the Blue

Ridge province, and is a more defined, though discontinuous chain that stretches from Alabama to Newfoundland. The eastern chain is comprised of a number of bodies scattered throughout

! "! the Piedmont province (Misra and Keller, 1978). The geologic distribution of soapstone in the

Southeast is confined to these occurrences of ultramafic rocks.

Due to the economic importance of soapstone and associated rock types in the early 20th century, possible sources were documented by geologists in Georgia (Hopkins, 1914) and South

Carolina (Sloane, 1908). Both authors describe a wide range of bodies with talc- and/or chlorite- rich zones termed “soapstone” that fall in the two belts defined above. For the state of Georgia,

Hopkins (1914) identifies and describes occurrences of talc-rich soapstone in Towns, Union,

Harris, Stephens, Lumpkin, Cherokee, Gwinnett, DeKalb, Paulding, Douglas, Carroll, Heard,

Meriwether, Elbert, and Columbia Counties. Sloane (1908) documents a similarly wide distribution of metaultramafic rocks in South Carolina. He recognizes soapstone in Oconee,

Pickens, Abbeville, Edgefield, Laurens, Spartanburg, Union, Cherokee, Lexington, Chester, and

York Counties.

Additional reviews of Southeastern ultramafic bodies have been compiled by Misra and

Keller (1978), Vincent et al. (1990), and Butler (1989). These reviews largely overlap with the work done in the early 20th century, though they provide more insight into mineralogy, tectonic setting, and significance of the bodies. More recent studies (e.g. Warner et al., 1989; Mittwede,

1989; Swanson, 2001) provide details on mineralogy of select ultramafic bodies, including some soapstone. In all, only a portion of these occurrences are reported to have soapstone, although the existence of numerous undocumented minor bodies throughout the Piedmont and Blue Ridge is suggested.

Soapstone Ridge, GA

Soapstone Ridge (SSR) is the largest mapped mafic-ultramafic body in the Southeast, located in the Georgia Piedmont immediately south of Atlanta (Fig. 2). Numerous aboriginal

! "!

Figure 1. Soapstone deposits in the Southeast with study quarry locations (modified from Elliot, 1986). Sites studied include 9Da238 and 9Da139 at Soapstone Ridge and the Pacolet Quarry, 38Sp12.

! "! soapstone quarries are found within the body, including the Live Oak and Charlotte Woods quarries (LO and CW). The body comprises its own (Soapstone Ridge) thrust sheet that is stratigraphically the highest in the Georgiabama thrust stack, located immediately above the

Ropes Creek thrust sheet (Higgins et al., 1988). Two principal rock types are recognized—a hornblende diorite and a metapyroxenite. These are cut by felsic dikes and quartz veins. The metapyroxenite is most typically a chlorite-anthophyllite-actinolite-talc with foliations parallel to relict pyroxene. Locally this metapyroxenite is more talc-rich, and can be called soapstone (Pickering and Scneeberger, 1972).

A more detailed mineralogical investigation of ultramafic rocks at SSR was conducted by the U.S. Bureau of Mines. Blake (1982) reports on a number different talc-chlorite rocks with variable amounts of /anthophyllite and Fe oxides, although the emphasis of the study is on the presence or absence of asbestiform minerals.

A former graduate student in geology at the University of Georgia, Aleta Turner, started a thesis project with Dr. Swanson as her advisor, working on Soapstone Ridge. She and Dr.

Swanson secured samples from Soapstone Ridge, made polished thin sections, and did some bulk rock analyses. Preliminary microprobe studies were done on some of the samples. An abstract reported preliminary results from these studies (Turner et al., 1998). Bulk chemical analyses of soapstone reported by Turner are shown in Appendix A.4. The suite of samples is relatively homogenous chemically, with the exception of CW16, which has more Si, Al, and Ca than the other samples.

Hammett Grove, SC

The Hammett Grove Meta-igneous Suite (HGMS) is a mafic-ultramafic complex located in the South Carolina Piedmont south of Spartanburg (Fig. 3). A number of

! "!

Figure 2. Location and general geology of SSR (modified from Blake, 1982).

! "!

Figure 3. Location and general geology of the HGMS (modified from Ferguson, 1980).

! "! prehistoric soapstone quarries are located within the HGMS, including the Pacolet River quarry

(PA). The suite is directly west of the Kings Mountain belt on the eastern margin of the Inner

Piedmont, and stretches approximately 11km along strike with widths ranging from 0.2 to 1.0 km. The basal contact with Inner Piedmont gneisses is defined by a low angle fault and an associated mylonitic zone, suggesting tectonic emplacement (Mittwede et al., 1987).

The complex has been studied by Mittwede (1987, 1988, 1989), who identifies soapstone and serpentinite, metapyroxenite, metagabbro, and metabasalt as the principal rock types.

Mittwede (1989) suggests an ophiolitic origin for the HGMS.

Bulk chemical data reported by Mittwede et al. (1987) is shown in Appendix A.4. The

“altered ultramafites” analyzed include impure soapstone (161), chloritic serpentinite (176A), and talc schist (183). These rocks are quite variable chemically, especially with respect to Si, Fe, and Al. High Mg and low Al content suggest an olivine-rich protolith.

! "#!

CHAPTER 3

ARCHAEOLOGY

SOAPSTONE NOMENCLATURE

Due to its widely distributed use, both spatially and temporally, soapstone has gained many region- and culture-specific names and definitions. “Steatite” is variably used as a blanket term synonymous with soapstone (Garrison, 2003), but also as a specific rock type composed fine, micro- to crypto-crystalline talc (Hopkins, 1914). The term “potstone” is generally used in the Old World in reference to its use as a vessel material by Stone Age cultures (Garrison, 2003).

Potstone and “soft-stone” have been used to describe the material fashioned into decorated bowls found from the Indus Valley to Mesopotamia (Kohl et. al, 1979). More recently, “steatite” has been applied by R.E. Jones et al. (2007) to name a spectrum of soft stones used by Neolithic and

Viking cultures in the Shetland Islands, and by the Minoan culture on Crete. Ige and Swanson

(2008) use both steatite and soapstone in reference to the Nigerian soft stone of their study.

Similarly, contemporary American archaeologists prefer the terms steatite and soapstone, which are used interchangeably in reference to the soft stone vessels found commonly in late Archaic and early Woodland contexts (6000B.P. to 2000B.P) in the eastern U.S. (Sassaman, 2006;

Truncer, 2006). Finally, “pipestone” has been used to name like material carved into tobacco pipes by American Indians (Garrison, 2003).

Soapstone can, and often does, contain variable amounts of accessory minerals including amphiboles, olivine, pyroxene, serpentine, Fe/Ti/Cr oxides, carbonates, quartz, and sulfides. The presence or absence of these minerals typically does not influence archaeological nomenclature,

! ""! rather, the somewhat subjective, qualitative attribute of softness is the defining characteristic.

Likewise, geologists have no formal definition for these talc-rich rocks, variably referring to them as soapstone or steatite, or as talc schist with some descriptive modifier indicating accessory phases (e.g. amphibole talc schist). All of these soft stones, including the talc-chlorite- amphibole rocks that are the focus of this study, will be simply referred to as soapstone hereafter.

SOURCING STUDIES

An analytical method to determine the source of soapstone artifacts was first proposed, developed, and tested by Allen, Luckenbach, and Holland (1975) at the University of Virginia.

They followed the methods of contemporary researchers sourcing other archaeological materials, such as obsidian and flint, using trace and Rare Earth Element (REE) patterns to provide a geochemical fingerprint. Elemental abundances were determined for quarry and artifact samples though instrumental neutron activation analysis (INAA), and then compared based on the relative abundances observed. The initial findings were considered promising, and R.O. Allen continued the work with other collaborators (Allen and Pennell, 1978; Allen et al., 1984). Soon, however, it became apparent that the REE abundances in soapstone were relatively low (Frey,

1984), and approached or fell below the minimum detection limits of the INAA methods (Allen et al., 1984).

Moffat and Butler’s (1986) study of REE distribution patterns in Shetland soapstone further brought into question the validity of this method. They observed REE distribution patterns to be inconsistent within individual quarries and localities. In addition, the observation that modal mineralogy and bulk geochemistry in soapstone can be extremely heterogeneous down to the outcrop scale was reaffirmed. Among their conclusions was that REE are unevenly distributed in soapstone’s constituent minerals, and that sources with similar igneous protoliths

! "#! may have similar REE patterns. The implication was that bulk samples must be very large and well-homogenized prior to INAA, and that the resulting signatures may not be unique anyway.

After a hiatus in soapstone sourcing studies, Truncer et al. (1998) re-tested the INAA method in their work with mid-Atlantic soapstone in the eastern U.S. They used unhomogenized samples, but significantly expanded the list of elements analyzed from simply REE and some trace elements to include many minor elements, including transition metals. These not only had higher abundances in soapstone than REE, but, they concluded, transition metals could potentially serve to fingerprint sources. Unfortunately, only 6 of 133 artifacts could be assigned a provenance with any confidence. All of these were collected from Virginia archaeological sites with attributions to local Virginia quarries.

Jones et al. (2007) took a more comprehensive approach to the problem in their study of

Shetland and Cretian soapstones. The basis of the study was using REE and transition metal chemistry derived from INAA as well as ICP-MS, which provided much greater resolution, lowering the detection limits which troubled Allen et al. (1984). Mineralogical analysis through

X-ray diffraction (XRD) was conducted following Kohl et al. (1979), who first used the technique as a useful supplementary method to characterize soapstones. Strontium isotope

(87Sr/86Sr) data were also collected and used to identify the tectonic setting of the protolith as outlined by Bray (1994). Overall, these complementary sets of data served to distinguish between various Shetland sources, but not those in Crete. Most importantly, the combination of

INAA and ICP-MS provided secure determinations of all REE species concentrations, giving conclusions based on REE patterns validity.

A more traditional geologic approach was taken by Ige and Swanson (2008). Their study of Nigerian soapstones utilized mineral assemblages, textures, and mineral chemistry attained

! "#! through electron microprobe analysis (EMPA) to help distinguish between source locations that were previously indistinguishable based on bulk chemistry. Their effort was largely successful.

More importantly, it was recognized that mineral compositions, in contrast to bulk compostions, are relatively homogenous at the outcrop level.

SOAPSTONE AND SOUTHEASTERN PREHISTORY

Humans have inhabited the southeastern U.S. for at least the last 12,000 years (Anderson and Sassaman, 1996). The material record left behind evidences a series of prehistoric cultural transitions in technology, subsistence, and social organization that have been divided into four main cultural periods.

The Paleoindian Period (~12,000-10,000B.P.) is defined by cultural traits adapted to the conditions of the terminal Wisconsin glaciation in North America. The significantly different climate and ecology of the Southeast fostered highly mobile groups of hunter-gathers that exploited wild plants and game, including now-extinct Pliestocene megafaunal species

(Anderson and Sassaman, 1996). The limited artifact evidence from this period suggests that paleoindians selected high-grade lithic material for chipped stone tools, but did not utilize soapstone in any form (Caldwell, 1958).

The transition to the Archaic Period (10,000-3000B.P.) in the Southeast is marked by a change in subsistence strategy as reflected by changes in the artifact inventory. Although the climate was not yet like today’s, modern plants and animals were the basis of subsistence.

Populations increased from the earlier period, and regional specialization started to occur

(DePratter, 1975). The Archaic is divided into three subdivisions—Early (10,000-7,000B.P),

Middle (7,000-5000B.P.), and Late (3,000-1,000B.P.).

! "#! During the Middle Archaic the manufacture of ground stone items becomes more common than previously. It is during this time that archaeologists see the first evidence of soapstone use in the form of atlatl weights (DePratter, 1975).

In the Late Archaic the use of ground stone artifacts, and in particular soapstone, shows a marked increase throughout the period. The manufacture of perforated soapstone slabs, and, later, soapstone vessels begin in this period alongside early technology. The most intensive period of soapstone use in the Southeast occurs during the terminal Late Archaic

(DePratter, 1975; Sassaman, 1993).

The Woodland Period (3,000-1,100B.P.) is defined by the presence of , agriculture and sedentism, and the beginnings of mound construction (Caldwell, 1958). Some of these features are first observed during the terminal Late Archaic, however, they become widespread in the Woodland Period. Ritualism begins to clearly manifest itself in material culture, and soapstone is primarily used for ornaments and effigy pipes (Caldwell, 1958).

The culmination of these Woodland trends is witnessed in the Mississippian Period

(1,100B.P to European contact). Settled village life reliant on maize agriculture, pyramidal earthwork building, and ceremonialism, all with a distinctive Mesoamerican influence, define the period. The use of soapstone for pipes and ornaments is continued into this period (Caldwell,

1958).

Soapstone use has persisted into historic and modern times as well. Its use by indigenous peoples as a material for tobacco pipes was continued by the Cherokee into the 18th century. In the 19th and 20th centuries into modern times, soapstone has been used locally in tombstones, fireplaces, chimneys, door steps, foundations, wells, and furnace linings. Quality, often non- local sources have been used for laboratory tabletops and acid tanks, switchboards, flooring, and

! "#! panels in electrical stations, laundry tubs, griddles, stove linings, foot warmers, fireless cookers, and many other products (Hopkins, 1914). Currently, “artistic” soapstone and “architectural” soapstone may be purchased through online retailers for use in carving, countertops, and sinks

(Vermont Soapstone).

HISTORY OF SOAPSTONE RESEARCH

Academic interest in the prehistoric use of soapstone is first documented in the late 19th century. The increased industrial use of soapstone, outlined above, combined with the convenient proximity of some prehistoric quarries to major cities, such as Washington D.C., may have influenced this along with an increasing interest in North American prehistory. The eminent archaeologist William Henry Holmes made perhaps the most significant contributions to the early work on soapstone. His “Stone Implements of the Potomac-Chesapeake Tidewater

Province” (1897) summarized the collected work of the previous quarter century and examined in depth the quarrying of soapstone and the manufacture of soapstone vessels. Holmes noted the quality and specialization of the ground and chipped stone implements used in theses procedures, and observed the co-incidence of soapstone vessels with ceramics, as well as similarities in their context and form. He rather astutely concluded that the prehistoric soapstone industry was relatively “recent” at a time when the timeline of North American prehistory was hotly debated.

He also noted that quarrying and manufacturing technology was remarkably consistent from the

East to western examples from California. Eastern vessels, however, differed in form and lacked the decoration of their Californian counterparts. Although a few general forms for eastern vessels were recognized, the lack of stylistic and decorative attributes made chronologies through seriation impossible.

! "#! Perhaps due to the fact that seriation and chronological refinement wasn’t possible, published work on soapstone vessels significantly declined in the first half of the 20th century. It was not until the advent of radiocarbon dating in the 1950’s and 1960’s when the temporal context of soapstone vessels could be established. As dates came in it was recognized that soapstone vessels represented an archaeological horizon in the East—a short-lived, but widespread tradition that predated ceramics. Still, soapstone and other products of the terminal

Late Archaic were primarily used as a marker of a “transitional period” between earlier Archaic and Woodland cultures, and few efforts were yet made to understand their function and significance.

From the time of the earliest work through the mid-20th century it was assumed that soapstone bowls were used as functional cooking vessels due to their form and the presence of soot. This view has continued to predominate academic thought to the present. Starting in the

1960’s, an emphasis on the environmental and social context of functionality grew.

Environmental factors, like changes in ecology and the formation of estuaries, were proposed to have driven settlement and subsistence patterns, which, in turn, opened the door to new forms of social interaction, social status, and exchange during the Late Archaic. Soapstone vessel procurement and technology was then incorporated into this general model.

Terry Ferguson’s (1980) University of Tennessee Master’s research focused on soapstone procurement at the Pacolet Quarry near Spartanburg, SC. Although he focuses on outlining a reduction sequence model for quarrying, Ferguson speculates that soapstone vessel technology may be a response to the early appearance of domesticated plants in the Southeast. Custer

(1984) proposed that soapstone was exchanged in an effort to minimize group conflict in the new social landscape, and that the vessels were some unspecified adaptation to riverine environments

! "#! that also served as exchange corridors. Others placed more emphasis on changes in the ecological landscape. Funk and Rippeteau (1977) noted a decline in mast-producing tree species and reduced populations that corresponded with the appearance of soapstone vessels along the

Susquehanna River. Soapstone bowls, they claimed, were some adaptation to a reduced carrying capacity.

These lines of thought were, in part, based on the established chronology that placed soapstone vessels as a precursor to ceramic technology. While vessels of both materials have largely interchangeable functions, the cost of quarrying, manufacturing, and transporting heavy soapstone vessels greatly outweighs that of producing ceramic vessels from local clay sources.

As more radiometric dates were collected into the 1980’s and 1990’s, many examples of ceramics predating or coexisting with soapstone vessels were discovered, especially in the

Southeast (Sassaman, 2006). The earliest examples of ceramics in North America, in fact, are fiber-tempered Stallings Island wares form Georgia (Sassaman, 1993). If the vessel technologies were indeed contemporaneous, and groups chose to use soapstone, then simple cost-benefit dictates that soapstone bowls must have served some function beyond being practical in food preparation.

Using this updated chronology, and considering all of its implications, Sassaman (1993,

1997, 1999, 2006) has suggested that soapstone vessels played a key role beyond their use in cooking. He cites the distance over which soapstone must have traveled from source to site, as well as vessels found in caches and mortuary contexts, to say that soapstone had political and economic value. Soapstone vessels, Sassaman claims, were essential in group formation and alliance during the terminal Late Archaic. On the same basis, Klein (1997) views soapstone artifacts as valuable prestige goods with ritual uses.

! "#! The updated chronology is debated and resisted by Truncer (2006), who supports a modified and specialized version of past riverine-based theories. Truncer observed a coincidence in the spatial distribution of soapstone vessels, mast forests, and rivers. He hypothesizes that soapstone vessels were cooking utensils specialized to process nuts as part of a greater adaptation to the riverine environment, additionally citing evidence from food residues and microbotanicals. Hart et al. (2008) have tested Truncer’s hypothesis with their own microbotanical data and a reexamination of Truncer’s. They conclude that the microbotanical evidence does not support the mast processing theory.

The contrasting views of Sassaman and Truncer represent the current state of archaeological research on soapstone vessels in the eastern U.S. While dates and the temporal relationship of soapstone and ceramic vessels have been the focus of much petty bickering, other questions remain equally important. Most pertinent to this study are the questions concerning exchange and the distance that soapstone travels from source to site. The ability to reliably identify the source of soapstone artifacts would undoubtedly have great bearing on this debate, and potentially provide the data needed to advance it beyond its current stalemate.

STUDY QUARRIES

A soapstone quarry is simply a surface exposure of soapstone, typically a boulder or outcrop, that shows evidence of quarrying activities. Bowl scars (Fig. 4a), bowl blanks (Fig. 4b), unfinished vessels (Fig. 4c), worked soapstone debris, and quarrying tools are diagnostic of prehistoric quarries. The quarries selected for study are observed and documented to exhibit all of these features.

! "#! Pacolet River

The Pacolet River Soapstone Quarry (38Sp13, 38Sp12) is first identified in the literature by

Overton (1969), who found it to be the largest and most intact (38Sp12) of four quarries he identifies along a NE-SW line of HGMS soapstone outcrops in Spartanburg and Cherokee

Counties, SC (Figs. 1, 3, & 5). Overton suggests that 38Sp12 and 38Sp13 may be one site considering their proximity, and subsequent reviews by Lowman and Wheatley (1970) and Peck

(1981) seem to lump these two together as 38Sp13, the Pacolet River Site or Pacolet River

Figure 4a. Bowl blank at PA with the author for scale (photo by Sam Swanson).

Figure 4b. Bowl scar at PA (photo by Sam Swanson).

! "#!

Figure 4c. Unfinished vessel at PA (photo by Sam Swanson).

Figure 5. Detail of PA (38Sp12) study area (modified from Ferguson, 1980).

Soapstone Quarry. Pacolet samples for this study (PA#) were collected by the author and Dr.

Sam Swanson from quarried outcrops and related soapstone debris at 38Sp12.

! "#! The most extensive archaeological investigation of HGMS soapstone quarries was carried out by Terry A. Ferguson (1980) for his Master’s thesis at the University of Tennessee. His survey of the NE-SW trending outcrops and their adjacent areas revealed 8 new quarry sites in addition to 10 that had been previously identified, including the Pacolet River Soapstone Quarry.

17 non-quarry artifact scatters were also discovered in the area. Finally, Ferguson conducted a controlled surface collection and excavated two test pits at 38Sp54, approximately 3km SW of

38Sp13.

Ferguson’s data combined with that collected by amateurs and reported by Peck suggest a few general conclusions about the Pacolet River quarry. First is the heterogeneity of the soapstone, even at the outcrop level. Differences in degree of alteration, foliation, color, texture, and mineralogy are noted by both authors (Ferguson 1980; Peck 1981). Vessels of all stages of production are present, and flat-bottomed and hemispherical forms dominate those sampled.

Associated quarrying artifacts are manufactured from local sources of quartzite, quartz, diabase, and granitic rocks (Ferguson 1980; Peck 1981). At 38Sp13 these quarry artifacts are typically modified cobbles from the adjacent Pacolet River. Numerous stone points collected by an amateur date from Early Archaic to Middle Woodland, however the vast majority are from the

Late Archaic to Early Woodland (Peck 1981). No radiocarbon dates have been obtained, however, the suggested age of Late Archaic to Early Woodland seems likely.

All of the quarries are located within the Broad River drainage basin, which eventually joins the Santee River and reaches the South Carolina coast (Fig. 6). A bottleneck in the Santee drainage provides short overland access to the Pee Dee and Edisto drainage basins as well, making the majority of the South Carolina Coastal Plain a reasonable destination for Pacolet vessels. Although exotic materials are not reported, it is still assumed that soapstone from the

! ""! Spartanburg/Cherokee quarries was exchanged, perhaps up to 175 miles away (Lowman and

Wheatley 1970; Peck 1981).

Live Oak

The Live Oak Quarry (9Da139) was initially reported by Dickens et al. (1979), and later surveyed and excavated by Garrow and Associates in 1986 as part of a recovery project contracted by Waste Management of North America, Inc. (Elliot, 1986). It is located on

Soapstone Ridge southeast of Atlanta, GA in DeKalb County near its triple junction with Fulton

Figure 6. Regional watersheds and sample locations.

! "#!

Figure 7. SSR showing LO (9Da139) and CW (9Da248) (modified from Elliot, 1986).

and Clayton Counties (Figs. 1, 7, & 8). A total of 350 undeveloped acres surrounding

9Da139 were surveyed, and 13 sites and 3 isolate finds were identified. The focus was on the

Live Oak Quarry itself, which was sub-divided into a soapstone bowl quarry site (Area A) and a workshop/habitation site (Area B) (Fig. 8). Excavations totaled 55.25 m2, with 11.25 m2 in area

A and 44 m2 in Area B. In addition, approximately 10,000 m2 of Area A surrounding the main quarry were raked free of leaves and debris, and a controlled surface collection was conducted and recorded in detail. Live Oak Quarry samples for this study (LO#) were taken from this Area

A surface collection and consist of bowl performs and bowl fragments (Fig. 9).

! "#!

Figure 8. LO (9Da139) and CW (9Da248) quarries (modified from Elliot, 1986).

! "#! Garrow and Associates concluded that Area A and Area B are contemporaneous and interrelated, probably dating to the Terminal Late Archaic/Early Woodland period (3,500 to

2,600 B.P.) (Elliot, 1986), although no radiocarbon dates were established. A number of vessel forms in various stages of manufacture are represented at the Live Oak Quarry. These are dominated by two distinct forms. Flat-bottomed bowls are the most common, and are generally smaller and lighter than the less-abundant hemispherical vessels. Despite a lack of radiocarbon evidence, it is speculated that flat-bottomed vessels postdate hemispherical ones based on stylistic similarities to well-dated ceramic vessel forms. Both forms overlap in their spatial distributions at the quarry with no apparent patterning.

The site falls within the headwaters of the Ocmulgee drainage basin, and also within 15 km of the Chattahoochee and Flint drainage basins, making water transport of vessels possible to both the Atlantic and Gulf coastal plains of Georgia with relative ease (Fig. 6). The majority of quarrying and other stone tools recovered are manufactured from local quartz, diabase, and metapyroxenite, however, exotic cherts from Valley and Ridge as well as Coastal Plain sources are also present. These tools of foreign materials exhibit significant use-wear, and are exhausted and fragmentary, indicating a high value. Although the possibility exists that these materials were discarded by highly mobile groups, it is speculated that the cherts were part of a reciprocal exchange for local soapstone (Elliot, 1986).

Charlotte Woods

The Charlotte Woods Quarry (9Da248) was first discovered by Garrow and Associates during their 1986 survey of the area surrounding the Live Oak Quarry (Elliot, 1986). It is located on Soapstone Ridge southeast of Atlanta, GA in DeKalb County near its triple junction with Fulton and Clayton Counties—approximately 800m north of the Live Oak Quarry (Figs. 1

! "#!

Figure 9. Provenience of LO samples (modified form Elliot, 1986).

! "#! 6, & 8). The site was recognized as archaeologically important, and subsequently revisited by

Bloom, who conducted testing and delineated the site boundaries (Bloom et al. 1989). Garrow and Associates were then contracted by Waste Management of North America, Inc. to conduct archaeological data recovery at the site during the winter of 1989-1990. The site was sub- divided into a soapstone bowl quarry site (9Da248a) and a habitation site (9Da248b) that had been previously recognized by Bloom. Excavations totaled 100 m2, with 56 m2 in the quarry and

44 m2 in the habitation site. In addition, 1320 m2 of 9Da248b was subjected to a controlled surface collection and recorded in detail. Charlotte Woods samples for this study (CW#) were taken from isolated finds and test units within the quarry site (Fig. 10).

Garrow and Associates concluded that the two sites are not contemporaneous and are unrelated. The soapstone bowl quarry, like that at Live Oak, was assigned to the Terminal Late

Archaic/Early woodland period (3,500 to 2,600 B.P.), however, the habitation site was found to be of Middle Archaic (7,000 to 5,000 B.P.) age with a possible Early Archaic (10,000 to 7,000

B.P.) component. Radiocarbon ages were not established, and these dates are based on diagnostic stone tool assemblages. No evidence of soapstone quarrying was recovered at the habitation site, suggesting its location adjacent to the outcrop was coincidental. At the quarry site, a number of vessel forms in various stages of manufacture were recovered. Like Live Oak, the assemblage is dominated by flat-bottomed bowls and hemispherical vessels, but, unlike at Live Oak, the hemispherical form is most common. Again it is speculated that hemispherical vessels are older than flat-bottomed ones, and no spatial patterning exists in their distributions across the site

(Bloom, 1991).

The site falls within the headwaters of the Ocmulgee drainage basin, and also within 15 km of the Chattahoochee and Flint drainage basins, making water transport of vessels possible to

! "#!

Figure 10. CW quarry site (9Da248a) (modified from Bloom, 1991).

both the Atlantic and Gulf coastal plains of Georgia with relative ease (Fig. 6). The majority of quarrying and other stone tools recovered are manufactured from local quartz, diabase, and metapyroxenite, however, a few exotic cherts from Valley and Ridge sources was also present.

It is not speculated as to whether or not these foreign materials may have been involved in a reciprocal exchange, although the authors do suggest that the material at Charlotte Woods was traded similarly to that at Live Oak (Bloom, 1991).

! "#!

CHAPTER 4

METHODS

SAMPLE SELECTION AND PREPARATION

Pacolet River

Pacolet River Soapstone Quarry samples (PA#) were collected by the author from quarried outcrops and related soapstone debris at 38Sp12 in the vicinity of Spartanburg, SC

(Figs. 1, 3, & 5). A total of 7 samples, arbitrarily numbered PA1-PA7, were selected in an effort to obtain a representative suite based on field observations of lithologic variability. One polished thin section of each sample was prepared by Vancouver Petrographics to be used for optical microscopy and EMPA.

After the preliminary optical microscopy was conducted, the thin section for PA6 was broken and excluded from further analyses. Observations to that point, however, indicated that

PA6 and PA1 were modally and texturally similar.

The initial thin section of PA2 was used to collect compositional data, but it proved too thin to provide accurate modal data through point counting. A second polished thin section was prepared by the same company, and using the original blank, in order to obtain modal data for the sample.

Live Oak

Live Oak Soapstone Quarry samples (LO#) were selected from a collection of soapstone artifacts recovered by Garrow and Associates at 9Da139A near Atlanta, GA (Figs. 1, 7, & 8).

The bowl performs and fragments were removed as part of a controlled surface collection, and

! "#! accurate proveniences were recorded. Samples for this study were selected based on their spatial distribution in an effort to sample evenly across the entire survey area (Fig. 9). A total of 7 samples were selected for study. Sample numbers (LO#) match the accession numbers (103.#) assigned by Garrow and Associates (ex. Garrow # 103.67 = LO67). One polished thin section of each sample was prepared by Vancouver Petrographics to be used for optical microscopy and

EMPA.

Charlotte Woods

Charlotte Woods Soapstone Quarry samples (CW#) were selected from previously prepared polished thin sections courtesy of Dr. Sam Swanson. These were prepared by

Vancouver Petrogrpahic from artifacts recovered by Garrow and Associates at 9Da248a near

Atlanta, GA (Figs. 1, 7, & 8), arbitrarily numbered CW1-CW19. Of these, 7 of the most representative samples were selected for study.

Although the Garrow and Associates accession numbers are known and provenience data was recorded, the two are not linked anywhere in the literature. It can be confidently extrapolated based on the accession number, however, that sample CW17 was recovered in the

“Central Quarry Area” from Garrow and Associates test unit 4 (TU4) (Fig. 10). Additionally,

CW6, CW13, CW15, and CW16 have “IF” accession numbers, suggesting that these samples were isolated finds within the quarry area (Fig. 10). Samples CW1 and CW3 were recovered at

9Da248a, but their exact locations are unknown.

Artifacts

Artifact samples were selected from a collection held at South Georgia College courtesy of Dr. Frankie Snow. A total of 10 soapstone vessel sherds from 8 different archaeological sites located on the Georgia Coastal Plain were chosen. Samples A1 (Alligator Creek), A2 (9Tu12),

! "#! and A3 (Moses Lake) were recovered from the Oconee River basin, samples A4 (9Tf4), A5

(9Bh8), and A6-A8 (9Tf5, “Squeaking Tree”) from the Ocmulgee River basin, and samples A9

(9At31) and A10 (9Cf191) from the Satilla River basin (Fig. 6). One polished thin section of each sample was prepared by Vancouver Petrographics to be used for optical microscopy and

EMPA.

MODAL MINERALOGY

Modal data were collected through point counts on thin sections. A mechanical stage set at a 1.0 mm spacing on a Leica DM EP petrographic microscope was used to position the slide, and 300 points were counted on a single thin section for each sample. Talc, chlorite, amphibole, serpentine, oxide and sulfide phases were counted. No other minerals were observed through optical microscopy. Modal percentages are reported in Appendix A.1. Amphiboles are reported as total amphibole, as no effort was made to distinguish between species during point counting.

Similarly, oxide and sulfide phases are all counted together as opaque minerals.

ELECTRON MICROPROBE ANALYSIS (EMPA)

Mineral compositions for talc, chlorite, amphibole, and oxide phases were collected with an electron microprobe operating in a wavelength mode. Analyses were conducted at the

University of Georgia’s Department of Geology using a JEOL JXA-8600 Superprobe running

Geller Microanalytical Laboratory’s dQANT32 stage and spectrometer automation. Analyses were performed with an accelerating voltage of 15KV, 15nA beam current, approximately 1 µm beam diameter, and 10 second counting times. Natural and synthetic mineral standards were used, and analyses were calculated using Armstrong’s (1988) phi-rho-z matrix correction.

Analyses with totals below expected values were discarded, as were those that had obviously sampled multiple mineral grains.

! "#! Results are reported in Appendix B as oxide weight percentages. Representative minimum detection limits (MDL) are listed for each element analyzed. Weight percentage values below the MDL are identified with a strikethrough (ex. 1.234). Formula recalculations and oxygen totals were made on a species-specific basis as described below, and are reported in

Appendix B. Total Fe is reported as FeO unless otherwise noted.

Talc

Talc compositional data were collected for all quarry and artifact samples. All samples were analyzed for Si, Mg, and Fe. All PA, LO, and artifact samples were additionally analyzed for Ni. Two samples, CW3 and CW15, were analyzed for a broad spectrum of elements (Si, Ti,

Al, Mg, Fe, Ca, Mn, K, Na, Ba). Chemical formulas were calculated by stoichiometry using 22 oxygens and are reported along with oxide weight percentages in Appendix B.7.

Chlorite

Chlorite compositions were determined for all quarry and artifact samples. All samples were analyzed for Si, Al, Mg, Fe, Cr, and Ni. Two samples, CW3 and CW15, were analyzed for a broad spectrum of elements (Si, Ti, Al, Mg, Fe, Ca, Mn, K, Na, Ba). Chemical formulas were calculated by stoichiometry based on 28 oxygens and are reported along with oxide weight percentages in Appendix B.1. Chlorite nomenclature follows the classification systems of Hey

(1954) and Zane and Weiss (1998).

Amphibole

Compositions of amphiboles were collected for all quarry and artifact samples containing amphibole. All samples were analyzed for Si, Al, Mg, Fe, Ca, Mn, and Cr. Three samples,

CW3, CW13, and CW17, were additionally analyzed for Ti, K, and Na. Chemical formulas were initially calculated by stoichiometry based on 23 oxygens, then the resulting formulas were

! ""! recalculated to estimate Fe+2 and Fe+3 following the methodology outlined by Leake et al.

(1997). These finalized formulas are reported along with oxide weight percentages in

Appendices B.2 and B.3. Amphibole nomenclature follows the classification system of Leake et al. (1997).

Oxides

Oxide compositional data were collected for all quarry and artifact samples. All samples were analyzed for Si, Ti, Al, Mg, Fe, Ca, Mn, Cr, Ni, and Zn. Chemical formulas were initially calculated by stoichiometry based on 3 or 4 oxygens for spinel group minerals and ilmenite, respectively. The resulting formulas were recalculated to estimate Fe+2 and Fe+3 following the methodology outlined by Droop (1987). These finalized formulas are reported along with oxide weight percentages in Appendices B.4, B.5, and B.6.

X-RAY DIFFRACTION (XRD)

X-ray diffraction was carried out on 9 samples—CW1, CW6, CW16, PA2, PA3, PA7,

LO123, LO195, and LO272—3 mineralogically representative samples from each quarry. Chips remaining from the preparation of thin sections were ground by hand to <63µm, then further reduced in size to <10µm using a McCrone mill. A ZnO standard was mixed in with the resulting powders for CW samples only, and all powders were prepared as pressed powder mounts for analysis. Measurements were performed with a Bruker D8 Advance diffractometer using Co K! radiation (" = 1.7902) at 1.8kW. Data were collected from 5 to 70°2# at a scan speed of 5°2#/min. Data were referenced to the standard ZnO peaks when available to correct for sample displacement and d-spacings were assigned using the EVA 1.0 software. Peaks were then matched using an ICDD search manual to identify the mineral phases present. Results are reported in Appendix A.2, and all chlorite are reported as clinochlore.

! "#! An analysis of the heavy cation (Fe, Cr, Mn) content in chlorites was conducted by comparing the relative intensities (I) of basal (00l) reflections following the methodologies of

Brindley and Brown (1980). XRD data from chlorite in an Archaic soapstone net sinker recovered at Stalling’s Island, GA is reported by Kohl et al. (1979) as sample 61/MU01 and is included in these analyses for comparison.

Octahedral heavy cation distribution between the 2:1 layer sheet and the interlayer sheet was determined by plotting measured I(003)/I(001) values on a curve established by Brindley and Brown (1980) (Appendix A.3). Resulting values of D, where D equals the number of 2:1 layer octahedral sheet cations minus the number of interlayer octahedral sheet heavy cations, are reported in Appendix A.3.

Similarly, total heavy cation content of the 2:1 and interlayer octahedral sheets was determined by plotting I(002)+I(004)/I(001)+I(003) on a curve established by Brindley and

Brown (1980) (Appendix A.3). Resulting values of y, where y equals the total number of heavy cations per formula unit, are reported in Appendix A.3. Heavy cation content predicted by this method was then compared to measured values of Fetot and Cr content (in cations per formula unit) obtained through microprobe analyses (Appendix A.3).

In addition to the basal reflection intensity ratios determined for the above procedures, a number of other I(00l) values are compared (Appendix A.3). These ratios were found by Kohl et al. (1979) to be the most useful in distinguishing between groups of Southwest Asian chloritic soapstone vessels.

! "#!

CHAPTER 5

RESULTS

MODAL MINERALOGY

Pacolet

Modal data show the suite of Pacolet samples to be relatively heterogeneous mineralogically (Figs. 11 & 12; Appendix A.1). Talc content varies from less than 10% to nearly 70%, typically at the expense of amphibole or serpentine. Some samples (PA1, PA5) contain no serpentine, while other have up to 30% (PA4). Similarly, some samples contain no amphibole (PA4), while others have up to 67% (PA5). Comparatively, chlorite and opaque phases are less abundant and show little variation, from 7%-18% and from 1%-11%, respectively.

Live Oak

Live Oak modal data show this quarry to be similarly heterogeneous (Figs. 11 & 12;

Appendix A.1). Talc varies from 22% to 83%, mostly at the expense of amphibole, which is not observed in some samples (LO195) while others have up to 54% (LO272). Once again, Chlorite and opaque phases are the least abundant, and show less variation than talc and amphibole.

Chlorite varies from 5%-28%, and opaque phases from 1% to16%. It is interesting to note that the two samples with distinctly higher opaque percentages (LO310 and LO279 at 12% and 16%, respectively), also have distinctly higher chlorite percentages (26% and 28%, respectively), although this correlation does not apply to the Live Oak suite as a whole. Serpentine was not observed in any Live Oak samples.

! "#!

Figure 11a. Ternary diagram of talc, chlorite, and amphibole modes.

Figure 11b. Quarry sample modal ranges represented by ellipses [PA (0), LO (0), and CW (0)].

! "#!

Figure 12a. Ternary diagram of talc, chlorite, and opaque phase modes.

Figure 12b. Quarry sample modal ranges represented by ellipses [PA (0), LO (0), and CW (0)].

! "#! Charlotte Woods

Charlotte Woods modal data show this quarry to be heterogeneous as well, although less so than the other quarries (Figs. 11 & 12; Appendix A.1). Talc percentages are generally lower and less variable than the other quarries, varying from 4%-45%. The difference is largely made up by higher, less variable chlorite percentages ranging from 17% to 32%. Amphibole content varies from 18%-60%, while opaque phases are more variable than at the other quarries, ranging from <1%-24%. CW6 and CW3 stand out as having the two lowest talc percentages (4% and

14%, respectively) as well as the two highest amphibole percentages (60% and 52%, respectively). No serpentine was observed in any Charlotte Woods samples.

Artifacts

Artifact sample modal data is heterogeneous also, however, some interesting trends do exist (Figs. 11 & 12; Appendix A.1). Talc percentages vary from 10%-65%, predominately at the expense of amphibole, which ranges from 0%-52%. The maximum and minimum modal percentages reported for talc and amphibole represent two artifacts (A9 and A10) that are the sole samples from the Satilla drainage. Chlorite percentages are, on average, much higher than most quarry samples, varying from 5%-48%. Without A5, which accounts for the 5%, the range is 22%-47%. Ocmulgee samples are particularly chlorite-rich (37%-47%) not considering A5, distinguishing them from the three quarries. There is notable overlap between quarry and other artifact chlorite percentages, however, particularly with the SSR quarries. Opaque minerals vary from 5%-18%, and serpentine was not observed in any artifact samples.

It must be noted that the ternary diagrams displaying this data only illustrate variation in the talc, chlorite, amphibole, and opaque mineral percentages of the samples. Serpentine is not considered because it is only present in 3 samples. It must, however, be accounted for before

! "#! any pair or group of samples can be considered modally similar. For example, CW 15 and PA7 appear to be modally similar based on the ternary diagrams, however, PA7 has 10% serpentine and CW15 has none.

MINERAL CHEMISTRY

Talc

Compositional data for talc identify a pure Mg end-member composition in all quarry and artifact samples Appendix B.7. Ni and other elements often reported as trace in talc were either below detection limits or were not determined. Due to the homogeneity of talc compositions observed between the samples, talc mineral chemistry is not considered a distinguishing factor, and will receive no further treatment.

Chlorite

Mineral chemistry data for chlorite identify all species in the quarry and artifact samples to be magnesian Type I chlorite following the classification of Zane and Weiss (1998) (Fig. 13;

Appendix B.1). The chlorites plot in a continuous spectrum on a species diagram of

Mg/(Mg+Fetot) versus Si (Fig. 14), predominately falling within the range defining clinochlore

[Mg/(Mg+Fetot) > 0.8; 5.6 < Si(# of ions) < 6.2]. The range extends into the fields of two additional high-Mg chlorite species, pennine (6.2 < Si(# of ions) < 7.0) and sheridanite (5.0 < Si(# of ions) < 5.6), as well as two lower-Mg varieties [Mg/(Mg+Fetot) < 0.8], ripidolite (5.0 < Si(# of ions) < 5.6) and pycnochlorite (5.6 < Si(# of ions) < 6.2). It must be noted that the species encompassed by this range of chemistries are texturally indistinguishable within a given sample. Generally, analyses from one sample represent a continuum of compositions that may fall within multiple fields on the species diagram, but appear similar in thin section.

! "#!

Figure 13. Chlorite types after the classification of Zane and Weiss (1998).

! "#!

Figure 14. Chlorite species after the classification of Hey (1954).

! "#! In addition to Si and the relative abundances of Mg and Fe, the percentage of total Al in

Al + Mg + Fetot [Al/(Al+Mg+Fe), Fig. 15] and in Al + Cr [Al/(Al+Cr), Fig. 16] helps to further distinguish the quarries, samples, and artifacts. Ellipses defining quarry sample variation in these plots are drawn to define visually distinct groups of analyses from each quarry.

Alternatively, a single all-encompassing ellipse could be drawn to represent each quarry. In this case, nearly all artifact analyses would be grouped with the study quarries.

Pacolet

Pacolet Quarry chlorites can be divided into two groups based on Mg content. For samples PA1, PA3, PA4, and PA7, Mg/(Mg+Fe) > 0.88. These PA chlorites have more Cr relative to Al [Al/(Al+Cr) < 0.97), largely distinguishing them from CW, LO, artifact, and other

PA samples (Appendix B.1). Al relative to Mg and Fe in these analyses [0.25 < Al/(Al+Mg+Fe)

< 0.30] is similar to that of chlorites of like Mg content (Fig. 15; Appendix B.1). PA2 and PA5 chlorites have lower Mg [Mg/(Mg+Fe) < 0.85]. Like the other PA samples, PA5 has distinctly low Al/(Al+Cr) (> 0.96), but also low Al relative to Mg and Fe [0.25 < Al/(Al+Mg+Fe) < 0.28] compared to analyses showing similar Mg content (Appendix B.1). Conversely, PA2 has distinctly high Al relative to Mg and Fe [0.33 < Al/(Al+Mg+Fe) < 0.37] that separates it from most other samples (Appendix B.1).

Charlotte Woods

Chlorites from Charlotte Woods are predominately higher-Mg varieties [Mg/(Mg+Fe) >

0.88]. This includes chlorite from samples CW1, CW6, CW13, CW15, and CW17, which are also found to have variable Al/(Al+Mg+Fe) (from 0.24 to 0.30) and less Cr with respect to Al

[Al/(Al+Cr) > 0.96]. Generally, these chlorites are much more homogeneous than chlorites of similar Mg content from PA and LO (Appendix B.1).

! "#! CW16 chlorites also have greater Mg content [Mg/(Mg+Fe) > 0.88], but distinctly high

Al with respect to Mg and Fe [0.32 < Al/(Al+Mg+Fe) < 0.34] (Appendix B.1). Chlorites in

CW3 have distinctly low Mg [Mg/(Mg+Fe)< 0.81] that separates them from all other samples

(Appendix B.1).

Live Oak

Live Oak samples were found to have a high-Mg set of chlorites, LO279, LO303, and

LO310, that are compositionally similar to those at CW [Mg/(Mg+Fe) > 0.88; 0.24 <

Al/(Al+Mg+Fe) < 0.29; Al/(Al+Cr) > 0.97] (Appendix B.1). Chlorites in sample LO123 stand out as having distinctly high Mg [0.91 < Mg/(Mg+Fe) < 0.94] as well as more Cr with respect to

Al [0.92 < Al/(Al+Cr < 0.97] than nearly all other samples (Appendix B.1).

Figure 15. Variation of chlorite compositions based on total Al, Mg, and Fe. Quarry sample variation is represented by ellipses [PA (0), LO (0), and CW (0)].

! ""! Samples LO67 and LO195 have intermediate values of Mg/(Mg+Fe), falling between

0.84 and 0.87. These chlorites generally have Cr below detection limits such that Al/(Al+Cr) >

0.99, which is distinctly high compared to chlorites with similar Mg content (Appendix B.1).

One analysis form LO 272 also falls within this range, however, the remaining analyses from this sample are similar to PA2 and CW3 [Mg/(Mg+Fe) < 0.82; 0.32 < Al/(Al+Mg+Fe) < 0.34;

Al/(Al+Cr) > 0.98] (Appendix B.1).

Artifacts

Artifact sample chlorite is mostly distinct from quarry sample chlorite, although overlap does occur (Figs. 14, 15, & 16; Appendix B.1). Some chlorite analyses from A2, A4, A5, and

Figure 16. Cr content in chlorite. Quarry sample variation is represented by ellipses [PA (0), LO (0), and CW (0)].

! "#! A7, plus all analyses from A3 and A10 fall in the high-Mg range established by the quarry samples [Mg/(Mg+Fe) > 0.88] and have Al/(Al+Cr) and Al/(Al+Mg+Fe) values similar to LO and CW samples of similar Mg content [Al/(Al+Cr) > 0.97; 0.25 < Al/(Al+Mg+Fe) < 0.29]

(Figs. 16 & 15; Appendix B.1).

All chlorite in samples A6, A8, and A9, plus some analyses from A2, A4, and A5, show intermediate Mg content [0.85 < Mg/(Mg+Fe) < 0.88]. A8 and A5 chlorites belonging to this group are distinct in having chrome below detection limits (Al/(Al+Cr) > 0.99), while the remainder of the group has more Cr relative to Al than quarry samples of similar Mg content

[0.97 < Al/(Al+Cr) < 0.99] (Fig. 16; Appendix B.1). Chlorite in sample A9 also distinguishes itself with relatively low Al with respect to Mg and Fe [0.24 < Al/(Al+Mg+Fe) < 0.27] (Fig. 15;

Appendix B.1).

Sample A1 is distinct from all other artifact and quarry samples, having more Cr relative to Al [Al/(Al+Cr) < 0.96] than any other sample with such a low Mg content [0.82 <

Mg/(Mg+Fe) < 0.84] (Fig. 16; Appendix B.1).

Amphibole

Mineral chemistry data for amphiboles identify both calcic and non-calcic phases in quarry and artifact samples. Non-calcic amphiboles are shown to be cummingtonite/anthophyllite (Fig. 17), and Ca-rich amphiboles are tremolite and magnesiohornblende (Fig. 18). Mg/(Mg+Fe), Cr content, and the amount of Al relative to Si

[Al/(Al+Si)] in calcic amphiboles serve to best distinguish the quarries (Figs. 20 & 21; Appendix

B.2). Mn content in low-Ca phases helps to separate artifact samples (Fig. 22; Appendix B.3).

Multiple ellipses are used to define visually distinct groups of analyses from one quarry where appropriate.

! "#! Pacolet

Amphiboles from the Pacolet Quarry are tremolite and, compared to those at LO and

CW, are homogeneous (Appendix B.2). Tremolite at PA is more Mg-rich than the majority of other samples (Fig. 21; Appendix B.2), with Mg/(Mg+Fe) values between 0.90 and 0.97. The overlap with high-Mg samples from LO and CW is largely eliminated when considering Al and

Si, as well as Cr, in conjunction with Mg/(Mg+Fe) (Figs. 21 & 20; Appendix B.2). No amphibole is present in PA2 or PA4.

Cr is present above detection limits in amphibole analyses from PA1, PA5, and PA7.

Only PA samples have amphibole with both detectable Cr and Mg/(Mg+Fe) greater than 0.89

(Appendix B.2).

Figure 17. Low-Ca amphibole species after Leake et al. (1997).

! "#! PA amphiboles were also found to have more Al with respect to Si than LO and CW samples of similar Mg content (Fig. 21; Appendix B.2). Four analyses from PA1 are an exception to this, having significantly lower Al/(Al+Si) values than any other sample with

Mg/(Mg+Fe) greater than 0.80 (Appendix B.2). These amphiboles appear more elongate and euhedral in thin section than those found to have higher Al with respect to Si (Fig. 19).

Charlotte Woods

Charlotte Woods samples all contain tremolite, and all but CW16 contain cummingtonite/anthophyllite (Fig. 17 & 18; Appendix A.2). CW3, CW6, CW16, and CW17 contain two high-Ca phases, tremolite and magnesiohornblende (Fig. 18; Appendix A.2).

Figure 18. High-Ca amphibole species after Leake et al. (1997).

! "#! In CW cummingtonite/anthophyllite, Mg content is quite variable, with Mg/(Mg+Fe)

values from 0.69 to 0.86. Values below 0.74 are reported from CW3 only, distinguishing it from

other samples (Appendix B.3). Mn content is variable, but generally low (0.20 < MnO wt% <

1.0).

Ca-rich phases at CW also have significant compositional variability with Mg/(Mg+Fe)

from 0.75 to 0.93 and Al/(Al+Si) from below Al detection limits to 0.25. The low-Mg/high-Al

extreme of this range is accounted for by two samples, CW3 and CW16 (Appendix B.2). These

are also the only CW samples to have Cr above the detection limit (Cr2O3 wt% > 0.2) (Appendix

B.2).

!"#$%

!Figure 19. Acicular low-Al tremolite in PA1 [cross-polarized light, 4.8mm field of view (40x)].

! "#!

Figure 20. Cr content in high-Ca amphiboles. Quarry sample variation is represented by ellipses [PA (0), LO (0), and CW (0)] and the dashed line shows Cr2O3 detection limit.

Live Oak

Live Oak Quarry amphiboles have similar compositional ranges as those at CW (Figs. 20, 21, &

22; Appendices B.2 & B.3). Amphibole-bearing samples contain cummingtonite/anthophyllite, and all but LO67 have tremolite in addition (Figs. 17 & 18; Appendix A.2). Samples LO123,

LO272, and LO279 were found to have a second Ca amphibole, magnesiohornblende (Fig. 18;

Appendix A.2). LO195 contains no amphibole.

Cummintonite/anthophyllite in LO samples is similar in Mg content to CW samples, with

Mg/(Mg+Fe) values from 0.70 to 0.86 (Fig. 22; Appendix B.3). Mn is consistently low (0.20 <

MnO wt% < 0.75), except for LO279 and LO310 (1.0 < MnO wt% < 1.5) (Appendix B.3). The

! "#! high-Mn analyses represent trace, very fine-grained amphiboles, and the only low-Ca grains encountered in these LO279 and LO310.

Ca amphiboles in LO samples follow similar trends. Mg/(Mg+Fe) values are similar to

CW, ranging from 0.75 to 0.94, and Al/(Al+Si) is generally higher, from below

Al detection limits to 0.42 (Fig. 21; Appendix B.2). Once again, low-Mg and high-Al analyses occur in magnesiohornblende-bearing samples, LO123 and LO272, which also have detectable

Cr (Cr2O3 wt% > 0.2) (Appendix B.2).

Artifacts

Artifact amphiboles largely fall within the compositional range defined by the quarry samples (Figs. 20, 21, & 22; Appendices B.2 & B.3). All amphibole-bearing artifact samples are found to have both tremolite and cummingtonite/anthophyllite, and A1 and A3 also contain magnesiohornblende (Figs. 17 & 18; Appendix A.2). A7 was observed to have trace amphibole that was shown to be low-Ca based on microprobe spectrometer scans, but all grains encountered were too small to conduct reliable analyses on. Sample A9 has no amphibole.

Low-Ca amphiboles from artifact samples show a range of Mg content similar to those at

LO and CW [0.70 < Mg/(Mg+Fe) < 0.85] (Fig. 22; Appendix B.3). MnO wt% between 1.0 and

2.5 distinguishes the Ocmulgee samples A4, A6, A7 and A8, while the remainder of samples fall within the low-Mn range typical of quarry samples (0.2 < MnO wt% < 1.0) (Fig. 22; Appendix

B.3). One point from A3 is the only low-Ca amphibole encountered to have Mn below detection limits (Fig. 22; Appendix B.3), although nothing distinguishes the grain in thin section.

Artifact tremolite and magnesiohornblende are largely indistinguishable from the high-Ca amphiboles at LO and CW based on chemistry [0.82< Mg/(Mg+Fe) < 0.94; Al below detection limits < Al/(Al+Si) < 0.18] (Fig. 21; Appendix B.2). The magnesiohornblende in A1 is notable

! "#!

Figure 21. Al content in high-Ca amphiboles. Quarry sample variation is represented by ellipses [PA (0), LO (0), and CW (0)].

! "#!

Figure 22. Mn content in low-Ca amphiboles. Quarry sample variation is represented by ellipses [PA (0), LO (0), and CW (0)] and the dashed line shows MnO detection limit.

in having high Cr (0.75 < Cr2O3 wt% < 1.4) and Mg and Al contents very similar to CW3 (Fig.

20; Appendix B.2). A6 occupies an intermediate range of Mg/(Mg+Fe) and Al/(Al+Si), similar to some magnesiohornblende-bearing quarry samples, and also has detectable Cr (Figs. 21 & 20;

Appendix B.2).

Oxides

Mineral chemistry data for oxides identify magnetite, ilmenite, and rutile in quarry and artifact samples. Ilmenite is generally less abundant and finer-grained than magnetite (Fig. 23).

The ratio of ferrous (Fe+2) to ferric (Fe+3) Fe along with Cr content in magnetites and Mn/Mg content in ilmenites serve to best distinguish between samples (Figs. 24 Figs. 25; Appendices

B.4 & B.5).

! "#! Pacolet

Oxide phases in Pacolet Quarry samples were found to be magnetite and ilmenite. Every

PA sample contains magnetite, and all but PA4 and PA5 contain ilmenite (Appendix A.2).

Figure 23. Backscatter electron image showing ilmenite (Il, dk. gray) with magnetite (Mt, lt. gray). From CW-17.

PA magnetites show the greatest variability in Fe+2/(Fe+2+Fe+3) as well as in Cr content.

+2 +2 +3 Compositions range from all ferrous Fe [Fe /(Fe +Fe ) = 0.0; hematite] with 30.5 wt% Cr2O3

+2 +2 +3 to half ferrous Fe [Fe /(Fe +Fe ) = 0.5; magnetite] with Cr below detection limits (Cr2O3 wt%

! "#! < 0.13). This broad range of iron oxide compositions is greater than what is observed at LO and

CW (Fig. 24; Appendix B.4).

Ilmenite in PA samples has all ferric Fe [Fe+2/(Fe+2+Fe+3) = 1.0] as well as distinctly high

Mn (5.7 < MnO wt% < 14.4). No ilmenite in PA samples was found to have Mg above detection limits (Fig. 25; Appendix B.5).

Figure 24. Fe+3 versus Cr in iron oxides. Quarry sample variation is represented by ellipses [PA (0), LO (0), and CW (0)] and the dashed line shows Cr2O3 detection limit.

! ""! Charlotte Woods

Magnetite, ilmenite, and rutile were identified at Charlotte Woods. Both magnetite and ilmenite were found in all CW samples except for CW16. Samples CW1, CW3, and CW16 all contain rutile (Appendix A.2).

Magnetite in CW samples shows the least variability of any quarry with the exception of one analysis from CW3 identifying hematite [Fe+2/(Fe+2+Fe+3) = 0.0] (Appendix B.4). All other analyses show chromian magnetite with ferric/ferrous Fe ratios from 0.43 to 0.48 and Cr between

1.2 and 3.8 wt% Cr2O3.

CW ilmenites were also found to be relatively homogeneous with one major exception.

Ferric/Ferrous ratios for all analyses range from 0.96 to 1.0, and Mn content varies from 0.9 to

3.4 wt% MnO. Mg is below detection limits in nearly all samples except for two analyses of

CW6 ilmenite, which show distinctly high Mg (MgO wt% > 4.0) (Appendix B.5).

Live Oak

Live Oak Quarry oxides are magnetite, ilmenite, and rutile. All samples contain magnetite and ilmenite. LO123 and LO272 additionally contain rutile (Appendix A.2).

Compositional variability in LO magnetite is greater than at CW, but less than in PA samples (Fig. 24; Appendix B.4). Fe+2/(Fe+2+Fe+3) values fall between 0.4 and 0.5, and Cr ranges from below detection limits to 5.3 wt% Cr2O3, indicating the presence of magnetite and chromian magnetite.

Ilmenite at LO is distinct from that in PA and CW samples (Fig. 25; Appendix B.5).

Ferric/ferrous ratios are generally lower [Fe+2/(Fe+2+Fe+3) < 0.97], and Mn exhibits a broad range from 0.46 to 6.5 wt% MnO. Most distinct are the intermediate values of Mg (0.5 < MgO wt% <

! "#! 2.0) that increase with higher Mn content (Fig. 25; Appendix B.5). Select analyses from LO303 and LO310 are an exception to this, having Mn greater than 4 wt% MnO and no detectable Mg.

Figure 25. Mg versus Mn in ilmenite. Quarry sample variation is represented by ellipses [PA (0), LO (0), and CW (0)]and dashed lines show detection limits for MnO and MgO.

Artifacts

Artifact oxide analyses reveal all samples to have both magnetite and ilmenite, with the exception of A1 and A9, which have rutile only (Appendix A.2). No other samples were found to have rutile.

Magnetite in the artifact samples is similar to that at CW and LO (Fig. 24; Appendix

B.4). The Ocmulgee samples (except A5) and A2, show Fe+2/(Fe+2+Fe+3) between 0.43 and

! "#! +2 0.47, and have moderate Cr content (1.9 < Cr2O3 wt% < 3.4). A10 stands out as having less Fe

+2 +2 +3 [0.39 < Fe /(Fe +Fe ) < 0.42] and more Cr (3.8 < Cr2O3 wt% > 5.2) (Fig. 24; Appendix B.4).

+2 A3 analyses show the opposite trend with lower Cr and higher Fe [Cr2O3 wt% = 1.3;

+2 +2 +3 Fe /(Fe +Fe ) = 0.475]. Finally, A5 plots alongside low-Cr LO samples [Cr2O3 wt% < 0.6;

Fe+2/(Fe+2+Fe+3) > 0.475] (Fig. 24; Appendix B.4).

Ilmenite analyses best serve to distinguish artifact samples. The Oconee samples (A2 and

A3) both have moderate Mn content (2.9 < MnO wt% < 5.6) and Mg below detection limits.

Samples A5 and A10 plot together with low, detectable values for Mn (0.5 < MnO wt % < 1.5) and moderate Mg content (1.6 < MgO wt% < 2.8), but are distinct from one another (Fig. 25;

Appendix B.5). Ocmulgee samples other than A5 (A4, A6, A7, A8) show high Mn and moderate Mg (4.2 < MnO wt % < 9.1; 0.89 < MgO wt% < 1.9), and having more Mn per Mg than the LO samples defining the positive correlation between the two elements (Fig. 25;

Appendix B.5).

X-RAY DIFFRACTION (XRD)

Determination of sample mineralogy through XRD was found to be inconsistent compared to species identification based on optical microscopy and EMPA. Talc and chlorite are identified in all samples, and amphibole is identified only in those samples observed to contain amphibole in thin section (Appendix A.2).

Serpentine was difficult to identify due to the coincidence of its basal reflections (00l) with the even-ordered basal reflections of chlorite [(002), (004)] in 2! space. Asymmetry in the

3.56 Å peak [serpentine (002); chlorite (004)] was used to identify the lizardite variety of serpentine in samples PA3 and PA7 (Appendix A.3).

! "#! Amphibole speciation, however, was inconsistent with optical and compositional data.

Cummungtonite/anthophyllite was possibly identified in two PA samples (PA3, PA7), although no samples from the quarry were found to have any low-Ca amphibole based on EMPA data and optical observations (Appendix A.2). XRD could not confirm the presence of low-Ca amphibole previously observed in LO272 and CW6 or the presence of tremolite in CW1 (Appendix A.2).

Magnesiohornblende was not identified in any samples, however, it is likely that the peaks identified as tremolite could also represent magnesiohornblende.

Oxide and sulfide phases that comprise up to 16 modal percent of the quarry samples were not identified (Appendix A.2). The absence of oxides and sulfides may be the result of density separation. Ground samples were suspended in water and transferred between containers as part of the particle size reduction procedure, and heavy minerals may have fallen out of suspension and been unintentionally excluded from the final <10µm powders.

Determining heavy cation content in chlorite from basal reflection intensity ratios proved to be inaccurate and imprecise based on measured microprobe values (Appendix A.3). Typically a correction factor is applied to I(001) and I(003) if asymmetry exists between the two octahedral sheets (Brindley and Brown, 1980). D values for the study samples range from -0.27 to 0.42, but this was considered negligible, and no correction factor was applied to determine total heavy cation content. This could potentially account for inconsistencies with EMPA data.

Comparisons of I(00l) ratios following Kohl et al. (1979) were unable to distinguish between quarries (Appendix A.3). Inter- and intra-quarry variability, as shown by coefficients of varience (CV) in Appendix A.3, is too significant to make distinctions between sample quarries based on these criteria. These ratios were able to distinguish the Stalling’s Island net sinker

(61/MU01) reported by Kohl et al. (1979) from the sample quarries, however (Appendix A.3).

! "#! Overall, the utility of XRD techniques in characterizing and distinguishing sources of soapstone in the Southeastern Piedmont is limited based on these preliminary investigations.

Mineralogy could not be comprehensively determined in comparison with optical and EMPA identification (Appendix A.2), heavy cation content could not be accurately predicted (Appendix

A.3), and I(00l) ratios were unable to distinguish quarries (Appendix A.3).

! "#!

CHAPTER 6

DISCUSSION

The data show that the quarries and artifacts may be distinguished or grouped based on a number of mineralogic criteria. Based on the modal and compositional data, artifact samples can variably be grouped with each other and/or quarry samples, or can essentially stand alone.

Given the variation observed at the study quarries, artifacts that are modally or compositionally dissimilar could in fact be from the same source. Conversely, two very similar artifacts may be from different sources, as significant overlap is observed between quarries. Because of this, and considering the abundance of unsampled ultramafic bodies in the region (Fig. 1), definite determinations of artifact provenance cannot be made. Perhaps most reliable are assertions that a given artifact is unlikely to have come from one of the three study quarries. Still, this rests on the assumption that the quarry samples are representative of all variation that exists in those quarries.

QUARRIES

Pacolet

The presence or absence of minerals, particularly amphibole species, largely sets apart the Pacolet Quarry from both the Live Oak and Charlotte Woods quarries. PA samples were found to have tremolite only, compared to the other quarry samples, which contain low-Ca amphibole or magnesiohornblende in addition to (or instead of) tremolite (Appendix A.2). PA samples are also the only quarry samples to contain serpentine or sulfides (Appendix A.2). The only PA sample to lack amphibole, PA4, contains significant serpentine (30% modal) as well as

! "#! a sulfide phase, distinguishing it from other samples that lack amphibole. Though certain distinctions based on mineral chemistry data can also be made, modal mineralogy alone is sufficient to distinguish PA from LO and CW.

Live Oak and Charlotte Woods (SSR)

The two soapstone ridge quarries are more difficult to distinguish. Mineralogy at the quarries is very similar (Appendix A.2), although modally CW samples contain more chlorite on average (Figs. 11 & 12; Appendix A.1). Amphibole compositions are also similar (Figs. 20, 21, and 22; Appendices B.2 & B.3), however, chlorite and oxide data show important distinctions.

CW chlorites are essentially bimodal with respect to Mg content. The majority of samples have Mg/(Mg+Fe) values from 0.88 to 0.93 and a minority have values less than 0.81.

LO67, LO195, and LO272 contain chlorites with intermediate Mg content [0.81 < Mg/(Mg+Fe)

< 0.88], and some LO123 chlorites have values greater than 0.93 (Appendix B.1). In all, LO shows a more continuous range of chlorite compositions with respect to Mg than does CW (Fig.

14; Appendix B.1).

Ilmenite compositions prove to be the best distinguishing factor between the SSR quarries. All LO samples were found to contain ilmenite, as were the majority of CW samples

(Appendix A.2). At CW, ilmenites have low Mg (below detection limits, MgO wt% < 0.5), except for CW6, which has high-Mg ilmenite (MgO wt% > 4.0). The majority of LO ilmenites have intermediate Mg contents from 0.5 to 2.0 wt%. The exceptions (LO303, LO310) have Mg below detection limits, but also high Mn (MnO wt% > 4.0) compared to CW (MnO wt% < 3.5)

(Appendix B.5).

! "#! ARTIFACTS

All artifacts contain low-Ca amphibole except for A9, which contains no amphibole and is very distinct (see below). Based on this, it is very unlikely that PA is the source for any artifacts analyzed unless low-Ca amphiboles are present at PA and were not sampled or identified.

Oconee

Artifacts from the Oconee drainage (A1, A2, A3) are divided, with A2 and A3 having similar mineralogy and mineral chemistry, and A1 essentially standing alone.

A2 and A3 are modally similar (Figs 10 & 12; Appendix A.1), and are compositionally similar for most phases. One exception to this is in cummingtonite/anthophyllite chemistry. A2 low-Ca amphiboles have MnO above 0.5% as well as relatively low Mg [Mg/(Mg+Fe) < 0.80], while A3 has less Mn (MnO wt% < 0.3) and more Mg [Mg/(Mg+Fe) > 0.82] (Fig. 22). A3 also has less Mn than A2 in ilmenite, and less Cr in Magnetite (Figs. 24 Figs. 25). Aside from these differences, there is much overlap in mineral compositions between the samples (Figs. 14-21;

Appendix B), and it is very possible that they are from the same source.

A2 and A3 are also similar to SSR quarry samples based on modal mineralogy and mineral compositions. While nothing totally conclusive can be said based on the available data, enough compositional overlap is present to suggest CW or LO may be potential sources (Figs.

14-24; Appendix B). Ilmenite chemistry for A2 and A3 spans the low-Mg fields defined for the two SSR quarries, and it is difficult to say whether LO or CW is the more likely source (Fig. 25).

Still, SSR is the proposed source for A2 and A3.

A1 is distinct from all other samples. It is the only sample that has low- and high-Ca amphiboles plus rutile as the sole oxide phase (Appendix A.2). Modally, A1 is chlorite-poor

! "#! (Figs. 11 & 12; Appendix A.1), and compositionally it has distinctly elevated Cr content in high-

Ca amphiboles and chlorites (Figs. 20 & 16; Appendices B.2 & B.1). It is unlikely that A1 was quarried at PA, CW, LO.

Ocmulgee

Ocmulgee artifact samples are mineralogically similar, with each sample having both high- and low-Ca amphibole (except A7), ilmenite and magnetite, in addition to talc and chlorite

(Appendix A.2). They can be subdivided into two groups when considering the modal and compositional data. Squeaking Tree samples (A6, A7, A8), along with A4, are one group of similar mineral chemistries and abundances. A5 is different from the remainder of the Ocmulgee samples and stands alone.

The larger group is chlorite-rich compared to all other samples (Figs. 11 & 12; Appendix

A.1). Compositionally, these chlorites are more Mg- and Si-poor than most of CW and PA samples, and falling between high-Mg and intermediate-Mg LO chlorites [0.85 < Mg/(Mg+Fe) <

0.90] (Fig. 14; Appendix B.1). A6 stands out as having the least Mg [Mg/(Mg+Fe) < 0.87], and

A8 has significantly less Cr than others in the group (Fig. 16, Appendix B.1).

High Mn content in low-Ca amphiboles also serves to distinguish this group. MnO wt% ranges from 0.9 to 2.5, largely separating these samples from all others (Fig. 22). Sample A7 was observed to contain low-Ca amphibole, but the grain size was too small to produce reliable microprobe analyses. Those analyses that were conducted and discarded due to low totals showed similarly high Mn content.

High Mn content is also distinctive in ilmenite for this group, ranging from 4.2 to 9.0

MnO wt%. When also considering the limited range in Mg content (0.9 < MgO wt% < 1.9), these Ocmulgee samples are very distinct from all other quarry and artifact samples (Fig. 25).

! "#! Generally, the data from these samples suggest that they may share a common source, and that it is unlikely to be one of the sampled quarries.

A5 stands alone among the Ocmulgee samples, but does show some similarities to LO quarry samples. Modally, A5 is chlorite poor (Figs. 11 & 12; Appendix 1). Compositionally, the chlorites are similar to those at SSR quarries, although A5 is somewhat distinct in having less

Cr than SSR samples (Fig. 16).

Amphibole chemistry of A5 is also similar to SSR quarry samples. Low Mn content

(MnO wt% < 0.5) in low-Ca amphiboles helps to distinguish A5 from the other Ocmulgee samples (Fig. 22, Appendix B.3).

A5 also has lower Mn in ilmenite (0.95 < MnO wt% < 1.5) than other Ocmulgee samples.

These Mn values, plus moderate Mg content (1.6 < MgO wt% < 2.8) distinguish A5 from all other samples (Fig. 25, Appendix B.5). A5 magnetite has similar Cr content as some LO samples

(Fig. 24, Appendix B.4). Based on the data, it seems unlikely that A5 and the other Ocmulgee samples have the same source. Ilmenite chemistry distinguishes the artifact from all quarries

(Fig. 25, Appendix B.5), although compositional data for other minerals and modal data suggest

LO as a potential source (Appendices B & A.1).

Satilla

The Satilla artifact samples (A9, A10) are very different from each other. Sample A9 contains talc, chlorite, and rutile only, distinguishing it from all other quarry and artifact samples

(Appendix A.2). Sample A10 is modally and compositionally similar to the SSR quarry samples, and to some extent the Oconee artifact group of A2 and A3 (Figs. 11-25; Appendix B).

Cr content in magnetite is higher in A10 than in Oconee or CW samples, and similar to high-Cr

LO samples (Fig. 24; Appendix B.4). A10 is distinguished from both SSR and Oconee samples

! "#! when considering Mn and Mg in ilmenite (Fig. 25; Appendix B.5). Based on ilmenite chemistry it is unlikely that A10 has the same source as the Oconee samples or that its source is SSR, although compositional data for other species and modal data indicate LO as a possible source

(Appendix B).

! ""!

CHAPTER 7

CONCLUSIONS

The results of this study show that modal mineralogy and mineral chemistry can be useful in distinguishing sources of soapstone, as well as in artifact provenancing. X-ray diffraction techniques were found to be less useful. More comprehensive sampling, supplementary analytical techniques, and a rigorous statistical treatment of the data could all improve the utility and accuracy of these methods.

Although soapstone is a relatively rare, numerous bodies have been identified throughout the crystalline provinces of the Southeast (Fig. 1), and many more undocumented occurrences are likely to exist. Ideally, all of these bodies that also show evidence of prehistoric quarrying should be sampled. Inter-source variability in modal mineralogy and mineral chemistry would then determine the usefulness of this methodology on a regional scale. It is promising, however, that this study has been able to distinguish two major Piedmont occurrences of soapstone, SSR and HGMS. In addition, these methods have largely distinguished between two proximal quarries in the SSR body, LO and CW.

Combining the study methodology with established analytical techniques would further improve provenancing efforts. Modal mineralogy and mineral chemistry data would be valuable supplements to the most current suite of analytical methods being employed to geochemically characterize soapstone (by Jones et al. (2007)). Not only would these provide additional criteria with which to distinguish or group samples, but they could also be used to help better understand the compositional variability observed when using bulk geochemical techniques.

! "#! Finally, a more extensive and comprehensive study would require a statistical treatment of the data in order to establish confidence limits and lend provenance assignments quantitative credibility. Following Kohl et al. (1979) and Truncer (1998), discriminant function analysis is proposed as the most appropriate method to treat a variety of geochemical and mineralogical data with the intention of distinguishing quarries and sourcing artifacts.

This study has been successful in recognizing inter- and intra-occurrence variability in modal mineralogy and mineral chemistry of Southeastern Piedmont soapstones. Modal mineralogy alone was able to distinguish PA quarry samples, artifacts A1 and A9 (Appendix

A.1). Mineral chemistry data, in particular ilmenite and low-Ca amphibole compositions (Figs.

25 & 22; Appendices B.5 & B.3), were able to separate sample groups from one another. The studied prehistoric soapstone quarries, PA, LO, and CW, were successfully distinguished based on these criteria, and it was determined that the majority of artifact samples most likely do not source to any of the study quarries. Two artifacts from the Oconee drainage, A2 and A3, may have originated at a SSR quarry. These results indicate that the study methodology is useful in characterizing sources of soapstone and determining artifact provenance.

! "#!

REFERENCES CITED

Allen, R.O., A.H. Luckenbach, and C.G. Holland. 1975. The application of instrumental neutron activation analysis to a study of prehistoric steatite artifacts and source materials. Archaeometry 17(1): 69-83.

Allen, Ralph, Hany Hamroush, Christopher Nagle, and William Fitzhugh. 1984. Use of Rare Earth Element analysis to study the utilization and procurement of soapstone along the Labrador Coast. Archaeological Chemistry III, pp. 3-18. Advances in Chemistry Series, 205. American Chemical Society, Washington, D.C.

Allen, Ralph O. and S. Edith Pennell. 1978. Rare Earth Element distribution patterns to characterize soapstone artifacts. Archaeological Chemistry II, pp. 230-257. Advances in Chemistry Series, 171. American Chemical Society, Washington, D.C.

Anderson, David G. and Kenneth E. Sassaman, eds. 1996. The Paleoindian and Early Archaic Southeast. The University of Alabama Press, Tuscaloosa. 526 pp.

Armstrong, J.T. 1988. Quantitative analysis of silicate and oxide minerals: comparison of Monte Carlo, ZAF and phi-rho-z procedures. Microbeam Analysis, pp. 239-256. San Francisco Press, San Francisco.

Blake, Rolland L. 1982. Amphiboles in Soapstone Ridge, Ga. US Department of the Interior Bureau of Mines Report of Investigations 8627. 17 pp.

Bloom, Jonathan A. 1991. Archaeological Data Recovery at the Charlotte Woods Soapstone Quarry (9Da248), DeKalb County, Georgia. Garrow and Associates, Inc., Atlanta. Submitted to Waste Management of Georgia, Inc., Marietta, Georgia.

Bloom, Jonathan A., Daniel T. Elliot, and Patrick H. Garrow. 1989. Archaeological Survey and Testing Within the Proposed Live Oak Landfill Expansion, Dekalb and Fulton Counties, Georgia. Garrow and Associates, Inc., Atlanta. Submitted to Waste Management of Georgia, Inc., Marietta, Georgia. 125 pp.

Bray, I.S.J. 1994. Geochemical Methods for Provenance Studies of Steatite. Unpublished PhD thesis, University of Glasgow.

Brindley, G.W. and G. Brown, eds. 1980. Crystal Structures of Clay Minerals and their X-ray Identification. Mineralogical Society Monograph No. 5, London. 495 pp.

! "#! Butler, J. Robert. 1989. Review and classification of ultramafic bodies in the Piedmont of the Carolinas. Ultramafic Rocks of the Appalachian Piedmont, pp. 19-31. Geological Society of America Special Paper 231, Boulder, Colorado.

Caldwell, Joseph R. 1958. Trend and Tradition in the Prehistory of the Eastern United States. American Anthropological Association. 88 pp.

Coleman, Robert G. 1977. Ophiolites: Ancient Oceanic Lithosphere?. Springer-Verlag, New York. 229 pp.

Custer, J. F. 1984. The Paleoecology of the Late Archaic: Exchange and Adaptation. Pennsylvania Archaeologist 54: 32-47.

DePratter, Chester B. 1975. The Archaic in Georgia. Early Georgia 3: 1-16.

Dickens, Roy S., Jr., Linda Carnes, and Steven W. Grable. 1979. Archaeological and Historical Survey Proposed Browning-Ferris Industries Landfill Site DeKalb County, Georgia. Manuscript on file, Garrow and Associates, Atlanta.

Droop, G.T.R. 1987. A general equation for estimating Fe 3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses using stoichiometric criteria. Mineralogical Magazine 51(3): 431-435.

Elliot, Daniel. 1986. The Live Oak Soapstone Quarry, DeKalb County, Georgia. Garrow and Associates, Inc., Atlanta. Submitted to Waste Management of Georgia, Inc., Marietta, Georgia. 124 pp.

Ferguson, Terry A. 1980. Prehistoric Soapstone Procurement in Northwestern South Carolina. Unpublished MS thesis. University of Tennessee, Knoxville. 131 pp.

Frey, Frederick A. 1984. Rare Earth Element abundances in upper mantle rocks. Rare Earth Element Geochemistry, pp. 153-204. Developments in Geochemistry 2. Elsevier, Amsterdam.

Funk, R.E. and B.E. Rippeteau. 1977. Adaptation, Community, and Change in Upper Susquehannah Prehistory. Occasional Publications in Northeastern Anthropology 3. Man in the Northeast, Inc., George’s Mill.

Garrison, Ervan G. 2003. Techniques in Archaeological Geology. Springer-Verlag, Berlin. 304 pp.

Hart, John P., Eleanora A. Reber, Robert G. Thompson, and Robert Lusteck. 2008. Taking variation seriously: testing the steatite mast-processing hypothesis with microbotanical data from the Hunter’s Home Site, New York. American Antiquity 73(4): 729-741.

! "#! Hess, H.H. 1955. Serpentines, orogeny, and epiorogeny. Crust of the Earth- a Symposium, pp. 392-407. Geological Society of America Special Paper 62.

Hey, M.H. 1954. A new review of the chlorites. Mineralogical Magazine 30: 277-292.

Higgins, Michael W., Robert L. Atkins, Thomas J. Crawford, Ralph F. Crawford, III, Rebekah Brooks, and Robert B. Cook. 1988. The Structure, Stratigraphy, Tectonostratigraphy, and Evolution of the Southernmost Part of the Appalachian Orogen. U.S. Geological Survey Professional Paper 1475. 173pp.

Holmes, William H. 1897. Stone implements of the Potomac-Chesapeake Tidewater Province, pp. 13-152. Fifteenth Annual Report, Bureau of Ethnology. Washington.

Hopkins, Oliver B. 1914. A Report on the Asbestos, Talc, and Soapstone Deposits of Georgia. Geological Survey of Georgia Bulletin 29. 319 pp.

Ige, O.A. and Samuel E. Swanson. 2008. Provenance studies of Esie sculptural soapstone from southwestern . Journal of Archaeological Science 35: 1553-1565.

Jones, R.E., V. Kilikoglou, V. Olive, Y. Bassiakos, R. Ellam, I.S.J Bray, and D.C.W. Sanderson. 2007. A new protocol for the chemical characterization of steatite – two case studies in Europe: the Shetland Islands and Crete. Journal of Archaeological Science 34: 626-641.

Klein, M.J. 1997. The transition from soapstone bowls to Marcey Creek ceramics in the Middle Atlantic region: a consideration of vessel technology, ethnographic data, and regional exchange. Archaeology of Eastern North America 25: 143-158.

Kohl, P.L., G. Harbottle, and E.V. Sayre. 1979. Physical and chemical analyses of soft stone vessels from Southwest Asia. Archaeometry 21(2): 131-159.

Leake, Bernard E., et al. 1997. Nomenclature of amphiboles: report of the subcommittee on amphibole of the International Mineralogical Association Commission on New Minerals and Mineral Names. The Canadian Mineralogist 35: 219-256.

Lowman, D.W. and S.L Wheatley. 1970. Archaic soapstone quarries in Upper South Carolina. Institute of Archaeology and Anthropology, University of South Carolina, Notebook 2(6/7): 6-12.

Luckenbach, A.H., C.G. Holland, and R.O. Allen. 1975. Soapstone artifacts: tracing prehistoric trade patterns in Virginia. Science 187: 57-58.

Misra, K.C. and F.B. Keller. 1978. Ultramafic bodies in the southern Appalachians: a review. American Journal of Science 278: 389-418.

Mittwede, Steven K. 1988. Ultramafites, melanges, and stitching granites as suture markers in the central Piedmont of the southern Appalachians. Journal of Geology 96: 693-708.

! "#!

Mittwede, Steven K. 1989. The Hammet Grove Meta-igneous Suite: a possible ophiolite in the northwestern South Carolina Piedmont. Ultramafic Rocks of the Appalachian Piedmont, pp. 45-62. Geological Society of America Special Paper 231, Boulder, Colorado.

Mittwede, Steven K., Magne Ødegård, and W.E. Sharp. 1987. Major chemical characteristics of the Hammet Grove Meta-igneous Suite, northwestern South Carolina. Southeastern Geology 28(1): 49-63. Moffat, D. and S.J. Butler. 1986. Rare Earth Element distribution patterns in Shetland steatite – consequences for artifact provenancing studies. Archaeometry 28(1): 101-115.

Naldrett, A.J. 1966. Talc-carbonate alteration of some serpentinized ultramafic rocks south of Timmins, Ontario. Journal of Petrology 7(3): 489-499.

Overton, James M. 1969. A survey of soapstone quarry sites. Institute of Archaeology and Anthropology, University of South Carolina, Notebook 1(4).

Peck, Rodney M. 1981. The Pacolet River Site: a South Carolina soapstone quarry. The Chesopian 19(1/2): 39-43.

Pickering, Sam M., Jr., and Frederick J. Schneeberger, III. 1972. General geology of the Soapstone Ridge mafic intrusive area. Georgia Academy of Science 30(2): 78-79.

Raymond, Loren A. 2002. Petrology: The Study of Igneous, Sedimentary, and Metamorphic Rocks. McGraw-Hill, 2002. 720 pp.

Sassaman, Kenneth E. 1993. Early Pottery in the Southeast. University of Alabama Press, Tuscaloosa. 285 pp.

Sassaman, Kenneth E. 1997. Refining soapstone vessel chronology in the Southeast. Early Georgia 25: 1-20.

Sassaman, Kenneth E. 1999. A Southeastern perspective on soapstone vessel technology in the Northeast, pp. 76-95. The Archaeological Northeast. Bergin and Garvey, Westport, CT.

Sassaman, Kenneth E. 2006. Dating and explaining soapstone vessels: a comment on Truncer. American Antiquity 71: 141-156.

Sloane, Earle. 1908. A Catalogue of the Mineral Localities of South Carolina. South Carolina Geological Survey, Series IV, Bulletin 2. Gonzales and Bryan, Columbia, SC.

Swanson, Samuel E. 2001. Ultramafic rocks of the Spruce Pine area, western North Carolina: a sensitive guide to fluid migration and metamorphism. Southeastern Geology 40: 163- 182.

! "#! Truncer, J., M.D. Glascock, and H. Neff. 1998. Steatite source characterization in eastern North America: new results using instrumental neutron activation analysis. Archaeometry 40(1): 23-44.

Truncer, James. 2006. Taking variation seriously: the case of steatite vessel manufacture. American Antiquity 71(1): 157-163.

Turner, Aleta V., Samuel E. Swanson, and Michael F. Roden. 1998. Mineralogical control on archaeological soapstone bowl manufacture. GSA Abstracts with Programs, Southeastern Section: 63-64.

Vermont Soapstone Company. 2008. http://www.vermontsoapstone.com/.

Vincent, Harold R., Keith I. McConnell, and Philip C. Perley. 1990. Geology of Selected Mafic and Ultramafic Rocks of Georgia: A Review. Georgia Department of Natural Resources, Information Circular 82. Atlanta.

Warner, Richard D., Villard S. Griffin, Jefferey C. Steiner, Roman A. Schmitt, and J. Gregory Bryan. 1989. Ultramafic chlorite-tremolite-olivine : three bodies from the Inner Piedmont Belt, South Carolina. Ultramafic Rocks of the Appalachian Piedmont, pp. 63- 74. Geological Society of America Special Paper 231, Boulder, Colorado.

Zane, A. and Z. Weiss. 1998. A procedure for classifying rock-forming chlorites based on microprobe data. Rend. Fis. Acc. Lincei 9(9): 51-56.

! "#!

APPENDICES

! "#!

APPENDIX A

MINERALOGY AND X-RAY DIFFRACTION (XRD)

! "#! A.1 - MODAL MINERALOGY Modes based on 300 points/sample

PA1 PA2 PA3 PA4 PA5 PA7

Talc 69.0% 74.0% 8.0% 42.7% 23.7% 51.7% Chlorite 15.3% 11.7% 18.0% 16.7% 7.0% 12.3% Amphibole 9.3% 9.3% 56.7% - 67.0% 20.3% Serpentine - - 16.3% 29.7% - 9.7% Opaque 6.3% 6.3% 1.0% 11.0% 2.3% 6.0% Total 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

LO67 LO123 LO195 LO272 LO279 LO303 LO310

Talc 43.3% 51.3% 83.3% 32.3% 47.7% 60.3% 21.7% Chlorite 14.0% 14.7% 11.7% 12.3% 28.0% 5.3% 26.0% Amphibole 40.3% 33.0% - 53.7% 8.3% 25.0% 40.3% Serpentine ------Opaque 2.3% 1.0% 5.0% 1.7% 16.3% 9.3% 12.0% Total 100.0% 100.0% 100.0% 100.0% 100.3% 100.0% 100.0%

CW1 CW3 CW6 CW13 CW15 CW16 CW17

Talc 45.0% 14.0% 4.0% 35.7% 35.8% 23.0% 28.0% Chlorite 30.3% 32.3% 20.0% 30.7% 17.3% 30.3% 22.0% Amphibole 17.7% 51.7% 60.3% 27.3% 24.0% 46.3% 44.0% Serpentine ------Opaque 7.0% 2.3% 15.7% 6.3% 23.0% 0.3% 6.0% Total 100.0% 100.3% 100.0% 100.0% 100.0% 100.0% 100.0%

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

Talc 71.3% 20.0% 28.7% 26.3% 53.7% 39.3% 47.0% 24.0% 65.3% 9.7% Chlorite 4.7% 31.7% 31.7% 37.3% 5.0% 46.7% 47.7% 40.3% 28.3% 22.0% Amphibole 23.0% 39.0% 29.3% 26.7% 23.7% 9.3% - 28.0% - 51.7% Serpentine ------Opaque 1.0% 9.7% 10.3% 9.7% 17.7% 4.7% 5.3% 7.7% 6.3% 16.7% Total 100.0% 100.3% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

76 A.2 - MINERALOGY x - observed in this section or EMPA + - observed in XRD spectra ? - presence inconclusive absed on XRD

PA1 PA2 PA3 PA4 PA5 PA7

Talc x x+ x+ x x x+

Chlorite Clinochlore x x+ x+ x x x+ Penninite x x Sheridanite x Ripidolite Pycnochlorite

Amphibole Tremolite x x+ x x+ Magnesiohornblende Cummingtonite/Anthophyllite ? ?

Serpentine x x x

Oxides Magnetite x x x x x x Illmenite x x x x Rutile

Sulfides x x x

77 A.2 - MINERALOGY x - observed in this section or EMPA + - observed in XRD spectra ? - presence inconclusive absed on XRD

LO67 LO123 LO195 LO272 LO279 LO303 LO310

Talc x x+ x+ x+ x x x

Chlorite Clinochlore x x+ x+ x+ x x x Penninite x x Sheridanite x x Ripidolite Pycnochlorite

Amphibole Tremolite x+ x+ x x x Magnesiohornblende x x x Cummingtonite/Anthophyllite x x+ x x x x

Serpentine

Oxides Magnetite x x x x x x x Illmenite x x x x x x x Rutile x x

Sulfides

78 A.2 - MINERALOGY x - observed in this section or EMPA + - observed in XRD spectra ? - presence inconclusive absed on XRD

CW1 CW3 CW6 CW13 CW15 CW16 CW17

Talc x+ x x+ x x x+ x

Chlorite Clinochlore x+ x x+ x x + x Penninite x x x x x x Sheridanite x Ripidolite x Pycnochlorite x x

Amphibole Tremolite x? x x+ x x x+ x Magnesiohornblende x x x x Cummingtonite/Anthophyllite x+ x x? x x x

Serpentine

Oxides Magnetite x x x x x x Illmenite x x x x x x Rutile x x x

Sulfides

79 A.2 - MINERALOGY x - observed in this section or EMPA + - observed in XRD spectra ? - presence inconclusive absed on XRD

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

Talc x x x x x x x x x x

Chlorite Clinochlore x x x x x x x x x x Penninite x x x Sheridanite x Ripidolite Pycnochlorite

Amphibole Tremolite x x x x x x x x Magnesiohornblende x x Cummingtonite/Anthophyllite x x x x x x x x x

Serpentine

Oxides Magnetite x x x x x x x x Illmenite x x x x x x x x Rutile x x

Sulfides

80 A.3 - X-RAY DIFFRACTION (XRD)

Relative intensities of basal reflections Average heavy cation content from EMPA

OO1 OO2 OO3 OO4 OO5 Fe+Cr (# of atoms)

CW1 27.3 31.6 18.9 16.5 4.0 CW1 1.141 CW6 72.1 100.0 53.8 39.6 7.9 CW6 0.927 CW16 28.0 50.9 22.5 28.6 6.3 CW16 2.110 PA2 6.6 5.8 5.2 4.9 1.3 PA2 1.744 PA3 63.7 100.0 62.9 63.2 13.6 PA3 1.172 PA7 12.7 23.1 13.0 16.5 3.6 PA7 1.162 LO123 17.9 31.8 16.8 20.5 4.5 LO123 0.946 LO195 5.4 5.6 3.8 4.1 1.1 LO195 1.564 LO272 7.5 14.7 8.3 6.4 1.7 LO272 1.833

Kohl et. al. (1979) 61/MU01 2.950 7.600 6.550 9.050 1.800

Intensity ratios to determine distribution of heavy cations Intensity ratios to determine total heavy cation content

D OO3/OO1 OO3/OO5 y (OO2+OO4)/(OO1+OO3) (OO2+OO4)/OO3

CW1 0.27 0.69 4.73 -0.08 1.04 2.54 CW6 0.16 0.75 6.81 0.39 1.11 2.59 CW16 0.05 0.80 3.57 3.00 1.57 3.53 PA2 0.08 0.79 4.00 -1.11 0.91 2.06 PA3 -0.25 0.99 4.63 1.51 1.29 2.59 PA7 -0.31 1.02 3.61 2.84 1.54 3.05 LO123 -0.18 0.94 3.73 2.68 1.51 3.11 LO195 0.25 0.70 3.45 0.02 1.05 2.55 LO272 -0.42 1.11 4.88 1.78 1.34 2.54

Kohl et. al. (1979) 61/MU01 -1.46 2.22 3.64 3.80 1.75 2.54

Brindley & Brown (1980) Brindley & Brown (1980) 2 0.24 2.05 0 1.02 2.35 1 0.41 2.84 2 1.40 3.29 0 0.75 3.90 4 1.86 4.35 -1 1.50 5.37 6 2.39 5.60 -2 3.64 7.44 8 2.98 6.98

81 A.3 - X-RAY DIFFRACTION (XRD)

Basal reflection intensity ratios

OO1/OO4 OO2/OO4 OO3/OO4 OO5/OO4 OO1/OO2 OO3/OO2 OO5/OO3 OO3/OO1 (OO2+OO4)/(OO1+OO3)

CW1 1.65 1.92 1.15 0.24 0.86 0.60 0.21 0.69 1.04 CW6 1.82 2.53 1.36 0.20 0.72 0.54 0.15 0.75 1.11 CW16 0.98 1.78 0.79 0.22 0.55 0.44 0.28 0.80 1.57 PA2 1.35 1.18 1.06 0.27 1.14 0.90 0.25 0.79 0.91 PA3 1.01 1.58 1.00 0.22 0.64 0.63 0.22 0.99 1.29 PA7 0.77 1.40 0.79 0.22 0.55 0.56 0.28 1.02 1.54 LO123 0.87 1.55 0.82 0.22 0.56 0.53 0.27 0.94 1.51 LO195 1.32 1.37 0.93 0.27 0.96 0.68 0.29 0.70 1.05 LO272 1.17 2.30 1.30 0.27 0.51 0.56 0.20 1.11 1.34

Kohl et. al. (1979) 61/MU01 0.33 0.84 0.72 0.20 0.39 0.86 0.27 2.22 1.75

CW cv 0.30 0.19 0.26 0.10 0.22 0.15 0.31 0.07 0.23 PA cv 0.28 0.14 0.15 0.12 0.41 0.25 0.12 0.14 0.26 LO cv 0.20 0.28 0.25 0.11 0.37 0.13 0.17 0.22 0.18 Total cv 0.29 0.26 0.21 0.11 0.31 0.21 0.20 0.18 0.19

82 A.3 - X-RAY DIFFRACTION (XRD)

F<6==0-26&.E&)*(&+,-./01234&3;1&+7@&+,-./01234&43602&70386&93:.;<& 0"

'" 345678(!"9" 34:;6"<1/&$=>" )$%*+', !"#"$%&''( " ?:"@A" -."#"$%/&/0/" *1BCD$1" <@:E8"(F%"G8%>" 1/+/=" 2"

!"##$%&'&!"##(%& ?H"

IJ"

1"

KL"

$" )2" )1" $" 1" 2" )*(&+,-./01234&53602&70386&93:.;<&=>;?<&+7@&53602&70386&93:.;

83 A.3 - X-RAY DIFFRACTION (XRD)

+" :24-;%+,-./%0-123%0234,34%

!"#"$%&'(()&%$*+(," 3456789)!":" *" 4;<7"=$/0&>?" -."#"&%//+0$" @;AB3"

2$CDE&$" =A;F9")G%"H9%?" $/I/>"

!"")$%&%!""*$% @J" ! (" !""'$%(% ! KL" !""#$%&% !

MN"

$"

&" 1(" &" (" +" 2" 0" $&" +,-./%0-123%0234,345%"%!6%27%-4289$%

84 A.3 - X-RAY DIFFRACTION (XRD)

9:;<="#$%&'#$(+5>(?7!@<4#*58"#$()#*+,(-*./0(-/0'#0'( (#

'#

)*+),-).# &# /)01234567+#8$9$:#

;<#

"#

12(/3(*'/456( =>#

!"#$%&'#$()#*+,(-*./0(-/0'#0'(( ?@# $#

%# %# $# "# &# '#

7#*58"#$()#*+,(-*./0(-/0'#0'(( !$# 12(/3(*'/456(

!"#

85 A.3 - X-RAY DIFFRACTION (XRD)

'"!# '()(*%+,-,./01%"##!$%!12,1)324%+(/0)%

&"$# ./%# ./0#

./%0# 12&#

12'# 123#

&"!# 4(%&'# 4(%5$#

4(&3&# 0%)67!%#+89:;#<="#>;"?#%535-#

%"$# $%&%!"##$% ! !"##

%"!#

!"$#

!"!# ((%)((*# ((&)((*# ((')((*# (($)((*# ((%)((&# ((')((&# (($)(('# ((')((%# +((&,((*-)+((%,(('-#

86 A.3 - X-RAY DIFFRACTION (XRD)

!"#$%&'()*+%,-$)*.($*/%0+1-*234*

87 A.3 - X-RAY DIFFRACTION (XRD)

!"#$%&'()'#*"'+,-.'/'0"$1')(2'3$40&"'56+'

63744"#27'%8'#*%3'0"$1'2"39')2(4' #*"':(%8:%;"8:"'()'#*"':*&(2%#"'<==>?' $8;'&%@$2;%#"'<==A?'0"$13'%8'AB'30$:",'''

88 A.4 - BULK CHEMISTRY

CW bulk chemistry from Turner et. al. (1998)

CW1 CW6 CW13 CW16 Mean

SiO2 42.80 41.40 42.90 44.50 42.90 Al2O3 6.79 6.86 6.89 9.80 7.59 CaO 0.19 3.08 0.16 4.82 2.06 MgO 28.40 27.90 28.10 22.40 26.70 Na2O 0.11 0.23 0.01 0.47 0.21 K2O 0.00 0.01 0.00 0.03 0.01 Fe tot 13.30 13.40 13.70 11.20 12.90 MnO 0.21 0.25 0.21 0.33 0.25 TiO2 0.65 0.69 0.66 0.80 0.70 P2O5 0.11 0.09 0.07 0.15 0.11

Total 92.56 93.91 92.70 94.50 93.42

HGMS bulk chemistry from Mittwede et. al. (1987)

161 183 176A Mean

SiO2 45.36 57.97 42.50 48.61 Al2O3 7.04 2.21 2.26 3.84 CaO 1.78 0.26 0.72 0.92 MgO 26.24 27.18 34.91 29.44 Na2O 0.01 0.00 0.00 0.00 K2O 0.00 0.15 0.00 0.05 Fe tot 14.59 6.28 9.56 10.14 MnO 0.15 0.08 0.16 0.13 TiO2 0.86 0.05 0.05 0.32 P2O5 0.20 0.00 0.00 0.07

Total 96.23 94.18 90.16 93.52

89

APPENDIX B

MINERAL CHEMISTRY

! "#! B.1 - CHLORITE

wt% of oxides MDL PA3-1 PA3-2 PA3-3 PA3-4 PA3-5 PA3-6 PA3-7 PA3-8

SiO2 0.047 30.180 29.380 33.570 30.710 35.070 31.200 31.650 32.310 Al2O3 0.049 17.890 18.280 15.610 17.130 14.940 17.060 15.610 15.770 MgO 0.051 30.670 30.430 29.470 30.470 28.260 30.200 28.900 30.360 FeO 0.187 6.080 6.250 6.710 6.190 6.540 6.240 6.660 6.280 Cr2O3 0.189 1.077 1.442 0.594 0.785 0.582 0.785 0.721 0.735 Ni 0.164 0.233 0.139 0.149 0.163 0.233 0.104 0.129 0.154 2.401 2.388 2.415 2.386 2.414 2.393 2.338 2.397 Total 86.130 85.920 86.110 85.450 85.630 85.590 83.660 85.610

Formula units based on 28 oxygens Si 5.855 5.722 6.443 5.995 6.709 6.064 6.285 6.266 AlIV 2.145 2.278 1.557 2.005 1.291 1.936 1.715 1.734 Sum T 8.000 8.000 8.000 8.000 8.000 8.000 8.000 8.000

AlVI 1.948 1.927 1.994 1.938 2.109 1.979 1.952 1.880 Cr 0.165 0.222 0.090 0.121 0.088 0.121 0.113 0.113 Fe3+ 0.000 0.000 0.297 0.030 0.510 0.092 0.196 0.145 Fe2+ 1.000 1.071 0.780 0.980 0.536 0.922 0.910 0.873 Mg 8.870 8.835 8.432 8.866 8.059 8.750 8.555 8.777 Ni 0.036 0.022 0.023 0.026 0.036 0.016 0.021 0.024 Sum O 12.019 12.077 11.616 11.961 11.338 11.881 11.746 11.812

Total 20.019 20.077 19.616 19.961 19.338 19.881 19.746 19.812

Variety clinochlore clinochlore pennine clinochlore pennine clinochlore pennine pennine

Mg# 0.899 0.892 0.915 0.900 0.938 0.905 0.904 0.910 Mg/(Mg+Fetot) 0.899 0.892 0.887 0.898 0.885 0.896 0.886 0.896 Al/(Al+Mg+Fe) 0.293 0.299 0.271 0.285 0.270 0.286 0.274 0.269 Al/(Al+Cr) 0.961 0.950 0.975 0.970 0.975 0.970 0.970 0.970 Al+vacancies 4.080 4.151 3.849 3.973 3.915 4.007 3.864 3.760

91 B.1 - CHLORITE

wt% of oxides MDL PA1-1a PA1-1 PA1-2 PA1-3 PA1-4

SiO2 0.047 31.080 30.900 30.830 30.570 30.580 Al2O3 0.049 16.490 16.610 16.640 16.700 16.650 MgO 0.051 30.110 32.380 31.100 31.590 32.340 FeO 0.187 7.270 4.750 6.230 5.380 4.640 Cr2O3 0.189 1.134 1.134 1.178 1.119 1.377 Ni 0.164 0.138 0.174 0.089 0.139 0.159 2.392 2.411 2.398 2.391 2.404 Total 86.230 85.950 86.060 85.500 85.740

Formula units based on 28 oxygens Si 6.051 5.961 5.987 5.948 5.914 AlIV 1.949 2.039 2.013 2.052 2.086 Sum T 8.000 8.000 8.000 8.000 8.000

AlVI 1.837 1.744 1.797 1.784 1.718 Cr 0.175 0.173 0.181 0.172 0.211 Fe3+ 0.035 0.000 0.000 0.000 0.000 Fe2+ 1.149 0.817 1.026 0.915 0.815 Mg 8.738 9.311 9.002 9.163 9.323 Ni 0.022 0.027 0.014 0.022 0.025 Sum O 11.955 12.071 12.021 12.056 12.092

Total 19.955 20.071 20.021 20.056 20.092

Variety clinochlore clinochlore clinochlore clinochlore clinochlore

Mg# 0.884 0.919 0.898 0.909 0.920 Mg/(Mg+Fetot) 0.881 0.919 0.898 0.909 0.920 Al/(Al+Mg+Fe) 0.276 0.273 0.276 0.276 0.274 Al/(Al+Cr) 0.956 0.956 0.955 0.957 0.947 Al+vacancies 3.821 3.733 3.796 3.796 3.739

92 B.1 - CHLORITE

wt% of oxides MDL PA4-1 PA4-3 PA4-4 PA4-6 PA4-7

SiO2 0.047 30.660 30.560 30.490 31.510 29.960 Al2O3 0.049 16.060 15.830 15.970 15.150 15.960 MgO 0.051 32.750 31.870 32.900 33.670 32.410 FeO 0.187 4.190 3.970 4.200 4.790 5.130 Cr2O3 0.189 1.302 1.202 1.966 0.918 1.883 Ni 0.164 0.154 0.000 0.055 0.129 0.005 2.392 2.353 2.399 2.416 2.379 Total 85.110 83.430 85.590 86.170 85.350

Formula units based on 28 oxygens Si 5.956 6.052 5.902 6.048 5.837 AlIV 2.044 1.948 2.098 1.952 2.163 Sum T 8.000 8.000 8.000 8.000 8.000

AlVI 1.645 1.748 1.558 1.492 1.521 Cr 0.200 0.188 0.301 0.139 0.290 Fe3+ 0.000 0.000 0.000 0.000 0.000 Fe2+ 0.762 0.662 0.778 0.900 0.980 Mg 9.484 9.408 9.493 9.634 9.413 Ni 0.024 0.000 0.008 0.020 0.001 Sum O 12.116 12.007 12.139 12.185 12.205

Total 20.116 20.007 20.139 20.185 20.205

Variety clinochlore clinochlore clinochlore clinochlore clinochlore

Mg# 0.926 0.934 0.924 0.915 0.906 Mg/(Mg+Fetot) 0.926 0.934 0.924 0.915 0.906 Al/(Al+Mg+Fe) 0.266 0.269 0.264 0.248 0.263 Al/(Al+Cr) 0.948 0.952 0.924 0.961 0.927 Al+vacancies 3.607 3.691 3.558 3.312 3.539

93 B.1 - CHLORITE

wt% of oxides MDL PA2-1 PA2-3 PA2-5 PA2-7 PA2-9

SiO2 0.047 28.450 30.930 27.610 29.330 27.480 Al2O3 0.049 20.080 21.210 20.060 21.600 21.380 MgO 0.051 26.890 22.900 27.320 24.260 25.960 FeO 0.177 10.100 9.070 9.740 10.230 10.740 Cr2O3 0.200 0.437 0.545 0.674 0.838 0.059 Ni 0.167 0.142 0.157 0.071 0.147 0.081 2.356 2.361 2.337 2.374 2.339 Total 86.100 84.810 85.470 86.410 85.690

Formula units based on 28 oxygens Si 5.627 6.039 5.489 5.723 5.471 AlIV 2.373 1.961 2.511 2.277 2.529 Sum T 8.000 8.000 8.000 8.000 8.000

AlVI 2.308 2.973 2.204 2.719 2.491 Cr 0.068 0.084 0.106 0.129 0.009 Fe3+ 0.002 0.608 0.000 0.317 0.000 Fe2+ 1.669 0.873 1.703 1.352 1.800 Mg 7.928 6.665 8.097 7.057 7.705 Ni 0.023 0.025 0.011 0.023 0.013 Sum O 11.998 11.228 12.121 11.598 12.018

Total 19.998 19.228 20.121 19.598 20.018

Variety clinochlore clinochlore sheridanite clinochlore sheridanite

Mg# 0.826 0.884 0.826 0.839 0.811 Mg/(Mg+Fetot) 0.826 0.818 0.826 0.809 0.811 Al/(Al+Mg+Fe) 0.328 0.375 0.326 0.363 0.346 Al/(Al+Cr) 0.986 0.983 0.978 0.975 0.998 Al+vacancies 4.683 5.550 4.631 5.315 5.007

94 B.1 - CHLORITE

wt% of oxides MDL PA5-1 PA5-3 PA5-5 PA5-7 PA5-9

SiO2 0.047 30.700 32.250 33.370 35.590 33.310 Al2O3 0.049 15.360 15.390 13.960 14.310 14.730 MgO 0.051 28.850 28.480 27.320 25.120 27.140 FeO 0.177 8.910 9.220 8.430 8.280 9.970 Cr2O3 0.200 1.008 1.032 0.892 0.774 0.827 Ni 0.167 0.195 0.095 0.033 0.162 0.105 2.336 2.383 2.335 2.361 2.372 Total 85.030 86.460 84.000 84.230 86.090

Formula units based on 28 oxygens Si 6.123 6.289 6.616 6.930 6.508 AlIV 1.877 1.711 1.384 1.070 1.492 Sum T 8.000 8.000 8.000 8.000 8.000

AlVI 1.734 1.836 1.901 2.258 1.919 Cr 0.159 0.159 0.140 0.119 0.128 Fe3+ 0.009 0.160 0.371 0.737 0.312 Fe2+ 1.477 1.344 1.027 0.611 1.317 Mg 8.577 8.279 8.075 7.292 7.904 Ni 0.031 0.015 0.005 0.025 0.016 Sum O 11.988 11.793 11.519 11.043 11.596

Total 19.988 19.793 19.519 19.043 19.596

Variety clinochlore pennine pennine pennine pennine

Mg# 0.853 0.860 0.887 0.923 0.857 Mg/(Mg+Fetot) 0.852 0.846 0.852 0.844 0.829 Al/(Al+Mg+Fe) 0.264 0.266 0.256 0.275 0.262 Al/(Al+Cr) 0.958 0.957 0.959 0.965 0.964 Al+vacancies 3.621 3.708 3.657 4.075 3.725

95 B.1 - CHLORITE

wt% of oxides MDL PA7-1 PA7-4 PA7-6 PA7-8 PA7-10

SiO2 0.047 30.220 30.280 31.250 31.060 30.970 Al2O3 0.049 16.580 16.850 16.180 14.940 16.440 MgO 0.051 31.300 32.710 33.410 32.250 33.440 FeO 0.177 6.290 4.320 5.080 5.830 4.280 Cr2O3 0.200 1.510 1.511 1.218 1.327 1.930 Ni 0.167 0.138 0.210 0.119 0.096 0.201 2.389 2.408 2.441 2.382 2.444 Total 86.040 85.890 87.260 85.500 87.260

Formula units based on 28 oxygens Si 5.876 5.838 5.938 6.054 5.882 AlIV 2.124 2.162 2.062 1.946 2.118 Sum T 8.000 8.000 8.000 8.000 8.000

AlVI 1.687 1.682 1.578 1.499 1.576 Cr 0.232 0.230 0.183 0.204 0.290 Fe3+ 0.000 0.000 0.000 0.000 0.000 Fe2+ 1.107 0.799 0.930 1.049 0.783 Mg 9.072 9.402 9.464 9.371 9.467 Ni 0.022 0.033 0.018 0.015 0.031 Sum O 12.120 12.146 12.174 12.139 12.147

Total 20.120 20.146 20.174 20.139 20.147

Variety clinochlore clinochlore clinochlore clinochlore clinochlore

Mg# 0.891 0.922 0.910 0.899 0.924 Mg/(Mg+Fetot) 0.891 0.922 0.910 0.899 0.924 Al/(Al+Mg+Fe) 0.273 0.275 0.261 0.250 0.266 Al/(Al+Cr) 0.942 0.943 0.952 0.944 0.927 Al+vacancies 3.727 3.741 3.517 3.346 3.590

96 B.1 - CHLORITE

wt% of oxides MDL LO272-1 LO272-2 LO272-3 LO272-4 LO272-5

SiO2 0.047 29.320 27.900 28.020 28.000 27.840 Al2O3 0.049 19.200 20.590 19.330 20.690 19.270 MgO 0.051 27.990 26.860 26.280 26.550 26.290 FeO 0.187 9.480 10.900 10.720 11.080 10.640 Cr2O3 0.189 0.000 0.248 0.595 0.025 0.323 Ni 0.164 0.168 0.158 0.138 0.133 0.049 2.369 2.359 2.316 2.356 2.301 Total 86.160 86.660 85.080 86.480 84.410

Formula units based on 28 oxygens Si 5.764 5.495 5.633 5.529 5.631 AlIV 2.236 2.505 2.367 2.471 2.369 Sum T 8.000 8.000 8.000 8.000 8.000

AlVI 2.215 2.288 2.216 2.352 2.231 Cr 0.000 0.039 0.095 0.004 0.052 Fe3+ 0.000 0.000 0.000 0.000 0.000 Fe2+ 1.567 1.870 1.826 1.878 1.836 Mg 8.203 7.887 7.875 7.815 7.926 Ni 0.027 0.025 0.022 0.021 0.008 Sum O 12.012 12.108 12.034 12.070 12.052

Total 20.012 20.108 20.034 20.070 20.052

Variety clinochlore sheridanite clinochlore sheridanite clinochlore

Mg# 0.840 0.808 0.812 0.806 0.812 Mg/(Mg+Fetot) 0.840 0.808 0.812 0.806 0.812 Al/(Al+Mg+Fe) 0.313 0.331 0.321 0.333 0.321 Al/(Al+Cr) 1.000 0.992 0.980 0.999 0.989 Al+vacancies 4.442 4.719 4.560 4.776 4.564

97 B.1 - CHLORITE

wt% of oxides MDL LO303-1a LO303-1 LO303-3 LO303-4 LO303-5

SiO2 0.047 31.540 34.110 30.780 29.730 31.580 Al2O3 0.049 17.300 14.490 16.900 17.380 15.750 MgO 0.051 31.680 31.210 32.140 31.720 32.330 FeO 0.187 6.260 6.040 6.620 5.960 5.420 Cr2O3 0.189 0.456 0.406 0.076 0.368 0.140 Ni 0.164 0.188 0.114 0.134 0.218 0.134 2.443 2.429 2.414 2.381 2.397 Total 87.420 86.370 86.650 85.370 85.350

Formula units based on 28 oxygens Si 6.014 6.518 5.912 5.788 6.131 AlIV 1.986 1.482 2.088 2.212 1.869 Sum T 8.000 8.000 8.000 8.000 8.000

AlVI 1.902 1.793 1.757 1.797 1.740 Cr 0.069 0.061 0.012 0.057 0.021 Fe3+ 0.000 0.210 0.000 0.000 0.000 Fe2+ 1.004 0.755 1.195 1.118 0.924 Mg 9.004 8.890 9.203 9.205 9.356 Ni 0.029 0.018 0.021 0.034 0.021 Sum O 12.009 11.727 12.187 12.211 12.062

Total 20.009 19.727 20.187 20.211 20.062

Variety clinochlore pennine clinochlore clinochlore clinochlore

Mg# 0.900 0.922 0.885 0.892 0.910 Mg/(Mg+Fetot) 0.900 0.902 0.885 0.892 0.910 Al/(Al+Mg+Fe) 0.280 0.249 0.272 0.282 0.260 Al/(Al+Cr) 0.983 0.982 0.997 0.986 0.994 Al+vacancies 3.883 3.487 3.713 3.861 3.565

98 B.1 - CHLORITE

wt% of oxides MDL LO123-2 LO123-5 LO123-7 LO123-9 LO123-11

SiO2 0.047 31.030 35.780 31.800 34.860 32.030 Al2O3 0.049 14.970 14.700 14.450 14.220 15.370 MgO 0.051 34.020 29.020 33.550 29.030 33.760 FeO 0.177 3.770 4.960 3.610 5.120 3.960 Cr2O3 0.200 1.748 0.736 1.821 1.025 1.674 Ni 0.167 0.096 0.515 0.067 0.391 0.048 2.405 2.434 2.403 2.396 2.445 Total 85.640 85.700 85.300 84.650 86.840

Formula units based on 28 oxygens Si 5.980 6.782 6.157 6.722 6.096 AlIV 2.020 1.218 1.843 1.278 1.904 Sum T 8.000 8.000 8.000 8.000 8.000

AlVI 1.398 2.099 1.460 1.982 1.549 Cr 0.266 0.110 0.279 0.156 0.252 Fe3+ 0.000 0.559 0.000 0.485 0.000 Fe2+ 0.753 0.227 0.627 0.340 0.672 Mg 9.773 8.200 9.683 8.345 9.578 Ni 0.015 0.079 0.010 0.061 0.007 Sum O 12.205 11.274 12.060 11.369 12.059

Total 20.205 19.274 20.060 19.369 20.059

Variety clinochlore pennine clinochlore pennine clinochlore

Mg# 0.928 0.973 0.939 0.961 0.934 Mg/(Mg+Fetot) 0.928 0.913 0.939 0.910 0.934 Al/(Al+Mg+Fe) 0.247 0.268 0.243 0.261 0.252 Al/(Al+Cr) 0.927 0.967 0.922 0.954 0.932 Al+vacancies 3.272 3.882 3.260 3.750 3.411

99 B.1 - CHLORITE

wt% of oxides MDL LO310-2 LO310-4 LO310-6 LO310-8 LO310-10

SiO2 0.047 30.060 31.310 30.670 30.830 30.140 Al2O3 0.049 17.240 16.300 16.940 16.080 17.450 MgO 0.051 30.660 29.960 30.180 30.840 30.810 FeO 0.177 7.110 7.280 6.640 6.880 7.170 Cr2O3 0.200 0.646 0.717 0.575 0.467 0.526 Ni 0.167 0.071 0.157 0.105 0.043 0.062 2.381 2.383 2.373 2.370 2.392 Total 85.790 85.730 85.110 85.130 86.160

Formula units based on 28 oxygens Si 5.866 6.117 6.019 6.054 5.854 AlIV 2.134 1.883 1.981 1.946 2.146 Sum T 8.000 8.000 8.000 8.000 8.000

AlVI 1.843 1.875 1.940 1.780 1.861 Cr 0.100 0.111 0.089 0.072 0.081 Fe3+ 0.000 0.058 0.027 0.000 0.000 Fe2+ 1.239 1.132 1.063 1.168 1.249 Mg 8.919 8.726 8.830 9.027 8.920 Ni 0.011 0.025 0.017 0.007 0.010 Sum O 12.112 11.926 11.965 12.055 12.120

Total 20.112 19.926 19.965 20.055 20.120

Variety clinochlore clinochlore clinochlore clinochlore clinochlore

Mg# 0.878 0.885 0.893 0.885 0.877 Mg/(Mg+Fetot) 0.878 0.880 0.890 0.885 0.877 Al/(Al+Mg+Fe) 0.282 0.275 0.283 0.268 0.284 Al/(Al+Cr) 0.975 0.971 0.978 0.981 0.980 Al+vacancies 3.898 3.815 3.948 3.688 3.922

100 B.1 - CHLORITE

wt% of oxides MDL LO67-1 LO67-3 LO67-5 LO67-7 LO67-9

SiO2 0.047 28.920 29.810 29.590 28.540 29.210 Al2O3 0.049 19.150 18.290 18.730 20.700 19.940 MgO 0.051 27.880 29.420 28.740 28.710 28.110 FeO 0.177 8.610 8.620 8.660 9.040 9.630 Cr2O3 0.200 0.415 0.178 0.178 0.296 0.142 Ni 0.167 0.219 0.219 0.299 0.166 0.100 2.349 2.387 2.377 2.405 2.394 Total 85.180 86.530 86.210 87.450 87.130

Formula units based on 28 oxygens Si 5.737 5.807 5.796 5.513 5.681 AlIV 2.263 2.193 2.204 2.487 2.319 Sum T 8.000 8.000 8.000 8.000 8.000

AlVI 2.215 2.017 2.124 2.240 2.255 Cr 0.065 0.027 0.028 0.045 0.022 Fe3+ 0.010 0.000 0.000 0.000 0.000 Fe2+ 1.419 1.466 1.440 1.544 1.584 Mg 8.244 8.544 8.392 8.267 8.149 Ni 0.035 0.034 0.047 0.026 0.016 Sum O 11.988 12.088 12.031 12.122 12.026

Total 19.988 20.088 20.031 20.122 20.026

Variety clinochlore clinochlore clinochlore sheridanite clinochlore

Mg# 0.853 0.854 0.854 0.843 0.837 Mg/(Mg+Fetot) 0.852 0.854 0.854 0.843 0.837 Al/(Al+Mg+Fe) 0.316 0.297 0.306 0.326 0.320 Al/(Al+Cr) 0.986 0.994 0.994 0.990 0.995 Al+vacancies 4.488 4.148 4.306 4.643 4.556

101 B.1 - CHLORITE

wt% of oxides MDL LO279-1 LO279-3 LO279-5 LO279-7 LO279-9

SiO2 0.047 31.500 31.690 31.350 31.920 31.600 Al2O3 0.049 15.550 16.120 16.200 14.960 15.460 MgO 0.051 32.260 32.620 32.750 32.460 32.690 FeO 0.177 6.140 5.670 5.740 5.610 5.740 Cr2O3 0.200 0.603 0.036 0.290 0.471 0.447 Ni 0.167 0.038 0.019 0.048 0.057 0.091 2.404 2.418 2.419 2.396 2.408 Total 86.100 86.160 86.370 85.470 86.010

Formula units based on 28 oxygens Si 6.090 6.093 6.018 6.199 6.097 AlIV 1.910 1.907 1.982 1.801 1.903 Sum T 8.000 8.000 8.000 8.000 8.000

AlVI 1.642 1.755 1.697 1.628 1.624 Cr 0.092 0.006 0.044 0.072 0.068 Fe3+ 0.000 0.000 0.000 0.000 0.000 Fe2+ 1.065 0.972 1.020 0.952 1.012 Mg 9.297 9.350 9.372 9.397 9.403 Ni 0.006 0.003 0.007 0.009 0.014 Sum O 12.102 12.085 12.140 12.058 12.121

Total 20.102 20.085 20.140 20.058 20.121

Variety clinochlore clinochlore clinochlore clinochlore clinochlore

Mg# 0.897 0.906 0.902 0.908 0.903 Mg/(Mg+Fetot) 0.897 0.906 0.902 0.908 0.903 Al/(Al+Mg+Fe) 0.256 0.263 0.263 0.249 0.254 Al/(Al+Cr) 0.975 0.998 0.988 0.979 0.981 Al+vacancies 3.480 3.601 3.579 3.388 3.441

102 B.1 - CHLORITE

wt% of oxides MDL LO195-1 LO195-3 LO195-5 LO195-7 LO195-9

SiO2 0.047 30.780 30.400 29.560 30.420 29.730 Al2O3 0.049 17.350 17.460 18.520 17.200 17.470 MgO 0.051 29.440 29.890 29.260 29.470 29.210 FeO 0.177 9.180 8.520 9.590 9.050 9.340 Cr2O3 0.200 0.000 0.013 0.071 0.048 0.036 Ni 0.167 0.089 0.158 0.262 0.296 0.110 2.394 2.388 2.393 2.380 2.360 Total 86.840 86.450 87.250 86.490 85.900

Formula units based on 28 oxygens Si 5.986 5.919 5.733 5.942 5.849 AlIV 2.014 2.081 2.267 2.058 2.151 Sum T 8.000 8.000 8.000 8.000 8.000

AlVI 1.966 1.935 1.983 1.911 1.914 Cr 0.000 0.002 0.011 0.007 0.006 Fe3+ 0.000 0.000 0.000 0.000 0.000 Fe2+ 1.513 1.447 1.668 1.536 1.632 Mg 8.535 8.676 8.459 8.582 8.567 Ni 0.014 0.025 0.041 0.046 0.017 Sum O 12.028 12.084 12.162 12.082 12.136

Total 20.028 20.084 20.162 20.082 20.136

Variety clinochlore clinochlore clinochlore clinochlore clinochlore

Mg# 0.849 0.857 0.835 0.848 0.840 Mg/(Mg+Fetot) 0.849 0.857 0.835 0.848 0.840 Al/(Al+Mg+Fe) 0.284 0.285 0.297 0.282 0.286 Al/(Al+Cr) 1.000 1.000 0.997 0.998 0.999 Al+vacancies 3.960 3.957 4.137 3.911 3.970

103 B.1 - CHLORITE

wt% of oxides MDL CW1A2 CW1A4 CW1A6 CW1A8 CW1A10

SiO2 0.050 31.280 30.750 30.360 31.760 29.660 Al2O3 0.041 15.970 15.390 15.080 15.570 18.460 MgO 0.044 31.170 30.690 30.490 30.700 29.920 FeO 0.173 6.520 6.270 5.810 6.900 6.570 Cr2O3 0.232 0.544 0.495 0.471 0.531 0.136 Ni 0.170 0.026 0.092 0.143 0.072 0.128 2.386 2.336 2.303 2.384 2.368 Total 85.500 83.690 82.350 85.530 84.870

Formula units based on 28 oxygens Si 6.106 6.130 6.139 6.202 5.833 AlIV 1.894 1.870 1.861 1.798 2.167 Sum T 8.000 8.000 8.000 8.000 8.000

AlVI 1.782 1.749 1.736 1.789 2.113 Cr 0.084 0.078 0.075 0.082 0.021 Fe3+ 0.000 0.000 0.000 0.041 0.000 Fe2+ 1.076 1.063 1.003 1.086 1.094 Mg 9.070 9.120 9.191 8.937 8.771 Ni 0.004 0.015 0.023 0.011 0.020 Sum O 12.016 12.025 12.029 11.947 12.020

Total 20.016 20.025 20.029 19.947 20.020

Variety clinochlore clinochlore clinochlore pennine clinochlore

Mg# 0.894 0.896 0.902 0.892 0.889 Mg/(Mg+Fetot) 0.894 0.896 0.902 0.888 0.889 Al/(Al+Mg+Fe) 0.266 0.262 0.261 0.263 0.303 Al/(Al+Cr) 0.978 0.979 0.979 0.978 0.995 Al+vacancies 3.665 3.601 3.577 3.628 4.267

104 B.1 - CHLORITE

wt% of oxides MDL CW6G3 CW6G5 CW6G9

SiO2 0.050 31.440 32.740 30.270 Al2O3 0.041 14.590 14.190 15.180 MgO 0.044 31.470 33.120 32.070 FeO 0.173 5.040 4.510 4.930 Cr2O3 0.232 0.386 0.475 0.908 Ni 0.170 0.056 0.041 0.169 2.335 2.402 2.339 Total 82.990 85.080 83.530

Formula units based on 28 oxygens Si 6.272 6.351 6.007 AlIV 1.728 1.649 1.993 Sum T 8.000 8.000 8.000

AlVI 1.704 1.596 1.572 Cr 0.061 0.073 0.142 Fe3+ 0.021 0.012 0.000 Fe2+ 0.820 0.720 0.932 Mg 9.359 9.578 9.487 Ni 0.009 0.006 0.027 Sum O 11.973 11.985 12.161

Total 19.973 19.985 20.161

Variety pennine pennine clinochlore

Mg# 0.919 0.930 0.911 Mg/(Mg+Fetot) 0.918 0.929 0.921 Al/(Al+Mg+Fe) 0.252 0.239 0.256 Al/(Al+Cr) 0.983 0.978 0.961 Al+vacancies 3.453 3.257 3.451

105 B.1 - CHLORITE

wt% of oxides MDL CW13.1 CW13.2 CW13.7 CW13.10 CW133 CW135 CW137 CW139

SiO2 0.049 32.020 31.950 31.260 32.990 31.080 29.140 30.870 32.090 Al2O3 0.048 16.070 16.200 16.630 16.260 15.490 15.840 15.770 15.200 MgO 0.051 31.350 30.710 30.990 30.610 30.120 31.020 30.050 30.330 FeO 0.177 6.700 7.710 6.540 6.330 7.690 7.000 6.850 6.690 Cr2O3 0.200 0.472 0.356 0.523 0.217 0.664 0.900 0.395 0.383 Ni 0.168 0.136 0.047 0.125 0.099 0.061 0.082 0.154 0.123 2.421 2.417 2.402 2.430 2.358 2.322 2.342 2.370 Total 86.750 86.970 86.070 86.510 85.100 83.990 84.100 84.820

Formula units based on 28 oxygens Si 6.161 6.157 6.065 6.307 6.140 5.805 6.139 6.298 AlIV 1.839 1.843 1.935 1.693 1.860 2.195 1.861 1.702 Sum T 8.000 8.000 8.000 8.000 8.000 8.000 8.000 8.000

AlVI 1.807 1.838 1.868 1.983 1.747 1.553 1.837 1.820 Cr 0.072 0.054 0.080 0.033 0.104 0.142 0.062 0.059 Fe3+ 0.023 0.028 0.007 0.181 0.000 0.000 0.022 0.100 Fe2+ 1.055 1.215 1.054 0.831 1.274 1.372 1.118 0.998 Mg 8.992 8.822 8.962 8.723 8.870 9.212 8.909 8.873 Ni 0.021 0.007 0.020 0.015 0.010 0.013 0.025 0.019 Sum O 11.971 11.964 11.991 11.766 12.005 12.291 11.972 11.871

Total 19.971 19.964 19.991 19.766 20.005 20.291 19.972 19.871

Variety clinochlore clinochlore clinochlore pennine clinochlore clinochlore clinochlore pennine

Mg# 0.895 0.879 0.895 0.913 0.874 0.870 0.889 0.899 Mg/(Mg+Fetot) 0.893 0.877 0.894 0.896 0.874 0.870 0.887 0.890 Al/(Al+Mg+Fe) 0.266 0.268 0.275 0.273 0.262 0.264 0.269 0.261 Al/(Al+Cr) 0.981 0.985 0.979 0.991 0.972 0.963 0.983 0.983 Al+vacancies 3.830 3.783 3.812 3.839 3.808 3.806 3.811 3.810

106 B.1 - CHLORITE

wt% of oxides MDL CW17.3 CW17.8 CW17.9 CW17.10 CW17.13

SiO2 0.049 31.590 31.840 31.110 32.080 31.560 Al2O3 0.048 15.950 15.810 16.070 15.350 16.020 MgO 0.051 31.140 30.380 30.490 30.400 31.100 FeO 0.177 7.390 6.460 7.040 8.050 6.020 Cr2O3 0.200 0.560 0.562 0.726 0.659 0.422 Ni 0.168 0.000 0.141 0.109 0.052 0.110 2.407 2.381 2.378 2.399 2.387 Total 86.630 85.190 85.550 86.590 85.240

Formula units based on 28 oxygens Si 6.110 6.219 6.094 6.226 6.157 AlIV 1.890 1.781 1.906 1.774 1.843 Sum T 8.000 8.000 8.000 8.000 8.000

AlVI 1.750 1.865 1.805 1.740 1.843 Cr 0.086 0.087 0.112 0.101 0.065 Fe3+ 0.000 0.096 0.007 0.038 0.037 Fe2+ 1.218 0.959 1.147 1.269 0.945 Mg 8.979 8.846 8.903 8.795 9.045 Ni 0.000 0.022 0.017 0.008 0.017 Sum O 12.032 11.876 11.992 11.951 11.952

Total 20.032 19.876 19.992 19.951 19.952

Variety clinochlore pennine clinochlore pennine clinochlore

Mg# 0.881 0.902 0.886 0.874 0.905 Mg/(Mg+Fetot) 0.881 0.893 0.885 0.871 0.902 Al/(Al+Mg+Fe) 0.263 0.269 0.270 0.258 0.269 Al/(Al+Cr) 0.977 0.977 0.971 0.972 0.983 Al+vacancies 3.830 3.783 3.812 3.839 3.808

107 B.1 - CHLORITE

wt% of oxides MDL CW162 CW164 CW166 CW168 CW169

SiO2 0.050 27.880 29.060 28.090 27.360 27.700 Al2O3 0.041 20.380 19.190 19.290 20.160 20.640 MgO 0.044 24.400 24.440 25.390 24.390 24.550 FeO 0.173 12.480 11.800 12.000 12.240 12.560 Cr2O3 0.232 0.397 0.254 0.169 0.373 0.301 Ni 0.170 0.204 0.183 0.148 0.092 0.097 2.317 2.310 2.305 2.288 2.320 Total 85.740 84.920 85.080 84.610 85.850

Formula units based on 28 oxygens Si 5.601 5.845 5.678 5.570 5.560 AlIV 2.399 2.155 2.322 2.430 2.440 Sum T 8.000 8.000 8.000 8.000 8.000

AlVI 2.432 2.408 2.275 2.410 2.445 Cr 0.063 0.040 0.027 0.060 0.048 Fe3+ 0.053 0.164 0.000 0.022 0.029 Fe2+ 2.044 1.821 2.037 2.062 2.079 Mg 7.307 7.328 7.650 7.402 7.346 Ni 0.033 0.030 0.024 0.015 0.016 Sum O 11.932 11.791 12.013 11.971 11.963

Total 19.932 19.791 20.013 19.971 19.963

Variety pycnochlorite pycnochlorite pycnochlorite ripidolite ripidolite

Mg# 0.781 0.801 0.790 0.782 0.779 Mg/(Mg+Fetot) 0.777 0.787 0.790 0.780 0.777 Al/(Al+Mg+Fe) 0.339 0.328 0.322 0.338 0.341 Al/(Al+Cr) 0.987 0.991 0.994 0.988 0.990 Al+vacancies 3.830 3.783 3.812 3.839 3.808

108 B.1 - CHLORITE

wt% of oxides wt% of oxides MDL CW3.2 CW3.6 MDL CW3.1 CW3.3 CW3.7

SiO2 0.049 28.550 28.680 SiO2 0.050 28.930 27.080 28.860 Al2O3 0.048 20.670 19.110 TiO2 0.060 0.031 0.063 0.010 MgO 0.051 24.580 26.460 Al2O3 0.050 19.670 19.720 19.630 FeO 0.177 11.850 11.140 MgO 0.050 26.650 25.540 24.290 Cr2O3 0.200 0.262 0.337 FeO 0.150 11.250 10.690 11.450 Ni 0.168 0.088 0.166 CaO 0.040 0.038 0.016 0.126 2.339 2.337 MnO 0.170 0.018 0.088 0.035 Total 85.990 85.880 K2O 0.030 0.012 0.008 0.000 Na2O 0.070 0.002 0.049 0.014 Formula units based on 28 oxygens BaO 0.140 0.067 0.036 0.000 Si 5.673 5.716 AlIV 2.327 2.284 Total 86.680 83.290 84.420 Sum T 8.000 8.000 Formula units based on 28 oxygens AlVI 2.526 2.207 Si 5.707 5.551 5.819 IV 2.293 2.449 2.181 Cr 0.041 0.053 Al Fe3+ 0.133 0.000 Sum T 8.000 8.000 8.000 Fe2+ 1.836 1.867

VI 2.282 2.327 2.500 Mg 7.281 7.861 Al Ni 0.014 0.027 Ti 0.005 0.010 0.002 Sum O 11.831 12.014 Fe3+ 0.000 0.000 0.177 Fe2+ 1.858 1.883 1.754 Total 19.831 20.014 Mn 0.003 0.015 0.006 Mg 7.837 7.805 7.301 Variety pycnochlorite clinochlore Ca 0.008 0.003 0.027 Na 0.002 0.039 0.011 Mg# 0.799 0.808 K 0.006 0.004 0.000 Mg/(Mg+Fetot) 0.787 0.808 Ba 0.010 0.006 0.000 Al/(Al+Mg+Fe) 0.344 0.316 Sum O 12.011 12.091 11.778 Al/(Al+Cr) 0.992 0.988 Al+vacancies 4.986 4.491 Total 20.011 20.091 19.778

Variety clinochlore sheridanite pycnochlorite

Mg# 1.000 1.000 0.908 Mg/(Mg+Fetot) 0.808 0.806 0.791 Al/(Al+Mg+Fe) 0.321 0.331 0.336 Al+vacancies 4.573 4.725 4.859

109 B.1 - CHLORITE

wt% of oxides MDL CW15.1 CW15.4 CW15.6 CW3.6

SiO2 0.050 30.790 30.360 31.560 32.000 TiO2 0.060 0.092 0.020 0.051 0.038 Al2O3 0.050 15.930 16.430 16.270 15.700 MgO 0.050 31.350 30.610 31.310 30.970 FeO 0.150 6.460 5.910 6.820 6.400 CaO 0.040 0.007 0.001 0.025 0.012 MnO 0.170 0.000 0.062 0.044 0.053 K2O 0.030 0.000 0.000 0.002 0.330 Na2O 0.070 0.013 0.000 0.009 0.069 BaO 0.140 0.011 0.031 0.052 0.000

Total 84.640 83.420 86.150 85.570

Formula units based on 28 oxygens Si 6.054 6.050 6.114 6.223

IV 1.946 1.950 1.886 1.777 Al Sum T 8.000 8.000 8.000 8.000

VI 1.755 1.911 1.832 1.829 Al Ti 0.014 0.003 0.007 0.006 Fe3+ 0.000 0.000 0.000 0.000 Fe2+ 1.131 0.998 1.122 1.049 Mn 0.000 0.010 0.007 0.009 Mg 9.189 9.093 9.042 8.978 Ca 0.001 0.000 0.005 0.002 Na 0.010 0.000 0.007 0.052 K 0.000 0.000 0.001 0.163 Ba 0.002 0.005 0.008 0.000 Sum O 12.102 12.022 12.032 12.088

Total 20.102 20.022 20.032 20.088

Variety clinochlore clinochlore clinochlore pennine

Mg# 1.000 1.000 1.000 1.000 Mg/(Mg+Fetot) 0.890 0.901 0.890 0.896 Al/(Al+Mg+Fe) 0.265 0.277 0.268 0.264 Al+vacancies 3.632 3.848 3.700 3.598

110 B.1 - CHLORITE

wt% of oxides wt% of oxides A8-3 A8-9 A8-15 A5-3 A5-9 A5-15

SiO2 0.049 30.090 31.170 30.480 SiO2 0.049 31.960 32.780 31.010 Al2O3 0.050 17.920 15.720 16.980 Al2O3 0.050 16.540 16.000 16.580 MgO 0.049 30.950 32.550 31.150 MgO 0.049 31.400 29.910 31.070 FeO 0.145 7.000 7.000 7.350 FeO 0.145 6.350 5.830 7.590 Cr2O3 0.182 0.376 0.388 0.206 Cr2O3 0.182 0.000 0.024 0.024 Ni 0.176 0.084 0.079 0.045 Ni 0.176 0.099 0.000 0.089

Total 86.420 86.890 86.220 Total 86.340 84.540 86.360

Formula units based on 28 oxygens Formula units based on 28 oxygens Si 5.838 6.004 5.923 Si 6.152 6.375 6.010 AlIV 2.162 1.996 2.077 AlIV 1.848 1.625 1.990 Sum T 8.000 8.000 8.000 Sum T 8.000 8.000 8.000

AlVI 1.950 1.594 1.826 AlVI 1.908 2.059 1.807 Cr 0.000 0.000 0.000 Cr 0.000 0.004 0.004 Fe3+ 0.000 0.000 0.000 Fe3+ 0.034 0.246 0.000 Fe2+ 1.223 1.292 1.298 Fe2+ 0.988 0.702 1.304 Mg 8.952 9.346 9.023 Mg 9.011 8.671 8.976 Ni 0.000 0.000 0.000 Ni 0.015 0.000 0.014 Sum O 12.125 12.233 12.147 Sum O 11.956 11.682 12.105

Total 20.125 20.233 20.147 Total 19.956 19.682 20.105

Variety clinochlore clinochlore clinochlore Variety clinochlore pennine clinochlore

Mg# 0.880 0.879 0.874 Mg# 0.901 0.925 0.873 Mg/(Mg+Fetot) 0.880 0.879 0.874 Mg/(Mg+Fetot) 0.898 0.901 0.873 Al/(Al+Mg+Fe) 0.288 0.252 0.274 Al/(Al+Mg+Fe) 0.272 0.277 0.270 Al/(Al+Cr) 1.000 1.000 1.000 Al/(Al+Cr) 1.000 0.999 0.999 Al+vacancies 3.986 3.358 3.756 Al+vacancies 3.799 4.002 3.693

111 B.1 - CHLORITE

wt% of oxides wt% of oxides A10-3 A10-10 A10-16 A6-3 A6-9 A6-15

SiO2 0.049 31.090 30.950 31.930 SiO2 0.049 29.550 29.290 29.440 Al2O3 0.050 17.110 16.820 16.240 Al2O3 0.050 18.060 18.380 17.830 MgO 0.049 32.140 31.800 32.230 MgO 0.049 29.200 29.710 29.530 FeO 0.145 5.260 6.060 5.160 FeO 0.145 7.880 8.130 8.380 Cr2O3 0.182 0.220 0.061 0.514 Cr2O3 0.182 0.592 0.542 0.602 Ni 0.176 0.040 0.109 0.040 Ni 0.176 0.139 0.124 0.218

Total 85.860 85.800 86.120 Total 85.420 86.160 86.010

Formula units based on 28 oxygens Formula units based on 28 oxygens Si 5.995 5.993 6.139 Si 5.823 5.719 5.773 AlIV 2.005 2.007 1.861 AlIV 2.177 2.281 2.227 Sum T 8.000 8.000 8.000 Sum T 8.000 8.000 8.000

AlVI 1.888 1.841 1.821 AlVI 2.021 1.964 1.907 Cr 0.034 0.009 0.078 Cr 0.092 0.084 0.093 Fe3+ 0.000 0.000 0.021 Fe3+ 0.000 0.000 0.000 Fe2+ 0.882 1.046 0.808 Fe2+ 1.325 1.424 1.468 Mg 9.238 9.179 9.238 Mg 8.577 8.648 8.631 Ni 0.006 0.017 0.006 Ni 0.022 0.019 0.034 Sum O 12.049 12.092 11.972 Sum O 12.038 12.139 12.134

Total 20.049 20.092 19.972 Total 20.038 20.139 20.134

Variety clinochlore clinochlore clinochlore Variety clinochlore clinochlore clinochlore

Mg# 0.913 0.898 0.920 Mg# 0.866 0.859 0.855 Mg/(Mg+Fetot) 0.913 0.898 0.918 Mg/(Mg+Fetot) 0.866 0.859 0.855 Al/(Al+Mg+Fe) 0.278 0.273 0.268 Al/(Al+Mg+Fe) 0.298 0.296 0.290 Al/(Al+Cr) 0.991 0.998 0.979 Al/(Al+Cr) 0.979 0.981 0.978 Al+vacancies 3.845 3.756 3.709 Al+vacancies 4.161 4.106 4.000

112 B.1 - CHLORITE

wt% of oxides wt% of oxides A4-3 A4-8 A4-15 A9-4 A9-9 A9-12

SiO2 0.049 29.780 31.400 30.880 SiO2 0.049 30.920 32.260 30.670 Al2O3 0.050 17.930 16.430 16.320 Al2O3 0.050 16.210 14.280 15.500 MgO 0.049 31.030 32.340 31.800 MgO 0.049 30.230 31.120 30.490 FeO 0.145 7.100 5.830 6.640 FeO 0.145 8.540 8.030 8.500 Cr2O3 0.182 0.521 0.073 0.643 Cr2O3 0.182 0.411 0.375 0.523 Ni 0.176 0.164 0.099 0.179 Ni 0.176 0.075 0.180 0.150

Total 86.530 86.170 86.470 Total 86.390 86.260 85.830

Formula units based on 28 oxygens Formula units based on 28 oxygens Si 5.756 6.045 5.963 Si 6.031 6.289 6.021 AlIV 2.244 1.955 2.037 AlIV 1.969 1.711 1.979 Sum T 8.000 8.000 8.000 Sum T 8.000 8.000 8.000

AlVI 1.860 1.782 1.691 AlVI 1.766 1.574 1.623 Cr 0.080 0.011 0.098 Cr 0.063 0.058 0.081 Fe3+ 0.000 0.000 0.000 Fe3+ 0.000 0.000 0.000 Fe2+ 1.273 1.005 1.174 Fe2+ 1.450 1.341 1.508 Mg 8.941 9.281 9.154 Mg 8.790 9.044 8.923 Ni 0.025 0.015 0.028 Ni 0.012 0.028 0.024 Sum O 12.180 12.094 12.144 Sum O 12.081 12.045 12.159

Total 20.180 20.094 20.144 Total 20.081 20.045 20.159

Variety clinochlore clinochlore clinochlore Variety clinochlore pennine clinochlore

Mg# 0.875 0.902 0.886 Mg# 0.858 0.871 0.855 Mg/(Mg+Fetot) 0.875 0.902 0.886 Mg/(Mg+Fetot) 0.858 0.871 0.855 Al/(Al+Mg+Fe) 0.287 0.266 0.265 Al/(Al+Mg+Fe) 0.267 0.240 0.257 Al/(Al+Cr) 0.981 0.997 0.974 Al/(Al+Cr) 0.983 0.983 0.978 Al+vacancies 3.924 3.643 3.584 Al+vacancies 3.653 3.240 3.442

113 B.1 - CHLORITE

wt% of oxides wt% of oxides A3-3 A3-9 A3-15 A2-3 A2-9 A2-15

SiO2 0.049 31.940 31.020 32.070 SiO2 0.049 30.370 31.460 31.260 Al2O3 0.050 15.410 16.000 15.450 Al2O3 0.050 17.040 16.220 17.130 MgO 0.049 32.730 32.220 32.680 MgO 0.049 31.560 32.120 32.030 FeO 0.145 5.760 5.800 5.270 FeO 0.145 7.550 6.290 5.150 Cr2O3 0.182 0.227 0.316 0.405 Cr2O3 0.182 0.363 0.139 0.468 Ni 0.176 0.000 0.185 0.155 Ni 0.176 0.000 0.055 0.105

Total 86.070 85.540 86.030 Total 86.890 86.280 86.140

Formula units based on 28 oxygens Formula units based on 28 oxygens Si 6.154 6.022 6.179 Si 5.847 6.063 6.014 AlIV 1.846 1.978 1.821 AlIV 2.153 1.937 1.986 Sum T 8.000 8.000 8.000 Sum T 8.000 8.000 8.000

AlVI 1.662 1.696 1.691 AlVI 1.735 1.756 1.900 Cr 0.035 0.048 0.062 Cr 0.055 0.021 0.071 Fe3+ 0.000 0.000 0.000 Fe3+ 0.000 0.000 0.000 Fe2+ 0.989 1.037 0.877 Fe2+ 1.365 1.079 0.835 Mg 9.401 9.325 9.386 Mg 9.058 9.228 9.186 Ni 0.000 0.029 0.024 Ni 0.000 0.009 0.016 Sum O 12.086 12.135 12.040 Sum O 12.213 12.093 12.008

Total 20.086 20.135 20.040 Total 20.213 20.093 20.008

Variety clinochlore clinochlore clinochlore Variety clinochlore clinochlore clinochlore

Mg# 0.905 0.900 0.915 Mg# 0.869 0.895 0.917 Mg/(Mg+Fetot) 0.905 0.900 0.915 Mg/(Mg+Fetot) 0.869 0.895 0.917 Al/(Al+Mg+Fe) 0.252 0.262 0.255 Al/(Al+Mg+Fe) 0.272 0.264 0.279 Al/(Al+Cr) 0.990 0.987 0.983 Al/(Al+Cr) 0.986 0.994 0.982 Al+vacancies 3.421 3.538 3.472 Al+vacancies 3.675 3.600 3.877

114 B.1 - CHLORITE

wt% of oxides wt% of oxides A1-3 A1-7 A1-12 A7-5 A7-10 A7-21

SiO2 0.049 28.360 28.980 28.210 SiO2 0.049 33.970 31.360 30.190 Al2O3 0.050 18.750 18.250 19.490 Al2O3 0.050 20.350 15.350 17.620 MgO 0.049 27.700 26.630 27.400 MgO 0.049 21.610 32.060 31.020 FeO 0.145 9.910 9.450 9.980 FeO 0.145 6.780 5.850 6.660 Cr2O3 0.182 1.559 1.437 1.312 Cr2O3 0.182 0.581 0.669 0.678 Ni 0.176 0.045 0.174 0.199 Ni 0.176 0.119 0.070 0.055

Total 86.320 84.930 86.590 Total 83.400 85.370 86.220

Formula units based on 28 oxygens Formula units based on 28 oxygens Si 5.604 5.801 5.559 Si 6.545 6.111 5.848 AlIV 2.396 2.199 2.441 AlIV 1.455 1.889 2.152 Sum T 8.000 8.000 8.000 Sum T 8.000 8.000 8.000

AlVI 1.983 2.114 2.096 AlVI 3.256 1.644 1.881 Cr 0.244 0.228 0.204 Cr 0.089 0.103 0.104 Fe3+ 0.000 0.080 0.000 Fe3+ 1.051 0.000 0.000 Fe2+ 1.708 1.503 1.703 Fe2+ 0.042 1.012 1.148 Mg 8.160 7.947 8.049 Mg 6.207 9.313 8.957 Ni 0.007 0.028 0.032 Ni 0.018 0.011 0.009 Sum O 12.101 11.898 12.084 Sum O 10.662 12.082 12.098

Total 20.101 19.898 20.084 Total 18.662 20.082 20.098

Variety clinochlore clinochlore sheridanite Variety pennine clinochlore clinochlore

Mg# 0.827 0.841 0.825 Mg# 0.993 0.902 0.886 Mg/(Mg+Fetot) 0.827 0.834 0.825 Mg/(Mg+Fetot) 0.850 0.902 0.886 Al/(Al+Mg+Fe) 0.307 0.312 0.317 Al/(Al+Mg+Fe) 0.392 0.255 0.285 Al/(Al+Cr) 0.947 0.950 0.957 Al/(Al+Cr) 0.982 0.972 0.975 Al+vacancies 4.277 4.414 4.452 Al+vacancies 6.048 3.451 3.934

115 B.2 - CALCIC AMPHIBOLE

wt% of oxides MDL PA1-1 PA1-2 PA1-3 PA1-4 PA1-5 PA1-6 PA1-7

SiO2 0.050 58.260 57.440 58.560 58.320 58.460 55.030 53.340 TiO2 nd nd nd nd nd nd nd Al2O3 0.040 0.073 0.782 0.074 0.081 0.065 2.272 2.162 MgO 0.041 24.170 24.110 24.570 23.470 24.160 22.620 22.460 FeO 0.163 2.109 2.358 1.388 2.290 1.922 2.456 2.880 CaO 0.037 13.010 12.400 12.870 12.800 12.800 11.830 11.920 MnO 0.171 0.386 0.087 0.126 0.367 0.377 0.000 0.145 K20 nd nd nd nd nd nd nd Na20 nd nd nd nd nd nd nd Cr2O3 0.153 0.000 0.194 0.000 0.000 0.091 0.334 0.400 atom prop. 2.808 2.792 2.811 2.791 2.809 2.711 2.659 Total 98.010 97.370 97.590 97.330 97.880 94.530 93.310

Formula units (Leake, 1997) Si 7.851 7.756 7.894 7.928 7.877 7.653 7.555 Ti nd nd nd nd nd nd nd Al 0.012 0.124 0.012 0.013 0.010 0.372 0.361 Fe+3 0.238 0.266 0.157 0.260 0.217 0.286 0.341 Fe+2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Mn 0.044 0.000 0.000 0.042 0.043 0.000 0.000 Mg 4.856 4.853 4.938 4.756 4.853 4.689 4.743 Ca 1.878 1.794 1.859 1.864 1.848 1.763 1.809 K nd nd nd nd nd nd nd Na nd nd nd nd nd nd nd Cr 0.000 0.045 0.000 0.000 0.021 0.079 0.096

116 B.2 - CALCIC AMPHIBOLE

Site occupancy PA1-1 PA1-2 PA1-3 PA1-4 PA1-5 PA1-6 PA1-7

Si 7.851 7.756 7.894 7.928 7.877 7.653 7.555 AlIV 0.012 0.124 0.012 0.013 0.010 0.347 0.361 Fe+3 0.137 0.120 0.094 0.059 0.113 0.000 0.084 Sum T 8.000 8.000 8.000 8.000 8.000 8.000 8.000

AlVI 0.000 0.000 0.000 0.000 0.000 0.025 0.000 Fe+3 0.100 0.147 0.062 0.201 0.104 0.286 0.257 Cr 0.000 0.045 0.000 0.000 0.021 0.079 0.096 Mg 4.734 4.647 4.797 4.621 4.701 4.452 4.552 Fe+2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Mn 0.044 0.000 0.000 0.042 0.043 0.000 0.000 Sum C 4.878 4.839 4.859 4.864 4.869 4.842 4.905

Mg 0.122 0.206 0.141 0.136 0.152 0.237 0.191 Fe+2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Mn 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Ca 1.878 1.794 1.859 1.864 1.848 1.763 1.809 Sum B 2.000 2.000 2.000 2.000 2.000 2.000 2.000

Total 14.878 14.839 14.859 14.864 14.869 14.842 14.905

Mg# 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Mg/(Mg+Fetot) 0.953 0.948 0.969 0.948 0.957 0.943 0.933 Al/(Al+Si) 0.001 0.016 0.001 0.002 0.001 0.046 0.046

117 B.2 - CALCIC AMPHIBOLE

wt% of oxides MDL PA3-1 PA3-2 PA3-3 PA3-4 PA3-6 PA3-7

SiO2 0.050 56.570 57.970 56.870 56.480 56.030 56.470 TiO2 nd nd nd nd nd nd Al2O3 0.040 1.690 0.592 0.595 1.396 1.708 0.932 MgO 0.041 23.650 23.600 23.720 23.040 22.800 22.590 FeO 0.163 2.634 2.183 2.424 2.859 2.971 2.192 CaO 0.037 12.790 12.400 12.410 12.120 12.150 11.980 MnO 0.171 0.068 0.097 0.087 0.019 0.087 0.361 K20 nd nd nd nd nd nd Na20 nd nd nd nd nd nd Cr2O3 0.153 0.026 0.000 0.013 0.078 0.068 0.065 atom prop. 2.785 2.785 2.755 2.750 2.741 2.718 Total 98.010 97.370 97.590 97.330 94.530 93.310

Formula units (Leake, 1997) Si 7.659 7.877 7.786 7.740 7.706 7.887 Ti nd nd nd nd nd nd Al 0.270 0.095 0.096 0.225 0.277 0.153 Fe+3 0.298 0.248 0.278 0.328 0.342 0.256 Fe+2 0.000 0.000 0.000 0.000 0.000 0.000 Mn 0.000 0.000 0.000 0.000 0.000 0.000 Mg 4.773 4.780 4.841 4.707 4.675 4.704 Ca 1.855 1.805 1.820 1.780 1.791 1.793 K nd nd nd nd nd nd Na nd nd nd nd nd nd Cr 0.006 0.000 0.003 0.018 0.016 0.015

118 B.2 - CALCIC AMPHIBOLE

Site occupancy PA3-1 PA3-2 PA3-3 PA3-4 PA3-6 PA3-7

Si 7.659 7.877 7.786 7.740 7.706 7.887 AlIV 0.270 0.095 0.096 0.225 0.277 0.113 Fe+3 0.071 0.028 0.118 0.035 0.017 0.000 Sum T 8.000 8.000 8.000 8.000 8.000 8.000

AlVI 0.000 0.000 0.000 0.000 0.000 0.040 Fe+3 0.227 0.220 0.159 0.293 0.325 0.256 Cr 0.006 0.000 0.003 0.018 0.016 0.015 Mg 4.629 4.586 4.661 4.486 4.466 4.496 Fe+2 0.000 0.000 0.000 0.000 0.000 0.000 Mn 0.000 0.000 0.000 0.000 0.000 0.000 Sum C 4.861 4.805 4.823 4.798 4.806 4.808

Mg 0.145 0.195 0.180 0.220 0.209 0.207 Fe+2 0.000 0.000 0.000 0.000 0.000 0.000 Mn 0.000 0.000 0.000 0.000 0.000 0.000 Ca 1.855 1.805 1.820 1.780 1.791 1.793 Sum B 2.000 2.000 2.000 2.000 2.000 2.000

Total 14.861 14.805 14.823 14.798 14.806 14.808

Mg# 1.000 1.000 1.000 1.000 1.000 1.000 Mg/(Mg+Fetot) 0.941 0.951 0.946 0.935 0.932 0.948 Al/(Al+Si) 0.034 0.012 0.012 0.028 0.035 0.019

119 B.2 - CALCIC AMPHIBOLE

wt% of oxides MDL PA5-1 PA5-2 PA5-3 PA5-4

SiO2 0.050 56.350 56.760 56.340 56.500 TiO2 nd nd nd nd Al2O3 0.040 1.800 1.567 1.753 1.682 MgO 0.041 22.900 22.910 22.480 23.120 FeO 0.163 3.230 3.110 3.880 3.500 CaO 0.037 12.480 12.200 12.260 12.130 MnO 0.171 0.068 0.154 0.173 0.106 K20 nd nd nd nd Na20 nd nd nd nd Cr2O3 0.153 0.206 0.219 0.180 0.155 atom prop. 2.769 2.771 2.763 2.773 Total 98.010 97.370 97.590 97.330

Formula units (Leake, 1997) Si 7.686 7.738 7.685 7.661 Ti nd nd nd nd Al 0.289 0.252 0.282 0.269 Fe+3 0.368 0.355 0.443 0.397 Fe+2 0.000 0.000 0.000 0.000 Mn 0.000 0.000 0.020 0.000 Mg 4.656 4.656 4.571 4.673 Ca 1.824 1.782 1.792 1.762 K nd nd nd nd Na nd nd nd nd Cr 0.048 0.051 0.042 0.036

120 B.2 - CALCIC AMPHIBOLE

Site occupancy PA5-1 PA5-2 PA5-3 PA5-4

Si 7.686 7.738 7.685 7.661 AlIV 0.289 0.252 0.282 0.269 Fe+3 0.025 0.010 0.034 0.070 Sum T 8.000 8.000 8.000 8.000

AlVI 0.000 0.000 0.000 0.000 Fe+3 0.344 0.344 0.409 0.327 Cr 0.048 0.051 0.042 0.036 Mg 4.480 4.438 4.363 4.436 Fe+2 0.000 0.000 0.000 0.000 Mn 0.000 0.000 0.020 0.000 Sum C 4.872 4.833 4.833 4.798

Mg 0.176 0.218 0.208 0.238 Fe+2 0.000 0.000 0.000 0.000 Mn 0.000 0.000 0.000 0.000 Ca 1.824 1.782 1.792 1.762 Sum B 2.000 2.000 2.000 2.000

Total 14.872 14.833 14.833 14.798

Mg# 1.000 1.000 1.000 1.000 Mg/(Mg+Fetot) 0.927 0.929 0.912 0.922 Al/(Al+Si) 0.036 0.032 0.035 0.034

121 B.2 - CALCIC AMPHIBOLE

wt% of oxides MDL PA7-1 PA7-2 PA7-3 PA7-4 PA7-5

SiO2 0.050 57.570 56.820 56.890 55.800 56.470 TiO2 nd nd nd nd nd Al2O3 0.040 1.125 1.279 1.175 1.715 1.963 MgO 0.041 23.850 23.250 23.970 23.160 23.200 FeO 0.163 2.507 2.617 2.343 2.844 2.595 CaO 0.037 12.000 12.120 12.210 11.970 12.280 MnO 0.171 0.154 0.067 0.163 0.067 0.087 K20 nd nd nd nd nd Na20 nd nd nd nd nd Cr2O3 0.153 0.116 0.218 0.192 0.243 0.413 atom prop. 2.794 2.763 2.779 2.741 2.777 Total 98.010 97.370 97.590 97.330 94.530

Formula units (Leake, 1997) Si 7.752 7.761 7.706 7.658 7.684 Ti nd nd nd nd nd Al 0.178 0.206 0.188 0.277 0.315 Fe+3 0.282 0.299 0.265 0.326 0.295 Fe+2 0.000 0.000 0.000 0.000 0.000 Mn 0.000 0.000 0.000 0.000 0.000 Mg 4.787 4.734 4.841 4.738 4.706 Ca 1.731 1.774 1.772 1.760 1.790 K nd nd nd nd nd Na nd nd nd nd nd Cr 0.027 0.050 0.044 0.057 0.095

122 B.2 - CALCIC AMPHIBOLE

Site occupancy PA7-1 PA7-2 PA7-3 PA7-4 PA7-5

Si 7.752 7.761 7.706 7.658 7.684 AlIV 0.178 0.206 0.188 0.277 0.315 Fe+3 0.070 0.033 0.106 0.065 0.001 Sum T 8.000 8.000 8.000 8.000 8.000

AlVI 0.000 0.000 0.000 0.000 0.000 Fe+3 0.213 0.266 0.159 0.262 0.294 Cr 0.027 0.050 0.044 0.057 0.095 Mg 4.519 4.508 4.613 4.498 4.496 Fe+2 0.000 0.000 0.000 0.000 0.000 Mn 0.000 0.000 0.000 0.000 0.000 Sum C 4.758 4.824 4.817 4.817 4.886

Mg 0.269 0.226 0.228 0.240 0.210 Fe+2 0.000 0.000 0.000 0.000 0.000 Mn 0.000 0.000 0.000 0.000 0.000 Ca 1.731 1.774 1.772 1.760 1.790 Sum B 2.000 2.000 2.000 2.000 2.000

Total 14.758 14.824 14.817 14.817 14.886

Mg# 1.000 1.000 1.000 1.000 1.000 Mg/(Mg+Fetot) 0.944 0.941 0.948 0.936 0.941 Al/(Al+Si) 0.023 0.026 0.024 0.035 0.039

123 B.2 - CALCIC AMPHIBOLE

wt% of oxides MDL LO272-3 LO272-4 LO272-5 LO272-7 LO272-8

SiO2 0.048 43.880 54.990 48.110 51.560 46.830 TiO2 nd nd nd nd nd Al2O3 0.048 12.090 2.504 9.410 5.540 10.260 MgO 0.052 15.270 20.610 17.340 19.560 17.520 FeO 0.158 9.180 5.550 7.090 6.590 7.270 CaO 0.038 11.860 12.180 11.790 11.610 11.680 MnO 0.160 0.009 0.112 0.077 0.129 0.077 K20 nd nd nd nd nd Na20 nd nd nd nd nd Cr2O3 0.208 0.085 0.074 0.244 0.684 0.073 atom prop. 2.536 2.713 2.623 2.678 2.607 Total 92.373 96.020 94.061 95.673 93.710

Formula units (Leake, 1997) Si 6.441 7.661 6.874 7.226 6.681 Ti nd nd nd nd nd Al 2.091 0.411 1.585 0.915 1.725 Fe+3 1.127 0.630 0.847 0.772 0.867 Fe+2 0.000 0.017 0.000 0.000 0.000 Mn 0.000 0.000 0.000 0.000 0.000 Mg 3.341 4.281 3.694 4.087 3.726 Ca 1.865 1.818 1.805 1.743 1.785 K nd nd nd nd nd Na nd nd nd nd nd Cr 0.021 0.017 0.060 0.164 0.018

124 B.2 - CALCIC AMPHIBOLE

Site occupancy LO272-3 LO272-4 LO272-5 LO272-7 LO272-8

Si 6.441 7.661 6.874 7.226 6.681 AlIV 1.559 0.339 1.126 0.774 1.319 Fe+3 0.000 0.000 0.000 0.000 0.000 Sum T 8.000 8.000 8.000 8.000 8.000

AlVI 0.532 0.073 0.459 0.141 0.406 Fe+3 1.127 0.630 0.847 0.772 0.867 Cr 0.021 0.017 0.060 0.164 0.018 Mg 3.206 4.099 3.499 3.830 3.512 Fe+2 0.000 0.017 0.000 0.000 0.000 Mn 0.000 0.000 0.000 0.000 0.000 Sum C 4.887 4.836 4.865 4.907 4.803

Mg 0.135 0.182 0.195 0.257 0.215 Fe+2 0.000 0.000 0.000 0.000 0.000 Mn 0.000 0.000 0.000 0.000 0.000 Ca 1.865 1.818 1.805 1.743 1.785 Sum B 2.000 2.000 2.000 2.000 2.000

Total 14.887 14.836 14.865 14.907 14.803

Mg# 1.000 0.996 1.000 1.000 1.000 Mg/(Mg+Fetot) 0.748 0.869 0.813 0.841 0.811 Al/(Al+Si) 0.245 0.051 0.187 0.112 0.205

125 B.2 - CALCIC AMPHIBOLE

wt% of oxides MDL LO279-1 LO279-5 LO279-6

SiO2 0.048 58.070 58.010 57.670 TiO2 nd nd nd Al2O3 0.048 0.313 0.398 0.314 MgO 0.052 23.210 23.510 24.060 FeO 0.158 2.553 4.700 6.620 CaO 0.038 13.020 10.650 7.730 MnO 0.160 0.320 0.595 0.800 K20 nd nd nd Na20 nd nd nd Cr2O3 0.208 0.062 0.000 0.049 atom prop. 2.791 2.789 2.768 Total 97.548 97.864 97.243

Formula units (Leake, 1997) Si 7.909 7.698 7.488 Ti nd nd nd Al 0.050 0.062 0.048 Fe+3 0.291 0.522 0.719 Fe+2 0.000 0.000 0.000 Mn 0.037 0.067 0.088 Mg 4.713 4.651 4.657 Ca 1.900 1.514 1.075 K nd nd nd Na nd nd nd Cr 0.014 0.000 0.011

126 B.2 - CALCIC AMPHIBOLE

Site occupancy LO279-1 LO279-5 LO279-6

Si 7.909 7.698 7.488 AlIV 0.050 0.062 0.048 Fe+3 0.040 0.240 0.464 Sum T 8.000 8.000 8.000

AlVI 0.000 0.000 0.000 Fe+3 0.250 0.282 0.255 Cr 0.014 0.000 0.011 Mg 4.613 4.165 3.733 Fe+2 0.000 0.000 0.000 Mn 0.037 0.067 0.088 Sum C 4.914 4.514 4.087

Mg 0.100 0.486 0.925 Fe+2 0.000 0.000 0.000 Mn 0.000 0.000 0.000 Ca 1.900 1.514 1.075 Sum B 2.000 2.000 2.000

Total 14.914 14.514 14.087

Mg# 1.000 1.000 1.000 Mg/(Mg+Fetot) 0.942 0.899 0.866 Al/(Al+Si) 0.006 0.008 0.006

127 B.2 - CALCIC AMPHIBOLE

wt% of oxides MDL LO279-4 LO310-1 LO310-2 LO310-3 LO310-4 LO310-6 LO310-7

SiO2 0.048 55.080 57.840 57.980 57.870 53.630 57.390 56.320 TiO2 nd nd nd nd nd nd nd Al2O3 0.048 1.931 0.307 0.273 0.191 3.410 0.367 0.976 MgO 0.052 22.120 22.980 23.500 23.430 20.720 23.040 22.340 FeO 0.158 4.210 3.230 2.738 2.839 4.800 3.710 4.240 CaO 0.038 12.420 12.670 12.740 13.000 12.220 12.720 11.830 MnO 0.160 0.225 0.407 0.303 0.268 0.155 0.190 0.388 K20 nd nd nd nd nd nd nd Na20 nd nd nd nd nd nd nd Cr2O3 0.208 0.185 0.087 0.025 0.186 0.725 0.000 0.123 atom prop. 2.726 2.783 2.791 2.792 2.701 2.774 2.735 Total 96.170 97.520 97.559 97.784 95.661 97.417 96.217

Formula units (Leake, 1997) Si 7.614 7.873 7.861 7.867 7.533 7.818 7.736 Ti nd nd nd nd nd nd nd Al 0.315 0.049 0.044 0.031 0.565 0.059 0.158 Fe+3 0.487 0.368 0.310 0.323 0.564 0.423 0.487 Fe+2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Mn 0.026 0.047 0.035 0.031 0.000 0.022 0.045 Mg 4.558 4.663 4.750 4.748 4.339 4.679 4.574 Ca 1.840 1.848 1.851 1.894 1.839 1.857 1.741 K nd nd nd nd nd nd nd Na nd nd nd nd nd nd nd Cr 0.043 0.020 0.006 0.043 0.172 0.000 0.029

128 B.2 - CALCIC AMPHIBOLE

Site occupancy LO279-4 LO310-1 LO310-2 LO310-3 LO310-4 LO310-6 LO310-7

Si 7.614 7.873 7.861 7.867 7.533 7.818 7.736 AlIV 0.315 0.049 0.044 0.031 0.467 0.059 0.158 Fe+3 0.071 0.078 0.095 0.102 0.000 0.123 0.106 Sum T 8.000 8.000 8.000 8.000 8.000 8.000 8.000

AlVI 0.000 0.000 0.000 0.000 0.097 0.000 0.000 Fe+3 0.415 0.290 0.215 0.221 0.564 0.299 0.381 Cr 0.043 0.020 0.006 0.043 0.172 0.000 0.029 Mg 4.398 4.511 4.601 4.642 4.178 4.535 4.315 Fe+2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Mn 0.026 0.047 0.035 0.031 0.000 0.022 0.045 Sum C 4.883 4.868 4.856 4.936 5.011 4.857 4.770

Mg 0.160 0.152 0.149 0.106 0.161 0.143 0.259 Fe+2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Mn 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Ca 1.840 1.848 1.851 1.894 1.839 1.857 1.741 Sum B 2.000 2.000 2.000 2.000 2.000 2.000 2.000

Total 14.883 14.868 14.856 14.936 15.011 14.857 14.770

Mg# 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Mg/(Mg+Fetot) 0.904 0.927 0.939 0.936 0.885 0.917 0.904 Al/(Al+Si) 0.040 0.006 0.006 0.004 0.070 0.007 0.020

129 B.2 - CALCIC AMPHIBOLE

wt% of oxides MDL LO123-1 LO123-2 LO123-3 LO123-6 LO123-7

SiO2 0.048 48.860 48.360 53.350 54.530 48.610 TiO2 nd nd nd nd nd Al2O3 0.048 8.330 8.740 3.850 2.898 8.680 MgO 0.052 17.480 17.250 19.970 20.630 17.760 FeO 0.158 7.190 7.570 5.970 5.170 7.230 CaO 0.038 11.400 11.550 11.950 11.900 10.910 MnO 0.160 0.026 0.154 0.103 0.086 0.086 K20 nd nd nd nd nd Na20 nd nd nd nd nd Cr2O3 0.208 0.219 0.280 0.477 0.319 0.073 atom prop. 2.613 2.614 2.691 2.704 2.612 Total 93.505 93.904 95.670 95.533 93.349

Formula units (Leake, 1997) Si 6.999 6.931 7.486 7.621 6.917 Ti nd nd nd nd nd Al 1.406 1.476 0.637 0.477 1.456 Fe+3 0.861 0.907 0.701 0.604 0.860 Fe+2 0.000 0.000 0.000 0.000 0.000 Mn 0.000 0.000 0.000 0.000 0.000 Mg 3.733 3.686 4.177 4.298 3.767 Ca 1.750 1.774 1.797 1.782 1.663 K nd nd nd nd nd Na nd nd nd nd nd Cr 0.054 0.069 0.114 0.076 0.018

130 B.2 - CALCIC AMPHIBOLE

Site occupancy LO123-1 LO123-2 LO123-3 LO123-6 LO123-7

Si 6.999 6.931 7.486 7.621 6.917 AlIV 1.001 1.069 0.514 0.379 1.083 Fe+3 0.000 0.000 0.000 0.000 0.000 Sum T 8.000 8.000 8.000 8.000 8.000

AlVI 0.406 0.407 0.122 0.098 0.372 Fe+3 0.861 0.907 0.701 0.604 0.860 Cr 0.054 0.069 0.114 0.076 0.018 Mg 3.483 3.459 3.974 4.080 3.431 Fe+2 0.000 0.000 0.000 0.000 0.000 Mn 0.000 0.000 0.000 0.000 0.000 Sum C 4.803 4.842 4.910 4.857 4.681

Mg 0.250 0.226 0.203 0.218 0.337 Fe+2 0.000 0.000 0.000 0.000 0.000 Mn 0.000 0.000 0.000 0.000 0.000 Ca 1.750 1.774 1.797 1.782 1.663 Sum B 2.000 2.000 2.000 2.000 2.000

Total 14.803 14.842 14.910 14.857 14.681

Mg# 1.000 1.000 1.000 1.000 1.000 Mg/(Mg+Fetot) 0.813 0.802 0.856 0.877 0.814 Al/(Al+Si) 0.167 0.176 0.078 0.059 0.174

131 B.2 - CALCIC AMPHIBOLE

wt% of oxides wt% of oxides MDL LO303-5 MDL CW15-1

SiO2 0.048 57.580 SiO2 0.052 56.980 TiO2 nd TiO2 nd Al2O3 0.048 0.242 Al2O3 0.047 0.584 MgO 0.052 23.060 MgO 0.053 23.200 FeO 0.158 3.300 FeO 0.169 4.170 CaO 0.038 12.710 CaO 0.036 11.760 MnO 0.160 0.130 MnO 0.152 0.154 K20 nd K20 nd Na20 nd Na20 nd Cr2O3 0.208 0.087 Cr2O3 0.203 0.000 atom prop. 2.772 atom prop. 2.759 Total 97.109 Total 96.850

Formula units (Leake, 1997) Formula units (Leake, 1997) Si 7.879 Si 7.726 Ti nd Ti nd Al 0.039 Al 0.093 Fe+3 0.378 Fe+3 0.473 Fe+2 0.000 Fe+2 0.000 Mn 0.000 Mn 0.018 Mg 4.704 Mg 4.690 Ca 1.863 Ca 1.709 K nd K nd Na nd Na nd Cr 0.020 Cr 0.000

132 B.2 - CALCIC AMPHIBOLE

Site occupancy Site occupancy LO303-5 CW15-1

Si 7.879 Si 7.726 AlIV 0.039 AlIV 0.093 Fe+3 0.082 Fe+3 0.180 Sum T 8.000 Sum T 8.000

AlVI 0.000 AlVI 0.000 Fe+3 0.296 Fe+3 0.293 Cr 0.020 Cr 0.000 Mg 4.568 Mg 4.398 Fe+2 0.000 Fe+2 0.000 Mn 0.000 Mn 0.018 Sum C 4.884 Sum C 4.709

Mg 0.137 Mg 0.291 Fe+2 0.000 Fe+2 0.000 Mn 0.000 Mn 0.000 Ca 1.863 Ca 1.709 Sum B 2.000 Sum B 2.000

Total 14.884 Total 14.709

Mg# 1.000 Mg# 1.000 Mg/(Mg+Fetot) 0.926 Mg/(Mg+Fetot) 0.908 Al/(Al+Si) 0.005 Al/(Al+Si) 0.012

133 B.2 - CALCIC AMPHIBOLE

wt% of oxides MDL CW1-1 CW1-4 CW1-7

SiO2 0.052 56.260 55.880 56.380 TiO2 nd nd nd Al2O3 0.047 0.710 0.977 0.763 MgO 0.053 22.830 22.580 23.060 FeO 0.169 3.800 4.330 6.120 CaO 0.036 11.900 11.570 9.560 MnO 0.152 0.018 0.117 0.207 K20 nd nd nd Na20 nd nd nd Cr2O3 0.203 0.000 0.154 0.051 atom prop. 2.725 2.720 2.731 Total 95.510 95.610 96.140

Formula units (Leake, 1997) Si 7.754 7.694 7.560 Ti nd nd nd Al 0.115 0.159 0.121 Fe+3 0.438 0.499 0.686 Fe+2 0.000 0.000 0.000 Mn 0.002 0.014 0.024 Mg 4.691 4.635 4.610 Ca 1.757 1.707 1.373 K nd nd nd Na nd nd nd Cr 0.000 0.036 0.012

134 B.2 - CALCIC AMPHIBOLE

Site occupancy CW1-1 CW1-4 CW1-7

Si 7.754 7.694 7.560 AlIV 0.115 0.159 0.121 Fe+3 0.131 0.147 0.319 Sum T 8.000 8.000 8.000

AlVI 0.000 0.000 0.000 Fe+3 0.307 0.351 0.367 Cr 0.000 0.036 0.012 Mg 4.448 4.342 3.983 Fe+2 0.000 0.000 0.000 Mn 0.002 0.014 0.024 Sum C 4.757 4.743 4.385

Mg 0.243 0.293 0.627 Fe+2 0.000 0.000 0.000 Mn 0.000 0.000 0.000 Ca 1.757 1.707 1.373 Sum B 2.000 2.000 2.000

Total 14.757 14.743 14.385

Mg# 1.000 1.000 1.000 Mg/(Mg+Fetot) 0.915 0.903 0.870 Al/(Al+Si) 0.015 0.020 0.016

135 B.2 - CALCIC AMPHIBOLE

wt% of oxides MDL CW6-1 CW6-3 CW6-4

SiO2 0.052 56.700 58.050 57.800 TiO2 nd nd nd Al2O3 0.047 1.013 0.363 0.367 MgO 0.053 24.950 24.400 24.930 FeO 0.169 4.900 3.460 4.260 CaO 0.036 9.330 10.870 10.130 MnO 0.152 0.189 0.172 0.271 K20 nd nd nd Na20 nd nd nd Cr2O3 0.203 0.128 0.000 0.000 atom prop. 2.776 2.793 2.797 Total 97.210 97.320 97.770

Formula units (Leake, 1997) Si 7.419 7.709 7.575 Ti nd nd nd Al 0.156 0.057 0.057 Fe+3 0.536 0.384 0.467 Fe+2 0.000 0.000 0.000 Mn 0.021 0.019 0.030 Mg 4.867 4.831 4.871 Ca 1.308 1.547 1.423 K nd nd nd nd Na nd nd nd nd Cr 0.030 0.000 0.000

136 B.2 - CALCIC AMPHIBOLE

Site occupancy CW6-1 CW6-3 CW6-4

Si 7.419 7.709 7.575 AlIV 0.156 0.057 0.057 Fe+3 0.424 0.234 0.368 Sum T 8.000 8.000 8.000

AlVI 0.000 0.000 0.000 Fe+3 0.112 0.150 0.099 Cr 0.030 0.000 0.000 Mg 4.175 4.377 4.293 Fe+2 0.000 0.000 0.000 Mn 0.021 0.019 0.030 Sum C 4.338 4.547 4.423

Mg 0.692 0.453 0.577 Fe+2 0.000 0.000 0.000 Mn 0.000 0.000 0.000 Ca 1.308 1.547 1.423 Sum B 2.000 2.000 2.000

Total 14.338 14.547 14.423

Mg# 1.000 1.000 1.000 Mg/(Mg+Fetot) 0.901 0.926 0.913 Al/(Al+Si) 0.021 0.007 0.007

137 B.2 - CALCIC AMPHIBOLE

wt% of oxides MDL CW16-1 CW16-2 CW16-3 CW16-4 CW16-5 CW16-6

SiO2 0.052 54.870 55.350 47.560 53.840 54.020 50.680 TiO2 nd nd nd nd nd nd Al2O3 0.047 2.378 2.091 9.360 3.670 3.310 6.030 MgO 0.053 20.540 21.180 15.690 20.050 19.430 18.030 FeO 0.169 6.120 5.680 9.400 6.840 6.900 7.870 CaO 0.036 12.220 12.100 11.840 11.930 11.800 11.510 MnO 0.152 0.108 0.135 0.286 0.072 0.099 0.153 K20 nd nd nd nd nd nd Na20 nd nd nd nd nd nd Cr2O3 0.203 0.000 0.051 1.134 0.000 0.127 0.355 atom prop. 2.710 2.727 2.616 2.706 2.688 2.635 Total 96.240 96.580 95.270 96.400 95.690 94.620

Formula units (Leake, 1997) Si 7.629 7.634 6.863 7.459 7.572 7.210 Ti nd nd nd nd nd nd Al 0.390 0.340 1.592 0.599 0.547 1.011 Fe+3 0.712 0.655 1.020 0.792 0.764 0.936 Fe+2 0.000 0.000 0.114 0.000 0.045 0.000 Mn 0.013 0.016 0.035 0.008 0.012 0.018 Mg 4.257 4.355 3.375 4.141 4.060 3.824 Ca 1.820 1.788 1.831 1.771 1.772 1.755 K nd nd nd nd nd nd Na nd nd nd nd nd nd Cr 0.000 0.012 0.278 0.000 0.030 0.086

138 B.2 - CALCIC AMPHIBOLE

Site occupancy CW16-1 CW16-2 CW16-3 CW16-4 CW16-5 CW16-6

Si 7.629 7.634 6.863 7.459 7.572 7.210 AlIV 0.347 0.340 0.347 0.347 0.347 0.347 Fe+3 0.000 0.000 0.000 0.000 0.000 0.000 Sum T 7.976 7.974 7.211 7.806 7.920 7.558

AlVI 0.042 0.000 1.245 0.252 0.199 0.664 Fe+3 0.712 0.655 1.020 0.792 0.764 0.936 Cr 0.000 0.012 0.278 0.000 0.030 0.086 Mg 4.078 4.143 3.206 3.912 3.833 3.579 Fe+2 0.000 0.000 0.114 0.000 0.045 0.000 Mn 0.013 0.016 0.035 0.008 0.012 0.018 Sum C 4.844 4.826 5.898 4.965 4.883 5.283

Mg 0.180 0.212 0.169 0.229 0.228 0.245 Fe+2 0.000 0.000 0.000 0.000 0.000 0.000 Mn 0.000 0.000 0.000 0.000 0.000 0.000 Ca 1.820 1.788 1.831 1.771 1.772 1.755 Sum B 2.000 2.000 2.000 2.000 2.000 2.000

Total 14.820 14.800 15.108 14.771 14.803 14.841

Mg# 1.000 1.000 0.967 1.000 0.989 1.000 Mg/(Mg+Fetot) 0.857 0.869 0.748 0.839 0.834 0.803 Al/(Al+Si) 0.049 0.043 0.188 0.074 0.067 0.123

139 B.2 - CALCIC AMPHIBOLE

wt% of oxides wt% of oxides MDL CW17.12 MDL CW13.7 CW13.9 CW13.10

SiO2 0.054 56.680 SiO2 0.054 58.000 57.410 57.940 TiO2 0.077 0.070 TiO2 0.077 0.061 0.039 0.015 Al2O3 0.044 0.855 Al2O3 0.044 0.573 0.589 0.431 MgO 0.046 22.760 MgO 0.046 22.810 22.910 23.680 FeO 0.017 3.720 FeO 0.017 3.590 5.180 6.900 CaO 0.037 11.710 CaO 0.037 11.620 10.100 8.320 MnO 0.133 0.009 MnO 0.133 0.082 0.100 0.199 K20 0.026 0.028 K20 0.026 0.020 0.013 0.000 Na2O 0.078 0.935 Na2O 0.078 0.770 1.414 0.699 Cr2O3 0.192 0.114 Cr2O3 0.192 0.013 0.000 0.000 atom prop. 2.749 atom prop. 2.780 2.763 2.782 Total 96.880 Total 97.540 97.760 98.190

Formula units (Leake, 1997) Formula units (Leake, 1997) Si 7.778 Si 7.875 7.720 7.556 Ti 0.000 Ti 0.000 0.000 0.000 Al 0.138 Al 0.092 0.093 0.066 Fe+3 0.427 Fe+3 0.408 0.583 0.753 Fe+2 0.000 Fe+2 0.000 0.000 0.000 Mn 0.001 Mn 0.009 0.011 0.022 Mg 4.656 Mg 4.617 4.593 4.604 Ca 1.722 Ca 1.690 1.455 1.163 K 0.249 K 0.203 0.369 0.177 Na 0.005 Na 0.003 0.002 0.000 Cr 0.027 Cr 0.003 0.000 0.000

140 B.2 - CALCIC AMPHIBOLE

Site occupancy Site occupancy CW17.12 CW13.7 CW13.9 CW13.10

Si 7.778 Si 7.875 7.720 7.556 AlIV 0.138 AlIV 0.092 0.093 0.066 Fe+3 0.084 Fe+3 0.034 0.187 0.378 Sum T 8.000 Sum T 8.000 8.000 8.000

AlVI 0.000 AlVI 0.000 0.000 0.000 Ti 0.000 Ti 0.000 0.000 0.000 Fe+3 0.343 Fe+3 0.374 0.396 0.374 Cr 0.027 Cr 0.003 0.000 0.000 Mg 4.378 Mg 4.307 4.048 3.766 Fe+2 0.000 Fe+2 0.000 0.000 0.000 Mn 0.001 Mn 0.009 0.011 0.022 Sum C 4.748 Sum C 4.693 4.455 4.163

Mg 0.278 Mg 0.310 0.545 0.837 Fe+2 0.000 Fe+2 0.000 0.000 0.000 Mn 0.000 Mn 0.000 0.000 0.000 Ca 1.722 Ca 1.690 1.455 1.163 Sum B 2.000 Sum B 2.000 2.000 2.000

Na 0.005 Na 0.003 0.002 0.000 K 0.249 K 0.203 0.369 0.177 Sum A 0.254 Sum A 0.206 0.371 0.177

Total 15.002 Total 14.900 14.826 14.339

Mg# 1.000 Mg# 1.000 1.000 1.000 Mg/(Mg+Fetot) 0.916 Mg/(Mg+Fetot) 0.919 0.887 0.860 Al/(Al+Si) 0.017 Al/(Al+Si) 0.012 0.012 0.009

141 B.2 - CALCIC AMPHIBOLE

wt% of oxides MDL CW3.1 CW3.2 CW3.4 CW3.7 CW3.11 CW3.14

SiO2 0.054 53.030 53.480 52.780 54.990 53.020 50.610 TiO2 0.077 0.124 0.186 0.156 0.077 0.127 0.243 Al2O3 0.044 4.120 4.080 3.900 3.060 4.200 6.420 MgO 0.046 19.000 19.900 19.000 20.130 19.860 17.790 FeO 0.017 7.040 6.960 7.320 6.600 6.910 7.970 CaO 0.037 11.300 11.800 11.370 11.980 11.730 11.450 MnO 0.133 0.163 0.190 0.235 0.036 0.108 0.198 K20 0.026 0.045 0.038 0.038 0.050 0.062 0.082 Na2O 0.078 0.702 0.616 0.687 0.547 0.674 0.997 Cr2O3 0.192 0.063 0.213 0.075 0.175 0.275 0.000 atom prop. 2.670 2.718 2.662 2.736 2.702 2.647 Total 95.590 97.460 95.560 97.640 96.970 95.750

Formula units (Leake, 1997) Si 7.467 7.390 7.447 7.590 7.376 7.174 Ti 0.013 0.019 0.017 0.008 0.013 0.026 Al 0.684 0.664 0.649 0.498 0.689 1.073 Fe+3 0.748 0.804 0.793 0.607 0.804 0.761 Fe+2 0.081 0.000 0.071 0.155 0.000 0.183 Mn 0.019 0.022 0.028 0.000 0.000 0.024 Mg 3.988 4.099 3.996 4.142 4.119 3.759 Ca 1.705 1.747 1.719 1.772 1.748 1.739 K 0.192 0.165 0.188 0.146 0.182 0.274 Na 0.008 0.007 0.007 0.009 0.011 0.015 Cr 0.015 0.050 0.018 0.041 0.065 0.000

142 B.2 - CALCIC AMPHIBOLE

Site occupancy CW3.1 CW3.2 CW3.4 CW3.7 CW3.11 CW3.14

Si 7.467 7.390 7.447 7.590 7.376 7.174 AlIV 0.533 0.610 0.553 0.410 0.624 0.826 Fe+3 0.000 0.000 0.000 0.000 0.000 0.000 Sum T 8.000 8.000 8.000 8.000 8.000 8.000

AlVI 0.150 0.055 0.095 0.088 0.064 0.246 Ti 0.013 0.019 0.017 0.008 0.013 0.026 Fe+3 0.748 0.804 0.793 0.607 0.804 0.761 Cr 0.015 0.050 0.018 0.041 0.065 0.000 Mg 3.693 3.847 3.715 3.914 3.867 3.498 Fe+2 0.081 0.000 0.071 0.155 0.000 0.183 Mn 0.019 0.022 0.028 0.000 0.000 0.024 Sum C 4.720 4.797 4.737 4.813 4.814 4.739

Mg 0.295 0.253 0.281 0.228 0.252 0.261 Fe+2 0.000 0.000 0.000 0.000 0.000 0.000 Mn 0.000 0.000 0.000 0.000 0.000 0.000 Ca 1.705 1.747 1.719 1.772 1.748 1.739 Sum B 2.000 2.000 2.000 2.000 2.000 2.000

Na 0.008 0.007 0.007 0.009 0.011 0.015 K 0.192 0.165 0.188 0.146 0.182 0.274 Sum A 0.200 0.172 0.195 0.155 0.193 0.289

Total 14.919 14.969 14.932 14.968 15.006 15.028

Mg# 0.980 1.000 0.982 0.964 1.000 0.954 Mg/(Mg+Fetot) 0.828 0.836 0.822 0.845 0.837 0.799 Al/(Al+Si) 0.084 0.082 0.080 0.062 0.085 0.130

143 B.2 - CALCIC AMPHIBOLE

wt% of oxides wt% of oxides MDL A8-5 A8-11 A8-17 MDL A5-5 A5-13 A5-18

SiO2 0.052 57.570 54.810 57.110 SiO2 0.052 57.720 57.240 57.890 Al2O3 0.047 0.741 3.100 1.162 Al2O3 0.047 0.683 0.868 0.395 MgO 0.053 23.360 22.240 22.890 MgO 0.053 22.760 23.100 22.790 FeO 0.169 3.310 3.690 3.260 FeO 0.169 3.830 3.900 4.580 CaO 0.036 12.250 12.640 12.710 CaO 0.036 12.710 12.550 11.560 MnO 0.152 0.268 0.277 0.134 MnO 0.152 0.179 0.268 0.107 Cr2O3 0.203 0.050 0.112 0.050 Cr2O3 0.203 0.000 0.000 0.062 atom prop 2.787 2.750 2.778 atom prop 2.788 2.786 2.776 Total 97.540 96.870 97.320 Total 97.870 97.920 97.380

Formula units (Leake, 1997) Formula units (Leake, 1997) Si 7.775 7.505 7.779 Si 7.832 7.736 7.819 Al 0.118 0.500 0.187 Al 0.109 0.138 0.063 Fe+3 0.374 0.423 0.371 Fe+3 0.435 0.441 0.517 Fe+2 0.000 0.000 0.000 Fe+2 0.000 0.000 0.000 Mn 0.031 0.032 0.015 Mn 0.021 0.031 0.012 Mg 4.703 4.540 4.648 Mg 4.604 4.654 4.589 Ca 1.773 1.854 1.855 Ca 1.848 1.817 1.673 Cr 0.011 0.026 0.011 Cr 0.000 0.000 0.014

144 B.2 - CALCIC AMPHIBOLE

Site occupancy Site occupancy A8-5 A8-11 A8-17 A5-5 A5-13 A5-18

Si 7.775 7.505 7.779 Si 7.832 7.736 7.819 AlIV 0.118 0.495 0.187 AlIV 0.109 0.138 0.063 Fe+3 0.107 0.000 0.035 Fe+3 0.059 0.126 0.118 Sum T 8.000 8.000 8.000 Sum T 8.000 8.000 8.000

AlVI 0.000 0.005 0.000 AlVI 0.000 0.000 0.000 Fe+3 0.266 0.423 0.337 Fe+3 0.376 0.315 0.399 Cr 0.011 0.026 0.011 Cr 0.000 0.000 0.014 Mg 4.475 4.394 4.503 Mg 4.452 4.472 4.262 Fe+2 0.000 0.000 0.000 Fe+2 0.000 0.000 0.000 Mn 0.031 0.032 0.015 Mn 0.021 0.031 0.012 Sum C 4.784 4.881 4.866 Sum C 4.848 4.817 4.687

Mg 0.227 0.146 0.145 Mg 0.152 0.183 0.327 Fe+2 0.000 0.000 0.000 Fe+2 0.000 0.000 0.000 Mn 0.000 0.000 0.000 Mn 0.000 0.000 0.000 Ca 1.773 1.854 1.855 Ca 1.848 1.817 1.673 Sum B 2.000 2.000 2.000 Sum B 2.000 2.000 2.000

Total 14.784 14.881 14.866 Total 14.848 14.817 14.687

Mg# 1.000 1.000 1.000 Mg# 1.000 1.000 1.000 Mg/(Mg+Fetot) 0.926 0.915 0.926 Mg/(Mg+Fetot) 0.914 0.913 0.899 Al/(Al+Si) 0.015 0.062 0.023 Al/(Al+Si) 0.014 0.018 0.008

145 B.2 - CALCIC AMPHIBOLE

wt% of oxides wt% of oxides MDL A10-5 A10-12 A10-18 MDL A6-5 A6-11 A6-17

SiO2 0.052 57.410 57.700 58.230 SiO2 0.052 54.320 53.370 55.750 Al2O3 0.047 1.311 1.217 0.777 Al2O3 0.047 2.770 3.530 1.762 MgO 0.053 23.170 23.530 23.720 MgO 0.053 20.930 20.820 22.170 FeO 0.169 4.020 3.380 2.738 FeO 0.169 5.580 5.330 5.100 CaO 0.036 11.200 12.600 12.590 CaO 0.036 12.280 12.180 12.190 MnO 0.152 0.134 0.161 0.152 MnO 0.152 0.187 0.267 0.223 Cr2O3 0.203 0.137 0.013 0.000 Cr2O3 0.203 0.222 0.074 0.136 atom prop 2.784 2.814 2.814 atom prop 2.712 2.693 2.752 Total 97.390 98.600 98.200 Total 96.290 95.570 97.330

Formula units (Leake, 1997) Formula units (Leake, 1997) Si 7.696 7.719 7.810 Si 7.544 7.440 7.602 Al 0.207 0.192 0.123 Al 0.453 0.580 0.283 Fe+3 0.451 0.378 0.307 Fe+3 0.648 0.621 0.582 Fe+2 0.000 0.000 0.000 Fe+2 0.000 0.000 0.000 Mn 0.015 0.018 0.017 Mn 0.022 0.032 0.026 Mg 4.631 4.693 4.743 Mg 4.333 4.327 4.507 Ca 1.609 1.806 1.809 Ca 1.827 1.819 1.781 Cr 0.031 0.003 0.000 Cr 0.053 0.018 0.032

146 B.2 - CALCIC AMPHIBOLE

Site occupancy Site occupancy A10-5 A10-12 A10-18 A6-5 A6-11 A6-17

Si 7.696 7.719 7.810 Si 7.544 7.440 7.602 AlIV 0.207 0.192 0.123 AlIV 0.453 0.560 0.283 Fe+3 0.097 0.089 0.067 Fe+3 0.003 0.000 0.114 Sum T 8.000 8.000 8.000 Sum T 8.000 8.000 8.000

AlVI 0.000 0.000 0.000 AlVI 0.000 0.020 0.000 Fe+3 0.354 0.289 0.240 Fe+3 0.645 0.621 0.467 Cr 0.031 0.003 0.000 Cr 0.053 0.018 0.032 Mg 4.239 4.499 4.552 Mg 4.160 4.146 4.288 Fe+2 0.000 0.000 0.000 Fe+2 0.000 0.000 0.000 Mn 0.015 0.018 0.017 Mn 0.022 0.032 0.026 Sum C 4.640 4.809 4.809 Sum C 4.880 4.837 4.813

Mg 0.391 0.194 0.191 Mg 0.173 0.181 0.219 Fe+2 0.000 0.000 0.000 Fe+2 0.000 0.000 0.000 Mn 0.000 0.000 0.000 Mn 0.000 0.000 0.000 Ca 1.609 1.806 1.809 Ca 1.827 1.819 1.781 Sum B 2.000 2.000 2.000 Sum B 2.000 2.000 2.000

Total 14.640 14.809 14.809 Total 14.880 14.837 14.813

Mg# 1.000 1.000 1.000 Mg# 1.000 1.000 1.000 Mg/(Mg+Fetot) 0.911 0.925 0.939 Mg/(Mg+Fetot) 0.870 0.874 0.886 Al/(Al+Si) 0.026 0.024 0.015 Al/(Al+Si) 0.057 0.072 0.036

147 B.2 - CALCIC AMPHIBOLE

wt% of oxides wt% of oxides MDL A4-5 A4-10 A4-17 MDL A3-5 A3-11 A3-17

SiO2 0.052 58.230 58.250 58.030 SiO2 0.052 57.760 53.180 56.320 Al2O3 0.047 0.256 0.564 0.327 Al2O3 0.047 0.625 4.110 1.574 MgO 0.053 23.650 23.440 23.360 MgO 0.053 23.050 21.310 23.100 FeO 0.169 4.070 2.958 2.829 FeO 0.169 3.040 4.130 3.800 CaO 0.036 10.690 12.460 12.750 CaO 0.036 11.870 12.190 11.780 MnO 0.152 0.536 0.295 0.179 MnO 0.152 0.217 0.280 0.027 Cr2O3 0.203 0.050 0.125 0.000 Cr2O3 0.203 0.245 0.167 0.000 atom prop 2.788 2.807 2.790 atom prop 2.775 2.702 2.757 Total 97.480 98.100 97.480 Total 96.810 95.360 96.600

Formula units (Leake, 1997) Formula units (Leake, 1997) Si 7.752 7.840 7.878 Si 7.856 7.395 7.642 Al 0.040 0.090 0.052 Al 0.100 0.674 0.252 Fe+3 0.453 0.333 0.321 Fe+3 0.346 0.480 0.431 Fe+2 0.000 0.000 0.000 Fe+2 0.000 0.000 0.000 Mn 0.060 0.034 0.021 Mn 0.025 0.033 0.003 Mg 4.694 4.703 4.728 Mg 4.673 4.418 4.672 Ca 1.525 1.797 1.855 Ca 1.730 1.816 1.713 Cr 0.011 0.028 0.000 Cr 0.057 0.040 0.000

148 B.2 - CALCIC AMPHIBOLE

Site occupancy Site occupancy A4-5 A4-10 A4-17 A3-5 A3-11 A3-17

Si 7.752 7.840 7.878 Si 7.856 7.395 7.642 AlIV 0.040 0.090 0.052 AlIV 0.100 0.605 0.252 Fe+3 0.207 0.070 0.069 Fe+3 0.044 0.000 0.107 Sum T 8.000 8.000 8.000 Sum T 8.000 8.000 8.000

AlVI 0.000 0.000 0.000 AlVI 0.000 0.069 0.000 Fe+3 0.246 0.263 0.252 Fe+3 0.302 0.480 0.324 Cr 0.011 0.028 0.000 Cr 0.057 0.040 0.000 Mg 4.219 4.500 4.582 Mg 4.403 4.234 4.385 Fe+2 0.000 0.000 0.000 Fe+2 0.000 0.000 0.000 Mn 0.060 0.034 0.021 Mn 0.025 0.033 0.003 Sum C 4.536 4.825 4.855 Sum C 4.786 4.856 4.713

Mg 0.475 0.203 0.145 Mg 0.270 0.184 0.287 Fe+2 0.000 0.000 0.000 Fe+2 0.000 0.000 0.000 Mn 0.000 0.000 0.000 Mn 0.000 0.000 0.000 Ca 1.525 1.797 1.855 Ca 1.730 1.816 1.713 Sum B 2.000 2.000 2.000 Sum B 2.000 2.000 2.000

Total 14.536 14.825 14.855 Total 14.786 14.856 14.713

Mg# 1.000 1.000 1.000 Mg# 1.000 1.000 1.000 Mg/(Mg+Fetot) 0.912 0.934 0.936 Mg/(Mg+Fetot) 0.931 0.902 0.916 Al/(Al+Si) 0.005 0.011 0.007 Al/(Al+Si) 0.013 0.083 0.032

149 B.2 - CALCIC AMPHIBOLE

wt% of oxides wt% of oxides MDL A2-5 A2-11 A2-17 MDL A1-9 A1-14 A1-16

SiO2 0.052 57.640 57.870 56.340 SiO2 0.052 48.710 49.250 50.400 Al2O3 0.047 0.993 0.286 1.255 Al2O3 0.047 8.800 9.020 7.150 MgO 0.053 22.970 23.300 22.840 MgO 0.053 17.440 18.540 18.630 FeO 0.169 3.850 2.971 3.870 FeO 0.169 6.560 6.590 6.000 CaO 0.036 12.300 12.790 12.340 CaO 0.036 11.530 9.940 11.950 MnO 0.152 0.208 0.063 0.135 MnO 0.152 0.135 0.117 0.144 Cr2O3 0.203 0.039 0.000 0.052 Cr2O3 0.203 1.171 0.750 1.363 atom prop 2.794 2.783 2.756 atom prop 2.635 2.650 2.676 Total 98.010 97.290 96.820 Total 94.350 94.200 95.640

Formula units (Leake, 1997) Formula units (Leake, 1997) Si 7.769 7.879 7.692 Si 6.983 6.875 7.142 Al 0.158 0.046 0.202 Al 1.487 1.484 1.194 Fe+3 0.434 0.338 0.442 Fe+3 0.787 0.769 0.711 Fe+2 0.000 0.000 0.000 Fe+2 0.000 0.000 0.000 Mn 0.024 0.007 0.016 Mn 0.016 0.014 0.017 Mg 4.615 4.729 4.649 Mg 3.727 3.858 3.936 Ca 1.776 1.866 1.805 Ca 1.771 1.487 1.814 Cr 0.009 0.000 0.012 Cr 0.285 0.181 0.326

150 B.2 - CALCIC AMPHIBOLE

Site occupancy Site occupancy A2-5 A2-11 A2-17 A1-9 A1-14 A1-16

Si 7.769 7.879 7.692 Si 6.983 6.875 7.142 AlIV 0.158 0.046 0.202 AlIV 1.017 1.125 0.858 Fe+3 0.073 0.075 0.106 Fe+3 0.000 0.000 0.000 Sum T 8.000 8.000 8.000 Sum T 8.000 8.000 8.000

AlVI 0.000 0.000 0.000 AlVI 0.470 0.359 0.336 Fe+3 0.361 0.263 0.336 Fe+3 0.787 0.769 0.711 Cr 0.009 0.000 0.012 Cr 0.285 0.181 0.326 Mg 4.392 4.595 4.454 Mg 3.498 3.345 3.750 Fe+2 0.000 0.000 0.000 Fe+2 0.000 0.000 0.000 Mn 0.024 0.007 0.016 Mn 0.016 0.014 0.017 Sum C 4.785 4.866 4.817 Sum C 5.056 4.668 5.141

Mg 0.224 0.134 0.195 Mg 0.229 0.513 0.186 Fe+2 0.000 0.000 0.000 Fe+2 0.000 0.000 0.000 Mn 0.000 0.000 0.000 Mn 0.000 0.000 0.000 Ca 1.776 1.866 1.805 Ca 1.771 1.487 1.814 Sum B 2.000 2.000 2.000 Sum B 2.000 2.000 2.000

Total 14.785 14.866 14.817 Total 15.056 14.668 15.141

Mg# 1.000 1.000 1.000 Mg# 1.000 1.000 1.000 Mg/(Mg+Fetot) 0.914 0.933 0.913 Mg/(Mg+Fetot) 0.826 0.834 0.847 Al/(Al+Si) 0.020 0.006 0.026 Al/(Al+Si) 0.176 0.178 0.143

151 B.3 - NON-CALCIC AMPHIBOLE

wt% of oxides MDL LO272-1 LO272-6 LO272-9 LO272-10

SiO2 0.048 56.570 55.840 56.660 56.130 TiO2 nd nd nd nd Al2O3 0.048 0.702 0.894 0.353 0.865 MgO 0.052 25.090 24.030 24.830 25.230 FeO 0.158 13.790 16.310 13.780 12.990 CaO 0.038 0.412 0.459 0.690 0.474 MnO 0.160 0.273 0.417 0.316 0.384 K20 nd nd nd nd Na20 nd nd nd nd Cr2O3 0.208 0.024 0.047 0.000 0.000 atom prop. 2.730 2.723 2.721 2.714 Total 96.860 97.997 96.628 96.073

Formula units (Leake, 1997) Si 7.930 7.813 7.971 7.909 Ti nd nd nd nd Al 0.116 0.147 0.058 0.144 Fe+3 0.024 0.226 0.000 0.039 Fe+2 1.593 1.683 1.621 1.492 Mn 0.032 0.049 0.038 0.046 Mg 5.243 5.012 5.208 5.300 Ca 0.062 0.069 0.104 0.072 K nd nd nd nd Na nd nd nd nd Cr 0.006 0.011 0.000 0.000

152 B.3 - NON-CALCIC AMPHIBOLE

Site occupancy LO272-1 LO272-6 LO272-9 LO272-10

Si 7.930 7.813 7.971 7.909 AlIV 0.070 0.147 0.029 0.091 Fe+3 0.000 0.039 0.000 0.000 Sum T 8.000 8.000 8.000 8.000

AlVI 0.046 0.000 0.030 0.052 Fe+3 0.024 0.187 0.000 0.039 Cr 0.006 0.011 0.000 0.000 Mg 3.305 3.081 3.312 3.371 Fe+2 1.593 1.683 1.621 1.492 Mn 0.032 0.049 0.038 0.046 Sum C 5.006 5.011 5.000 5.000

Mg 1.938 1.931 1.896 1.928 Fe+2 0.000 0.000 0.000 0.000 Mn 0.000 0.000 0.000 0.000 Ca 0.062 0.069 0.104 0.072 Sum B 2.000 2.000 2.000 2.000

Total 15.006 15.011 15.000 15.000

Mg# 0.767 0.749 0.763 0.780 Mg/(Mg+Fetot) 0.764 0.724 0.763 0.776 Al/(Al+Si) 0.014 0.019 0.007 0.018

153 B.3 - NON-CALCIC AMPHIBOLE

wt% of oxides MDL LO67-1 LO67-3 LO67-4 LO67-5 LO67-6 LO67-7 LO67-8 LO67-2

SiO2 0.048 56.510 56.010 56.410 55.950 56.320 55.670 56.500 55.200 TiO2 nd nd nd nd nd nd nd nd Al2O3 0.048 0.212 0.212 0.276 0.395 0.241 0.282 0.166 0.950 MgO 0.052 25.550 23.980 24.360 24.660 24.200 25.320 24.480 21.450 FeO 0.158 13.940 15.190 14.190 14.650 15.820 14.090 14.530 14.410 CaO 0.038 0.383 0.589 0.401 0.401 0.601 0.399 0.573 2.875 MnO 0.160 0.425 0.510 0.324 0.392 0.535 0.222 0.324 0.502 K20 nd nd nd nd nd nd nd nd Na20 nd nd nd nd nd nd nd nd Cr2O3 0.208 0.094 0.000 0.024 0.000 0.000 0.000 0.047 0.095 atom prop. 2.730 2.694 2.700 2.702 2.720 2.696 2.711 2.658 Total 97.114 96.492 95.985 96.448 97.717 95.983 96.619 95.481

Formula units (Leake, 1997) Si 7.901 7.943 8.011 7.903 7.895 7.867 7.978 7.973 Ti nd nd nd nd nd nd nd nd Al 0.035 0.035 0.046 0.066 0.040 0.047 0.028 0.162 Fe+3 0.162 0.079 0.000 0.128 0.171 0.219 0.016 0.000 Fe+2 1.468 1.722 1.685 1.603 1.684 1.446 1.700 1.741 Mn 0.050 0.061 0.039 0.047 0.064 0.027 0.039 0.061 Mg 5.326 5.069 5.157 5.193 5.057 5.334 5.153 4.619 Ca 0.057 0.090 0.061 0.061 0.090 0.060 0.087 0.445 K nd nd nd nd nd nd nd nd Na nd nd nd nd nd nd nd nd Cr 0.022 0.000 0.006 0.000 0.000 0.000 0.011 0.023

154 B.3 - NON-CALCIC AMPHIBOLE

Site occupancy LO67-1 LO67-3 LO67-4 LO67-5 LO67-6 LO67-7 LO67-8 LO67-2

Si 7.901 7.943 8.011 7.903 7.895 7.867 7.978 7.973 AlIV 0.035 0.035 0.000 0.066 0.040 0.047 0.022 0.027 Fe+3 0.064 0.022 0.000 0.031 0.066 0.086 0.000 0.000 Sum T 8.000 8.000 8.011 8.000 8.000 8.000 8.000 8.000

AlVI 0.000 0.000 0.046 0.000 0.000 0.000 0.006 0.134 Fe+3 0.099 0.057 0.000 0.097 0.105 0.133 0.016 0.000 Cr 0.022 0.000 0.006 0.000 0.000 0.000 0.011 0.023 Mg 3.383 3.159 3.218 3.254 3.147 3.394 3.240 3.063 Fe+2 1.468 1.722 1.685 1.603 1.684 1.446 1.700 1.741 Mn 0.050 0.061 0.039 0.047 0.064 0.027 0.039 0.061 Sum C 5.022 5.000 4.995 5.000 5.000 5.000 5.011 5.023

Mg 1.943 1.910 1.939 1.939 1.910 1.940 1.913 1.555 Fe+2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Mn 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Ca 0.057 0.090 0.061 0.061 0.090 0.060 0.087 0.445 Sum B 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000

Total 15.022 15.000 15.006 15.000 15.000 15.000 15.011 15.023

Mg# 0.784 0.746 0.754 0.764 0.750 0.787 0.752 0.726 Mg/(Mg+Fetot) 0.766 0.738 0.754 0.750 0.732 0.762 0.750 0.726 Al/(Al+Si) 0.004 0.004 0.006 0.008 0.005 0.006 0.003 0.020

155 B.3 - NON-CALCIC AMPHIBOLE

wt% of oxides wt% of oxides MDL LO279-2 LO279-3 MDL LO310-5

SiO2 0.048 57.070 57.230 SiO2 0.048 57.400 TiO2 nd nd TiO2 nd Al2O3 0.048 0.105 0.395 Al2O3 0.048 0.132 MgO 0.052 25.030 24.680 MgO 0.052 25.000 FeO 0.158 9.590 7.510 FeO 0.158 12.720 CaO 0.038 3.830 6.470 CaO 0.038 0.758 MnO 0.160 1.267 1.159 MnO 0.160 1.483 K20 nd nd K20 nd Na20 nd nd Na20 nd Cr2O3 0.208 0.024 0.000 Cr2O3 0.208 0.036 atom prop. 2.744 2.765 atom prop. 2.747 Total 96.916 97.444 Total 97.529

Formula units (Leake, 1997) Formula units (Leake, 1997) Si 7.948 7.899 Si 8.007 Ti nd nd Ti nd Al 0.017 0.064 Al 0.022 Fe+3 0.087 0.138 Fe+3 0.000 Fe+2 1.030 0.728 Fe+2 1.484 Mn 0.149 0.136 Mn 0.175 Mg 5.197 5.078 Mg 5.199 Ca 0.572 0.957 Ca 0.113 K nd nd K nd Na nd nd Na nd Cr 0.006 0.000 Cr 0.008

156 B.3 - NON-CALCIC AMPHIBOLE

Site occupancy Site occupancy LO279-2 LO279-3 LO310-5

Si 7.948 7.899 Si 8.007 AlIV 0.017 0.064 AlIV 0.000 Fe+3 0.035 0.037 Fe+3 0.000 Sum T 8.000 8.000 Sum T 8.007

AlVI 0.000 0.000 AlVI 0.022 Fe+3 0.052 0.101 Fe+3 0.000 Cr 0.006 0.000 Cr 0.008 Mg 3.768 4.035 Mg 3.312 Fe+2 1.030 0.728 Fe+2 1.484 Mn 0.149 0.136 Mn 0.175 Sum C 5.006 5.000 Sum C 5.001

Mg 1.428 1.043 Mg 1.887 Fe+2 0.000 0.000 Fe+2 0.000 Mn 0.000 0.000 Mn 0.000 Ca 0.572 0.957 Ca 0.113 Sum B 2.000 2.000 Sum B 2.000

Total 15.006 15.000 Total 15.008

Mg# 0.835 0.875 Mg# 0.778 Mg/(Mg+Fetot) 0.823 0.854 Mg/(Mg+Fetot) 0.778 Al/(Al+Si) 0.002 0.008 Al/(Al+Si) 0.003

157 B.3 - NON-CALCIC AMPHIBOLE

wt% of oxides MDL LO123-4 LO123-5 LO123-8

SiO2 0.048 56.890 55.750 54.970 TiO2 nd nd nd Al2O3 0.048 0.337 1.440 1.929 MgO 0.052 25.320 22.430 23.770 FeO 0.158 14.010 16.660 14.620 CaO 0.038 0.399 0.468 0.499 MnO 0.160 0.366 0.450 0.408 K20 nd nd nd Na20 nd nd nd Cr2O3 0.208 0.000 0.058 0.071 atom prop. 2.739 2.702 2.696 Total 97.322 97.257 96.267

Formula units (Leake, 1997) Si 7.939 7.911 7.794 Ti nd nd nd Al 0.055 0.241 0.322 Fe+3 0.067 0.000 0.089 Fe+2 1.569 1.977 1.645 Mn 0.043 0.054 0.049 Mg 5.268 4.745 5.025 Ca 0.060 0.071 0.076 K nd nd nd Na nd nd nd Cr 0.000 0.014 0.017

158 B.3 - NON-CALCIC AMPHIBOLE

Site occupancy LO123-4 LO123-5 LO123-8

Si 7.939 7.911 7.794 AlIV 0.055 0.089 0.206 Fe+3 0.006 0.000 0.000 Sum T 8.000 8.000 8.000

AlVI 0.000 0.152 0.117 Fe+3 0.061 0.000 0.089 Cr 0.000 0.014 0.017 Mg 3.327 2.816 3.100 Fe+2 1.569 1.977 1.645 Mn 0.043 0.054 0.049 Sum C 5.000 5.014 5.017

Mg 1.940 1.929 1.924 Fe+2 0.000 0.000 0.000 Mn 0.000 0.000 0.000 Ca 0.060 0.071 0.076 Sum B 2.000 2.000 2.000

Total 15.000 15.014 15.017

Mg# 0.771 0.706 0.753 Mg/(Mg+Fetot) 0.763 0.706 0.743 Al/(Al+Si) 0.007 0.030 0.040

159 B.3 - NON-CALCIC AMPHIBOLE

wt% of oxides MDL LO303-1 LO303-2 LO303-3 LO303-4 LO303-6 LO303-7 LO303-8

SiO2 0.048 57.320 59.540 58.610 57.460 57.540 57.930 57.320 TiO2 nd nd nd nd nd nd nd Al2O3 0.048 0.132 0.114 0.090 0.074 0.058 0.037 0.047 MgO 0.052 26.850 27.760 27.460 26.620 27.230 26.860 26.440 FeO 0.158 11.350 8.480 10.220 11.470 11.920 11.850 11.730 CaO 0.038 0.618 0.408 0.495 0.635 0.586 0.549 0.637 MnO 0.160 0.410 0.523 0.437 0.359 0.539 0.462 0.769 K20 nd nd nd nd nd nd nd Na20 nd nd nd nd nd nd nd Cr2O3 0.208 0.084 0.072 0.108 0.000 0.000 0.000 0.048 atom prop. 2.754 2.808 2.794 2.751 2.776 2.777 2.752 Total 96.764 96.898 97.420 96.618 97.873 97.687 96.991

Formula units (Leake, 1997) Si 7.961 8.191 8.058 7.995 7.900 7.979 7.966 Ti nd nd nd nd nd nd nd Al 0.022 0.018 0.015 0.012 0.009 0.006 0.008 Fe+3 0.057 0.000 0.000 0.000 0.191 0.036 0.061 Fe+2 1.261 0.976 1.175 1.335 1.178 1.329 1.303 Mn 0.048 0.061 0.051 0.042 0.063 0.054 0.091 Mg 5.559 5.693 5.628 5.521 5.573 5.515 5.478 Ca 0.092 0.060 0.073 0.095 0.086 0.081 0.095 K nd nd nd nd nd nd nd Na nd nd nd nd nd nd nd Cr 0.019 0.017 0.025 0.000 0.000 0.000 0.011

160 B.3 - NON-CALCIC AMPHIBOLE

Site occupancy LO303-1 LO303-2 LO303-3 LO303-4 LO303-6 LO303-7 LO303-8

Si 7.961 8.191 8.058 7.995 7.900 7.979 7.966 AlIV 0.022 0.000 0.000 0.005 0.009 0.006 0.008 Fe+3 0.018 0.000 0.000 0.000 0.091 0.015 0.026 Sum T 8.000 8.191 8.058 8.000 8.000 8.000 8.000

AlVI 0.000 0.018 0.015 0.007 0.000 0.000 0.000 Fe+3 0.039 0.000 0.000 0.000 0.100 0.021 0.034 Cr 0.019 0.017 0.025 0.000 0.000 0.000 0.011 Mg 3.651 3.754 3.701 3.616 3.659 3.596 3.573 Fe+2 1.261 0.976 1.175 1.335 1.178 1.329 1.303 Mn 0.048 0.061 0.051 0.042 0.063 0.054 0.091 Sum C 5.019 4.825 4.967 5.000 5.000 5.000 5.011

Mg 1.908 1.940 1.927 1.905 1.914 1.919 1.905 Fe+2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Mn 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Ca 0.092 0.060 0.073 0.095 0.086 0.081 0.095 Sum B 2.000 2.000 2.000 2.000 2.000 2.000 2.000

Total 15.019 15.017 15.025 15.000 15.000 15.000 15.011

Mg# 0.815 0.854 0.827 0.805 0.826 0.806 0.808 Mg/(Mg+Fetot) 0.808 0.854 0.827 0.805 0.803 0.802 0.801 Al/(Al+Si) 0.003 0.002 0.002 0.002 0.001 0.001 0.001

161 B.3 - NON-CALCIC AMPHIBOLE

wt% of oxides CW15-2 CW15-5 CW15-6 CW15-7

SiO2 0.052 56.850 56.330 56.830 58.020 TiO2 nd nd nd nd Al2O3 0.047 0.085 0.126 0.050 0.125 MgO 0.053 25.740 24.740 24.660 26.470 FeO 0.169 12.830 12.160 14.080 11.010 CaO 0.036 0.551 0.549 0.747 0.588 MnO 0.152 0.643 0.884 0.864 0.376 K20 nd nd nd nd Na20 nd nd nd nd Cr2O3 0.203 0.000 0.037 0.000 0.050 atom prop. 2.731 2.685 2.726 2.761 Total 96.700 94.820 97.220 96.640

Formula units (Leake, 1997) Si 7.956 8.057 7.970 8.075 Ti nd nd nd nd Al 0.014 0.021 0.008 0.020 Fe+3 0.075 0.000 0.052 0.000 Fe+2 1.427 1.455 1.599 1.281 Mn 0.076 0.107 0.103 0.044 Mg 5.370 5.276 5.156 5.492 Ca 0.083 0.084 0.112 0.088 K nd nd nd nd Na nd nd nd nd Cr 0.000 0.009 0.000 0.012

162 B.3 - NON-CALCIC AMPHIBOLE

Site occupancy CW15-2 CW15-5 CW15-6 CW15-7

Si 7.956 8.057 7.970 8.075 AlIV 0.014 0.000 0.008 0.347 Fe+3 0.030 0.000 0.022 0.000 Sum T 8.000 8.057 8.000 8.422

AlVI 0.000 0.021 0.000 -0.327 Fe+3 0.044 0.000 0.030 0.000 Cr 0.000 0.009 0.000 0.012 Mg 3.453 3.360 3.268 3.579 Fe+2 1.427 1.455 1.599 1.281 Mn 0.076 0.107 0.103 0.044 Sum C 5.000 4.951 5.000 4.590

Mg 1.917 1.916 1.888 1.912 Fe+2 0.000 0.000 0.000 0.000 Mn 0.000 0.000 0.000 0.000 Ca 0.083 0.084 0.112 0.088 Sum B 2.000 2.000 2.000 2.000

Total 15.000 15.009 15.000 15.012

Mg# 0.790 0.784 0.763 0.811 Mg/(Mg+Fetot) 0.781 0.784 0.757 0.811 Al/(Al+Si) 0.002 0.003 0.001 0.003

163 B.3 - NON-CALCIC AMPHIBOLE

wt% of oxides CW1-2 CW1-5 CW1-6 CW1-8

SiO2 0.052 56.900 56.250 56.990 56.700 TiO2 nd nd nd nd Al2O3 0.047 0.071 0.088 0.174 0.046 MgO 0.053 26.530 24.390 25.810 25.440 FeO 0.169 12.730 15.050 12.580 13.500 CaO 0.036 0.565 0.498 0.785 0.564 MnO 0.152 0.286 1.004 0.348 0.464 K20 nd nd nd nd Na20 nd nd nd nd Cr2O3 0.203 0.000 0.012 0.000 0.000 atom prop. 2.745 2.713 2.736 2.724 Total 97.080 97.290 96.690 96.720

Formula units (Leake, 1997) Si 7.901 7.909 7.965 7.951 Ti nd nd nd nd Al 0.012 0.015 0.029 0.008 Fe+3 0.187 0.168 0.042 0.090 Fe+2 1.291 1.602 1.429 1.493 Mn 0.034 0.120 0.041 0.055 Mg 5.492 5.112 5.377 5.318 Ca 0.084 0.075 0.118 0.085 K nd nd nd nd Na nd nd nd nd Cr 0.000 0.003 0.000 0.000

164 B.3 - NON-CALCIC AMPHIBOLE

Site occupancy CW1-2 CW1-5 CW1-6 CW1-8

Si 7.901 7.909 7.965 7.951 AlIV 0.012 0.015 0.029 0.008 Fe+3 0.088 0.077 0.007 0.041 Sum T 8.000 8.000 8.000 8.000

AlVI 0.000 0.000 0.000 0.000 Fe+3 0.099 0.091 0.035 0.049 Cr 0.000 0.003 0.000 0.000 Mg 3.576 3.187 3.495 3.403 Fe+2 1.291 1.602 1.429 1.493 Mn 0.034 0.120 0.041 0.055 Sum C 5.000 5.003 5.000 5.000

Mg 1.916 1.925 1.882 1.915 Fe+2 0.000 0.000 0.000 0.000 Mn 0.000 0.000 0.000 0.000 Ca 0.084 0.075 0.118 0.085 Sum B 2.000 2.000 2.000 2.000

Total 15.000 15.003 15.000 15.000

Mg# 0.810 0.761 0.790 0.781 Mg/(Mg+Fetot) 0.788 0.743 0.785 0.771 Al/(Al+Si) 0.001 0.002 0.004 0.001

165 B.3 - NON-CALCIC AMPHIBOLE

wt% of oxides CW6-2 CW6-5 CW6-6

SiO2 0.052 58.400 57.910 57.370 TiO2 nd nd nd Al2O3 0.047 0.108 0.102 0.043 MgO 0.053 29.130 29.140 28.060 FeO 0.169 8.620 8.850 9.910 CaO 0.036 0.389 0.374 0.665 MnO 0.152 0.197 0.404 0.260 K20 nd nd nd Na20 nd nd nd Cr2O3 0.203 0.101 0.050 0.038 atom prop. 2.801 2.790 2.761 Total 96.950 96.840 96.340

Formula units (Leake, 1997) Si 7.982 7.925 7.933 Ti nd nd nd Al 0.017 0.016 0.007 Fe+3 0.018 0.134 0.126 Fe+2 0.967 0.878 1.020 Mn 0.023 0.047 0.030 Mg 5.935 5.945 5.785 Ca 0.057 0.055 0.099 K nd nd nd Na nd nd nd Cr 0.023 0.012 0.009

166 B.3 - NON-CALCIC AMPHIBOLE

Site occupancy CW6-2 CW6-5 CW6-6

Si 7.982 7.925 7.933 AlIV 0.017 0.016 0.007 Fe+3 0.001 0.059 0.060 Sum T 8.000 8.000 8.000

AlVI 0.000 0.000 0.000 Fe+3 0.018 0.075 0.067 Cr 0.023 0.012 0.009 Mg 3.992 3.999 3.883 Fe+2 0.967 0.878 1.020 Mn 0.023 0.047 0.030 Sum C 5.023 5.012 5.009

Mg 1.943 1.945 1.901 Fe+2 0.000 0.000 0.000 Mn 0.000 0.000 0.000 Ca 0.057 0.055 0.099 Sum B 2.000 2.000 2.000

Total 15.023 15.012 15.009

Mg# 0.860 0.871 0.850 Mg/(Mg+Fetot) 0.858 0.854 0.835 Al/(Al+Si) 0.002 0.002 0.001

167 B.3 - NON-CALCIC AMPHIBOLE

wt% of oxides MDL CW17.2 CW17.3 CW17.4 CW17.5 CW17.6 CW17.7 CW17.8 CW17.10 CW17.13

SiO2 0.054 57.430 56.960 56.940 57.260 56.710 56.830 58.100 57.550 57.030 TiO2 0.077 0.029 0.000 0.000 0.025 0.000 0.001 0.049 0.004 0.000 Al2O3 0.044 0.126 0.101 0.079 0.124 0.047 0.075 0.134 0.120 0.077 MgO 0.046 26.270 25.470 25.400 25.620 24.590 25.190 27.010 27.450 25.670 FeO 0.017 12.610 12.680 13.990 11.690 14.560 13.190 10.790 11.540 11.660 CaO 0.037 0.351 0.381 0.628 0.593 0.580 0.630 0.576 0.377 0.663 MnO 0.133 0.332 0.421 0.537 0.386 0.706 0.483 0.377 0.216 0.503 K20 0.026 0.002 0.006 0.012 0.004 0.000 0.000 0.000 0.000 0.000 Na20 0.078 0.112 0.101 0.095 0.103 0.126 0.109 0.131 0.188 0.137 Cr2O3 0.192 0.000 0.012 0.000 0.000 0.012 0.024 0.000 0.012 0.000 atom prop. 2.755 2.721 2.742 2.725 2.723 2.722 2.776 2.772 2.720 Total 97.260 96.130 97.680 95.800 97.330 96.530 97.170 97.460 95.740

Formula units (Leake, 1997) Si 7.981 8.029 7.928 8.077 7.945 7.982 8.015 7.904 8.029 Ti 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Al 0.021 0.017 0.013 0.021 0.008 0.012 0.022 0.019 0.013 Fe+3 0.000 0.000 0.102 0.000 0.136 0.053 0.000 0.222 0.000 Fe+2 1.465 1.495 1.527 1.379 1.570 1.496 1.245 1.104 1.373 Mn 0.039 0.050 0.063 0.046 0.084 0.058 0.044 0.025 0.060 Mg 5.442 5.352 5.272 5.388 5.136 5.274 5.555 5.620 5.388 Ca 0.052 0.058 0.094 0.090 0.087 0.095 0.085 0.055 0.100 K 0.030 0.028 0.026 0.028 0.034 0.030 0.035 0.050 0.037 Na 0.000 0.001 0.002 0.001 0.000 0.000 0.000 0.000 0.000 Cr 0.000 0.003 0.000 0.000 0.003 0.006 0.000 0.003 0.000

168 B.3 - NON-CALCIC AMPHIBOLE

Site occupancy CW17.2 CW17.3 CW17.4 CW17.5 CW17.6 CW17.7 CW17.8 CW17.10 CW17.13

Si 7.981 8.029 7.928 8.077 7.945 7.982 8.015 7.904 8.029 AlIV 0.019 0.000 0.013 0.000 0.008 0.012 0.000 0.019 0.013 Fe+3 0.000 0.000 0.059 0.000 0.047 0.006 0.000 0.077 -0.042 Sum T 8.000 8.029 8.000 8.077 8.000 8.000 8.015 8.000 8.000

AlVI 0.001 0.017 0.000 0.021 0.000 0.000 0.022 0.000 0.000 Ti 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Fe+3 0.000 0.000 0.044 0.000 0.089 0.047 0.000 0.145 0.042 Cr 0.000 0.003 0.000 0.000 0.003 0.006 0.000 0.003 0.000 Mg 3.494 3.410 3.366 3.477 3.223 3.369 3.640 3.676 3.488 Fe+2 1.465 1.495 1.527 1.379 1.570 1.496 1.245 1.104 1.373 Mn 0.039 0.050 0.063 0.046 0.084 0.058 0.044 0.025 0.060 Sum C 5.000 4.974 5.000 4.923 4.969 4.976 4.950 4.953 4.963

Mg 1.948 1.942 1.906 1.910 1.913 1.905 1.915 1.945 1.900 Fe+2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Mn 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Ca 0.052 0.058 0.094 0.090 0.087 0.095 0.085 0.055 0.100 Sum B 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000

Na 0.000 0.001 0.002 0.001 0.000 0.000 0.000 0.000 0.000 K 0.030 0.028 0.026 0.028 0.034 0.030 0.035 0.050 0.037 Sum A 0.031 0.029 0.028 0.029 0.034 0.030 0.035 0.050 0.037

Mg# 0.788 0.782 0.775 0.796 0.766 0.779 0.817 0.836 0.797 Mg/(Mg+Fetot) 0.788 0.782 0.764 0.796 0.751 0.773 0.817 0.809 0.797 Al/(Al+Si) 0.003 0.002 0.002 0.003 0.001 0.002 0.003 0.002 0.002

169 B.3 - NON-CALCIC AMPHIBOLE

wt% of oxides MDL CW13.1 CW13.3 CW13.4 CW13.6 CW13.8 CW13.2

SiO2 0.054 57.190 56.720 55.550 56.320 57.010 56.290 TiO2 0.077 0.040 0.026 0.000 0.000 0.080 0.028 Al2O3 0.044 0.171 0.089 0.355 0.186 0.117 0.512 MgO 0.046 25.750 24.820 23.630 24.410 25.820 23.130 FeO 0.017 13.720 13.850 13.480 13.410 12.000 10.300 CaO 0.037 0.616 0.518 0.610 1.251 0.514 5.300 MnO 0.133 0.439 0.501 0.582 0.385 0.386 0.495 K20 0.026 0.000 0.000 0.005 0.010 0.000 0.019 Na20 0.078 0.151 0.195 0.165 0.211 0.144 0.720 Cr2O3 0.192 0.012 0.012 0.000 0.000 0.000 0.000 atom prop. 2.758 2.718 2.654 2.702 2.726 2.714 Total 98.090 96.740 94.370 96.180 96.070 96.790

Formula units (Leake, 1997) Si 7.901 7.969 8.017 7.953 8.000 7.994 Ti 0.000 0.000 0.000 0.000 0.008 0.000 Al 0.028 0.015 0.060 0.031 0.019 0.031 Fe+3 0.211 0.101 0.000 0.119 0.003 0.000 Fe+2 1.375 1.526 1.627 1.465 1.406 1.571 Mn 0.051 0.060 0.071 0.046 0.046 0.055 Mg 5.303 5.198 5.084 5.139 5.402 5.243 Ca 0.091 0.078 0.094 0.189 0.077 0.106 K 0.040 0.053 0.046 0.058 0.039 0.047 Na 0.000 0.000 0.001 0.002 0.000 0.001 Cr 0.003 0.003 0.000 0.000 0.000 0.000

170 B.3 - NON-CALCIC AMPHIBOLE

Site occupancy CW13.1 CW13.3 CW13.4 CW13.6 CW13.8 CW13.2

Si 7.901 7.969 8.017 7.953 8.000 7.994 AlIV 0.028 0.015 0.000 0.031 0.000 0.006 Fe+3 0.071 0.017 0.000 0.016 0.000 0.000 Sum T 8.000 8.000 8.017 8.000 8.000 8.000

AlVI 0.000 0.000 0.060 0.000 0.019 0.024 Ti 0.000 0.000 0.000 0.000 0.008 0.000 Fe+3 0.139 0.084 0.000 0.103 0.003 0.000 Cr 0.003 0.003 0.000 0.000 0.000 0.000 Mg 3.394 3.276 3.178 3.328 3.479 3.350 Fe+2 1.375 1.526 1.627 1.465 1.406 1.571 Mn 0.051 0.060 0.071 0.046 0.046 0.055 Sum C 4.962 4.950 4.937 4.942 4.961 5.000

Mg 1.909 1.922 1.906 1.811 1.923 1.894 Fe+2 0.000 0.000 0.000 0.000 0.000 0.000 Mn 0.000 0.000 0.000 0.000 0.000 0.000 Ca 0.091 0.078 0.094 0.189 0.077 0.106 Sum B 2.000 2.000 2.000 2.000 2.000 2.000

Na 0.000 0.000 0.001 0.002 0.000 0.001 K 0.040 0.053 0.046 0.058 0.039 0.047 Sum A 0.040 0.053 0.047 0.060 0.039 0.048

Mg# 0.794 0.773 0.758 0.778 0.794 0.769 Mg/(Mg+Fetot) 0.770 0.762 0.758 0.764 0.793 0.769 Al/(Al+Si) 0.004 0.002 0.007 0.004 0.002 0.004

171 B.3 - NON-CALCIC AMPHIBOLE

wt% of oxides MDL CW3.3 CW3.6 CW3.8 CW3.9

SiO2 0.054 55.070 55.020 55.720 54.880 TiO2 0.077 0.000 0.000 0.000 0.031 Al2O3 0.044 0.576 0.567 0.596 0.399 MgO 0.046 22.140 21.760 21.740 22.660 FeO 0.017 17.850 17.300 16.860 17.390 CaO 0.037 0.754 0.871 0.651 0.607 MnO 0.133 0.686 0.668 0.793 0.516 K20 0.026 0.011 0.007 0.000 0.018 Na20 0.078 0.106 0.137 0.062 0.046 Cr2O3 0.192 0.143 0.024 0.000 0.000 atom prop. 2.674 2.655 2.669 2.662 Total 97.330 96.350 96.430 96.550

Formula units (Leake, 1997) Si 7.846 7.908 8.013 7.858 Ti 0.000 0.000 0.000 0.000 Al 0.097 0.096 0.101 0.067 Fe+3 0.238 0.124 0.000 0.214 Fe+2 1.889 1.955 2.028 1.869 Mn 0.083 0.081 0.097 0.063 Mg 4.703 4.663 4.661 4.837 Ca 0.115 0.134 0.100 0.093 K 0.029 0.038 0.000 0.000 Na 0.002 0.001 0.000 0.003 Cr 0.034 0.006 0.000 0.000

172 B.3 - NON-CALCIC AMPHIBOLE

Site occupancy CW3.3 CW3.6 CW3.8 CW3.9

Si 7.846 7.908 8.013 7.858 AlIV 0.097 0.092 0.000 0.067 Fe+3 0.057 0.000 0.000 0.075 Sum T 8.000 8.000 8.013 8.000

AlVI 0.000 0.004 0.101 0.000 Ti 0.000 0.000 0.000 0.000 Fe+3 0.181 0.124 0.000 0.139 Cr 0.034 0.006 0.000 0.000 Mg 2.818 2.797 2.761 2.930 Fe+2 1.889 1.955 2.028 1.869 Mn 0.083 0.081 0.097 0.063 Sum C 5.005 4.968 4.987 5.000

Mg 1.885 1.866 1.900 1.907 Fe+2 0.000 0.000 0.000 0.000 Mn 0.000 0.000 0.000 0.000 Ca 0.115 0.134 0.100 0.093 Sum B 2.000 2.000 2.000 2.000

Na 0.002 0.001 0.000 0.003 K 0.029 0.038 0.000 0.000 Sum A 0.031 0.040 0.000 0.003

Mg# 0.713 0.705 0.697 0.721 Mg/(Mg+Fetot) 0.689 0.692 0.697 0.699 Al/(Al+Si) 0.012 0.012 0.012 0.008

173 B.3 - NON-CALCIC AMPHIBOLE

wt% of oxides wt% of oxides MDL A8-6 A8-12 A8-18 MDL A5-5 A5-12 A5-19

SiO2 0.052 56.940 57.160 57.290 SiO2 0.052 58.740 57.650 58.150 Al2O3 0.047 0.138 0.041 0.164 Al2O3 0.047 0.072 0.081 0.067 MgO 0.053 26.640 24.490 26.090 MgO 0.053 27.710 25.910 25.500 FeO 0.169 11.860 11.180 11.920 FeO 0.169 9.620 12.080 12.640 CaO 0.036 0.701 1.337 0.895 CaO 0.036 0.236 0.460 0.516 MnO 0.152 1.067 2.476 1.394 MnO 0.152 0.319 0.335 0.521 Cr2O3 0.203 0.036 0.000 0.036 Cr2O3 0.203 0.024 0.000 0.048 atom prop 2.753 2.726 2.761 atom prop 2.788 2.745 2.763 Total 97.390 96.680 97.790 Total 96.720 96.520 97.430

Formula units (Leake, 1997) Formula units (Leake, 1997) Si 7.880 8.043 7.921 Si 8.106 8.063 8.091 Al 0.022 0.007 0.027 Al 0.012 0.013 0.011 Fe+3 0.218 0.000 0.131 Fe+3 0.000 0.000 0.000 Fe+2 1.155 1.316 1.248 Fe+2 1.110 1.413 1.471 Mn 0.125 0.295 0.163 Mn 0.037 0.040 0.061 Mg 5.496 5.137 5.378 Mg 5.700 5.402 5.289 Ca 0.104 0.202 0.133 Ca 0.035 0.069 0.077 Cr 0.008 0.000 0.008 Cr 0.006 0.000 0.011

174 B.3 - NON-CALCIC AMPHIBOLE

Site occupancy Site occupancy A8-6 A8-12 A8-18 A5-5 A5-12 A5-19

Si 7.880 8.043 7.921 Si 8.106 8.063 8.091 AlIV 0.022 0.000 0.027 AlIV 0.000 0.000 0.000 Fe+3 0.098 0.000 0.052 Fe+3 0.000 0.000 0.000 Sum T 8.000 8.043 8.000 Sum T 8.106 8.063 8.091

AlVI 0.000 0.007 0.000 AlVI 0.012 0.013 0.011 Fe+3 0.120 0.000 0.079 Fe+3 0.000 0.000 0.000 Cr 0.008 0.000 0.008 Cr 0.006 0.000 0.011 Mg 3.600 3.339 3.510 Mg 3.735 3.471 3.366 Fe+2 1.155 1.316 1.248 Fe+2 1.110 1.413 1.471 Mn 0.125 0.295 0.163 Mn 0.037 0.040 0.061 Sum C 5.008 4.957 5.008 Sum C 4.900 4.937 4.920

Mg 1.896 1.798 1.867 Mg 1.965 1.931 1.923 Fe+2 0.000 0.000 0.000 Fe+2 0.000 0.000 0.000 Mn 0.000 0.000 0.000 Mn 0.000 0.000 0.000 Ca 0.104 0.202 0.133 Ca 0.035 0.069 0.077 Sum B 2.000 2.000 2.000 Sum B 2.000 2.000 2.000

Total 15.008 15.000 15.008 Total 15.006 15.000 15.011

Mg# 0.826 0.796 0.812 Mg# 0.837 0.793 0.782 Mg/(Mg+Fetot) 0.800 0.796 0.796 Mg/(Mg+Fetot) 0.837 0.793 0.782 Al/(Al+Si) 0.003 0.001 0.003 Al/(Al+Si) 0.001 0.002 0.001

175 B.3 - NON-CALCIC AMPHIBOLE

wt% of oxides wt% of oxides MDL A10-6 A10-13 A10-20 MDL A6-6 A6-12 A6-18

SiO2 0.052 57.950 58.170 57.850 SiO2 0.052 56.870 56.640 56.910 Al2O3 0.047 0.076 0.039 0.048 Al2O3 0.047 0.104 0.044 0.045 MgO 0.053 26.690 26.170 27.050 MgO 0.053 24.410 23.940 24.410 FeO 0.169 11.830 12.910 11.570 FeO 0.169 13.660 14.520 14.620 CaO 0.036 0.581 0.544 0.534 CaO 0.036 0.696 0.432 0.640 MnO 0.152 0.345 0.318 0.327 MnO 0.152 0.933 1.178 0.959 Cr2O3 0.203 0.000 0.000 0.000 Cr2O3 0.203 0.000 0.036 0.000 atom prop 2.773 2.780 2.773 atom prop 2.717 2.708 2.730 Total 97.470 98.160 97.380 Total 96.680 96.790 97.580

Formula units (Leake, 1997) Formula units (Leake, 1997) Si 8.001 8.014 7.979 Si 8.022 8.016 7.972 Al 0.012 0.006 0.008 Al 0.017 0.007 0.007 Fe+3 0.000 0.000 0.035 Fe+3 0.000 0.000 0.048 Fe+2 1.366 1.487 1.300 Fe+2 1.611 1.719 1.665 Mn 0.040 0.037 0.038 Mn 0.111 0.141 0.114 Mg 5.494 5.375 5.562 Mg 5.133 5.051 5.098 Ca 0.086 0.080 0.079 Ca 0.105 0.065 0.096 Cr 0.000 0.000 0.000 Cr 0.000 0.008 0.000

176 B.3 - NON-CALCIC AMPHIBOLE

Site occupancy Site occupancy A10-6 A10-13 A10-20 A6-6 A6-12 A6-18

Si 8.001 8.014 7.979 Si 8.022 8.016 7.972 AlIV 0.000 0.000 0.008 AlIV 0.000 0.000 0.007 Fe+3 0.000 0.000 0.013 Fe+3 0.000 0.000 0.020 Sum T 8.001 8.014 8.000 Sum T 8.022 8.016 8.000

AlVI 0.012 0.006 0.000 AlVI 0.017 0.007 0.000 Fe+3 0.000 0.000 0.021 Fe+3 0.000 0.000 0.028 Cr 0.000 0.000 0.000 Cr 0.000 0.008 0.000 Mg 3.580 3.455 3.641 Mg 3.238 3.117 3.194 Fe+2 1.366 1.487 1.300 Fe+2 1.611 1.719 1.665 Mn 0.040 0.037 0.038 Mn 0.111 0.141 0.114 Sum C 4.999 4.986 5.000 Sum C 4.978 4.992 5.000

Mg 1.914 1.920 1.921 Mg 1.895 1.935 1.904 Fe+2 0.000 0.000 0.000 Fe+2 0.000 0.000 0.000 Mn 0.000 0.000 0.000 Mn 0.000 0.000 0.000 Ca 0.086 0.080 0.079 Ca 0.105 0.065 0.096 Sum B 2.000 2.000 2.000 Sum B 2.000 2.000 2.000

Total 15.000 15.000 15.000 Total 15.000 15.008 15.000

Mg# 0.801 0.783 0.811 Mg# 0.761 0.746 0.754 Mg/(Mg+Fetot) 0.801 0.783 0.806 Mg/(Mg+Fetot) 0.761 0.746 0.749 Al/(Al+Si) 0.002 0.001 0.001 Al/(Al+Si) 0.002 0.001 0.001

177 B.3 - NON-CALCIC AMPHIBOLE

wt% of oxides wt% of oxides MDL A4-6 A4-12 A4-18 MDL A3-6 A3-12 A3-18

SiO2 0.052 59.030 57.100 57.800 SiO2 0.052 57.480 55.520 57.410 Al2O3 0.047 0.025 0.046 0.036 Al2O3 0.047 0.133 0.042 0.038 MgO 0.053 27.210 25.230 25.780 MgO 0.053 26.410 24.900 26.000 FeO 0.169 9.010 11.540 10.830 FeO 0.169 11.540 12.040 11.380 CaO 0.036 0.445 0.748 0.912 CaO 0.036 0.567 0.563 0.565 MnO 0.152 1.409 2.167 2.048 MnO 0.152 1.295 1.666 1.873 Cr2O3 0.203 0.012 0.084 0.000 Cr2O3 0.203 0.075 0.012 0.000 atom prop 2.794 2.734 2.760 atom prop 2.763 2.668 2.752 Total 97.150 96.920 97.400 Total 97.500 94.740 97.270

Formula units (Leake, 1997) Formula units (Leake, 1997) Si 8.136 8.001 8.025 Si 7.957 7.949 7.979 Al 0.004 0.008 0.006 Al 0.022 0.007 0.006 Fe+3 0.000 0.000 0.000 Fe+3 0.065 0.096 0.035 Fe+2 1.039 1.352 1.257 Fe+2 1.271 1.346 1.287 Mn 0.164 0.257 0.241 Mn 0.152 0.202 0.221 Mg 5.591 5.270 5.336 Mg 5.450 5.314 5.387 Ca 0.066 0.112 0.136 Ca 0.084 0.086 0.084 Cr 0.003 0.020 0.000 Cr 0.017 0.003 0.000

178 B.3 - NON-CALCIC AMPHIBOLE

Site occupancy Site occupancy A4-6 A4-12 A4-18 A3-6 A3-12 A3-18

Si 8.136 8.001 8.025 Si 7.957 7.949 7.979 AlIV 0.000 0.000 0.000 AlIV 0.022 0.007 0.006 Fe+3 0.000 0.000 0.000 Fe+3 0.022 0.044 0.015 Sum T 8.136 8.001 8.025 Sum T 8.000 8.000 8.000

AlVI 0.004 0.008 0.006 AlVI 0.000 0.000 0.000 Fe+3 0.000 0.000 0.000 Fe+3 0.043 0.051 0.021 Cr 0.003 0.020 0.000 Cr 0.017 0.003 0.000 Mg 3.657 3.382 3.471 Mg 3.534 3.401 3.471 Fe+2 1.039 1.352 1.257 Fe+2 1.271 1.346 1.287 Mn 0.164 0.257 0.241 Mn 0.152 0.202 0.221 Sum C 4.867 5.019 4.975 Sum C 5.017 5.003 5.000

Mg 1.934 1.888 1.864 Mg 1.916 1.914 1.916 Fe+2 0.000 0.000 0.000 Fe+2 0.000 0.000 0.000 Mn 0.000 0.000 0.000 Mn 0.000 0.000 0.000 Ca 0.066 0.112 0.136 Ca 0.084 0.086 0.084 Sum B 2.000 2.000 2.000 Sum B 2.000 2.000 2.000

Total 15.003 15.020 15.000 Total 15.017 15.003 15.000

Mg# 0.843 0.796 0.809 Mg# 0.811 0.798 0.807 Mg/(Mg+Fetot) 0.843 0.796 0.809 Mg/(Mg+Fetot) 0.803 0.787 0.803 Al/(Al+Si) 0.000 0.001 0.001 Al/(Al+Si) 0.003 0.001 0.001

179 B.3 - NON-CALCIC AMPHIBOLE

wt% of oxides MDL A2-6 A2-12 A2-18

SiO2 0.052 56.770 57.540 57.470 Al2O3 0.047 0.060 0.088 0.073 MgO 0.053 25.980 26.470 26.740 FeO 0.169 12.370 12.510 11.840 CaO 0.036 0.736 0.651 0.630 MnO 0.152 0.866 0.572 0.750 Cr2O3 0.203 0.000 0.000 0.000 atom prop 2.733 2.768 2.765 Total 96.790 97.830 97.500

Formula units (Leake, 1997) Si 7.926 7.937 7.936 Al 0.010 0.014 0.012 Fe+3 0.138 0.112 0.117 Fe+2 1.306 1.331 1.250 Mn 0.102 0.067 0.088 Mg 5.407 5.443 5.504 Ca 0.110 0.096 0.093 Cr 0.000 0.000 0.000

180 B.3 - NON-CALCIC AMPHIBOLE

Site occupancy A2-6 A2-12 A2-18

Si 7.926 7.937 7.936 AlIV 0.010 0.014 0.012 Fe+3 0.064 0.049 0.053 Sum T 8.000 8.000 8.000

AlVI 0.000 0.000 0.000 Fe+3 0.074 0.063 0.064 Cr 0.000 0.000 0.000 Mg 3.517 3.539 3.598 Fe+2 1.306 1.331 1.250 Mn 0.102 0.067 0.088 Sum C 5.000 5.000 5.000

Mg 1.890 1.904 1.907 Fe+2 0.000 0.000 0.000 Mn 0.000 0.000 0.000 Ca 0.110 0.096 0.093 Sum B 2.000 2.000 2.000

Total 15.000 15.000 15.000

Mg# 0.805 0.804 0.815 Mg/(Mg+Fetot) 0.789 0.790 0.801 Al/(Al+Si) 0.001 0.002 0.001

181 B.3 - NON-CALCIC AMPHIBOLE

wt% of oxides MDL A1-5 A1-10 A1-15 A1-17

SiO2 0.052 55.910 55.930 55.420 56.110 Al2O3 0.047 0.422 0.509 0.192 0.160 MgO 0.053 23.320 23.580 23.060 23.210 FeO 0.169 15.110 16.920 17.580 16.510 CaO 0.036 0.349 0.388 0.532 0.681 MnO 0.152 0.498 0.559 0.550 0.399 Cr2O3 0.203 0.294 0.232 0.012 0.134 atom prop 2.681 2.716 2.684 2.698 Total 95.900 98.120 97.350 97.210

Formula units (Leake, 1997) Si 8.017 7.861 7.860 7.957 Al 0.071 0.084 0.032 0.027 Fe+3 0.000 0.194 0.248 0.059 Fe+2 1.812 1.795 1.838 1.899 Mn 0.060 0.067 0.066 0.048 Mg 4.985 4.941 4.876 4.907 Ca 0.054 0.058 0.081 0.103 Cr 0.070 0.055 0.003 0.032

182 B.3 - NON-CALCIC AMPHIBOLE

Site occupancy A1-5 A1-10 A1-15 A1-17

Si 8.017 7.861 7.860 7.957 AlIV 0.000 0.084 0.032 0.027 Fe+3 0.000 0.055 0.108 0.016 Sum T 8.017 8.000 8.000 8.000

AlVI 0.071 0.000 0.000 0.000 Fe+3 0.000 0.139 0.140 0.043 Cr 0.070 0.055 0.003 0.032 Mg 3.039 2.999 2.957 3.010 Fe+2 1.812 1.795 1.838 1.899 Mn 0.060 0.067 0.066 0.048 Sum C 5.053 5.055 5.003 5.032

Mg 1.946 1.942 1.919 1.897 Fe+2 0.000 0.000 0.000 0.000 Mn 0.000 0.000 0.000 0.000 Ca 0.054 0.058 0.081 0.103 Sum B 2.000 2.000 2.000 2.000

Total 15.070 15.055 15.003 15.032

Mg# Mg/(Mg+Fetot) 0.733 0.733 0.726 0.721 Al/(Al+Si) 0.733 0.713 0.700 0.715

183 B.4 - MAGNETITE

wt% of oxides MDL PA4-1 PA4-2 PA4-3 PA4-4 PA4-5 PA4-6 PA4-7

SiO2 0.051 0.000 0.000 0.000 0.035 0.007 0.032 0.035 TiO2 0.070 0.164 0.135 0.109 0.190 0.010 0.079 0.102 Al2O3 0.052 0.046 0.011 0.062 0.034 0.035 0.000 0.015 MgO 0.049 0.334 0.146 0.162 0.214 0.078 0.037 0.072 FeO 0.176 80.540 86.040 78.930 81.880 87.620 92.010 87.060 CaO 0.036 0.000 0.003 0.000 0.011 0.017 0.017 0.013 MnO 0.151 0.971 0.296 0.881 1.128 0.000 0.000 0.000 Cr2O3 0.131 10.800 5.470 10.140 10.350 1.394 1.409 1.020 Ni 0.172 0.199 0.209 0.181 0.118 0.086 0.113 0.099 ZnO 0.251 0.388 0.000 0.515 0.194 0.015 0.000 0.000 atom prop 1.369 1.320 1.328 1.376 1.252 1.314 1.239 Total 93.450 92.310 90.980 94.160 89.260 93.780 88.520

Formula units based on 4 oxygens SiO 0.000 0.000 0.000 0.002 0.000 0.002 0.002 TiO 0.006 0.005 0.004 0.007 0.000 0.003 0.004 Al 0.006 0.001 0.008 0.004 0.005 0.000 0.002 Mg 0.024 0.011 0.012 0.015 0.006 0.003 0.006 Fe 3.275 3.629 3.308 3.312 3.896 3.898 3.911 Ca 0.000 0.000 0.000 0.001 0.001 0.001 0.001 Mn 0.040 0.013 0.037 0.046 0.000 0.000 0.000 Cr 0.879 0.462 0.850 0.838 0.124 0.119 0.092 Ni 0.008 0.008 0.007 0.005 0.004 0.005 0.004 Zn 0.014 0.000 0.019 0.007 0.001 0.000 0.000 O 4.000 4.000 4.000 4.000 4.000 4.000 4.000

Cat total 4.252 4.130 4.246 4.237 4.037 4.030 4.021

184 B.4 - MAGNETITE

Formula units recalculated for Fe+2 and Fe+3 (Droop, 1987) PA4-1 PA4-2 PA4-3 PA4-4 PA4-5 PA4-6 PA4-7

SiO 0.000 0.000 0.000 0.001 0.000 0.001 0.001 TiO 0.004 0.004 0.003 0.005 0.000 0.002 0.003 Al 0.004 0.001 0.006 0.003 0.004 0.000 0.002 Mg 0.017 0.008 0.009 0.011 0.005 0.002 0.004 Fe2+ 0.649 1.046 0.678 0.692 1.368 1.379 1.402 Fe3+ 1.662 1.590 1.659 1.654 1.527 1.522 1.516 Ca 0.000 0.000 0.000 0.000 0.001 0.001 0.001 Mn 0.028 0.009 0.026 0.033 0.000 0.000 0.000 Cr 0.620 0.335 0.601 0.593 0.092 0.089 0.068 Ni 0.010 0.000 0.013 0.005 0.000 0.000 0.000 Zn 0.010 0.000 0.013 0.005 0.000 0.000 0.000

Cat total 3.004 2.994 3.008 3.002 2.998 2.997 2.997

Fe2/(Fe2+Fe3) 0.281 0.397 0.290 0.295 0.473 0.475 0.480

wt% recalculated to show Fe+2 and Fe+3 (Droop, 1987) SiO2 0.000 0.000 0.000 0.035 0.007 0.032 0.035 TiO2 0.164 0.135 0.109 0.190 0.010 0.079 0.102 Al2O3 0.046 0.011 0.062 0.034 0.035 0.000 0.015 MgO 0.334 0.146 0.162 0.214 0.078 0.037 0.072 FeO 20.939 32.004 21.223 22.392 39.105 41.324 39.539 Fe2O3 59.601 54.036 57.707 59.488 48.515 50.686 47.521 CaO 0.000 0.003 0.000 0.011 0.017 0.017 0.013 MnO 0.971 0.296 0.881 1.128 0.000 0.000 0.000 Cr2O3 10.800 5.470 10.140 10.350 1.394 1.409 1.020 Ni 0.199 0.209 0.181 0.118 0.086 0.113 0.099 ZnO 0.388 0.000 0.515 0.194 0.015 0.000 0.000

Total 93.443 92.309 90.980 94.153 89.262 93.697 88.416

185 B.4 - MAGNETITE

wt% of oxides MDL PA5-1 PA5-2 PA5-3 PA5-5 PA5-4 PA5-6

SiO2 0.051 0.010 0.051 0.005 0.021 0.122 0.000 TiO2 0.070 0.406 0.862 0.391 0.350 0.110 0.076 Al2O3 0.052 0.355 0.479 0.290 0.183 0.151 0.019 MgO 0.049 0.052 0.225 0.061 0.063 0.033 0.022 FeO 0.176 75.600 55.220 75.890 80.920 87.630 91.510 CaO 0.036 0.000 0.017 0.025 0.000 0.033 0.038 MnO 0.151 1.222 1.931 1.429 1.155 0.000 0.000 Cr2O3 0.131 14.390 30.510 15.540 11.100 0.603 0.000 Ni 0.172 0.095 0.041 0.086 0.140 0.023 0.163 ZnO 0.251 0.180 0.473 0.180 0.178 0.097 0.000 atom prop 1.379 1.448 1.407 1.382 1.246 1.279 Total 92.310 89.810 93.890 94.110 88.860 91.930

Formula units based on 4 oxygens SiO 0.000 0.002 0.000 0.001 0.007 0.000 TiO 0.015 0.030 0.014 0.013 0.004 0.003 Al 0.045 0.058 0.036 0.023 0.021 0.003 Mg 0.004 0.015 0.004 0.005 0.003 0.002 Fe 3.051 2.123 3.003 3.259 3.916 3.982 Ca 0.000 0.001 0.001 0.000 0.002 0.002 Mn 0.050 0.075 0.057 0.047 0.000 0.000 Cr 1.162 2.348 1.231 0.895 0.054 0.000 Ni 0.004 0.002 0.003 0.005 0.001 0.007 Zn 0.006 0.016 0.006 0.006 0.004 0.000 O 4.000 4.000 4.000 4.000 4.000 4.000

Cat total 4.338 4.671 4.356 4.255 4.012 3.998

186 B.4 - MAGNETITE

Formula units recalculated for Fe+2 and Fe+3 (Droop, 1987) PA5-1 PA5-2 PA5-3 PA5-5 PA5-4 PA5-6

SiO 0.000 0.001 0.000 0.001 0.005 0.000 TiO 0.010 0.019 0.010 0.009 0.003 0.002 Al 0.031 0.038 0.025 0.017 0.016 0.002 Mg 0.003 0.010 0.003 0.003 0.002 0.001 Fe2+ 0.403 0.000 0.353 0.635 1.420 1.489 Fe3+ 1.707 1.364 1.715 1.663 1.509 1.498 Ca 0.000 0.001 0.001 0.000 0.001 0.002 Mn 0.035 0.048 0.039 0.033 0.000 0.000 Cr 0.804 1.508 0.847 0.631 0.040 0.000 Ni 0.004 0.010 0.004 0.004 0.003 0.000 Zn 0.004 0.010 0.004 0.004 0.003 0.000

Cat total 3.002 3.009 3.002 3.001 3.002 2.995

Fe2/(Fe2+Fe3) 0.191 0.000 0.171 0.276 0.485 0.498

wt% recalculated to show Fe+2 and Fe+3 (Droop, 1987) SiO2 0.010 0.051 0.005 0.021 0.122 0.000 TiO2 0.406 0.862 0.391 0.350 0.110 0.076 Al2O3 0.355 0.479 0.290 0.183 0.151 0.019 MgO 0.052 0.225 0.061 0.063 0.033 0.022 FeO 13.262 0.000 11.848 20.684 40.177 43.205 Fe2O3 62.338 55.220 64.042 60.236 47.453 48.305 CaO 0.000 0.017 0.025 0.000 0.033 0.038 MnO 1.222 1.931 1.429 1.155 0.000 0.000 Cr2O3 14.390 30.510 15.540 11.100 0.603 0.000 Ni 0.095 0.041 0.086 0.140 0.023 0.163 ZnO 0.180 0.473 0.180 0.178 0.097 0.000

Total 92.310 89.809 93.897 94.111 88.802 91.828

187 B.4 - MAGNETITE

wt% of oxides MDL PA7-1 PA7-4 PA7-5 PA7-6

SiO2 0.051 0.027 0.041 0.025 0.050 TiO2 0.070 0.060 0.059 0.123 0.079 Al2O3 0.052 0.000 0.037 0.005 0.000 MgO 0.049 0.037 0.067 0.154 0.076 FeO 0.176 89.430 92.390 86.520 89.620 CaO 0.036 0.043 0.022 0.008 0.000 MnO 0.151 0.156 0.000 0.313 0.297 Cr2O3 0.131 1.408 1.021 5.300 4.340 Ni 0.172 0.245 0.104 0.159 0.245 ZnO 0.251 0.075 0.045 0.060 0.000 atom prop 1.283 1.314 1.324 1.346 Total 91.480 93.870 92.660 94.710

Formula units based on 4 oxygens SiO 0.001 0.002 0.001 0.002 TiO 0.002 0.002 0.005 0.003 Al 0.000 0.005 0.001 0.000 Mg 0.003 0.005 0.012 0.006 Fe 3.881 3.915 3.638 3.707 Ca 0.002 0.001 0.000 0.000 Mn 0.007 0.000 0.013 0.012 Cr 0.122 0.087 0.446 0.359 Ni 0.010 0.004 0.006 0.010 Zn 0.003 0.002 0.002 0.000 O 4.000 4.000 4.000 4.000

Cat total 4.032 4.023 4.124 4.099

188 B.4 - MAGNETITE

Formula units recalculated for Fe+2 and Fe+3 (Droop, 1987) PA7-1 PA7-4 PA7-5 PA7-6

SiO 0.001 0.002 0.001 0.002 TiO 0.002 0.002 0.003 0.002 Al 0.000 0.004 0.000 0.000 Mg 0.002 0.004 0.008 0.004 Fe2+ 1.364 1.403 1.060 1.143 Fe3+ 1.523 1.517 1.586 1.570 Ca 0.002 0.001 0.000 0.000 Mn 0.005 0.000 0.010 0.009 Cr 0.091 0.065 0.324 0.263 Ni 0.002 0.001 0.002 0.000 Zn 0.002 0.001 0.002 0.000

Cat total 2.995 2.998 2.997 2.993

Fe2/(Fe2+Fe3) 0.472 0.480 0.401 0.421

wt% recalculated to show Fe+2 and Fe+3 (Droop, 1987) SiO2 0.027 0.041 0.025 0.050 TiO2 0.060 0.059 0.123 0.079 Al2O3 0.000 0.037 0.005 0.000 MgO 0.037 0.067 0.154 0.076 FeO 39.904 41.966 32.486 35.470 Fe2O3 49.526 50.424 54.034 54.150 CaO 0.043 0.022 0.008 0.000 MnO 0.156 0.000 0.313 0.297 Cr2O3 1.408 1.021 5.300 4.340 Ni 0.245 0.104 0.159 0.245 ZnO 0.075 0.045 0.060 0.000

Total 91.481 93.786 92.667 94.707

189 B.4 - MAGNETITE

wt% of oxides MDL PA1-4 PA1-8 PA1-9

SiO2 0.051 0.000 0.000 0.000 TiO2 0.070 0.056 0.130 0.003 Al2O3 0.052 0.000 0.046 0.000 MgO 0.049 0.049 0.148 0.016 FeO 0.176 89.860 80.890 92.320 CaO 0.036 0.003 0.000 0.014 MnO 0.151 0.127 0.731 0.056 Cr2O3 0.131 2.060 10.430 0.329 Ni 0.172 0.307 0.294 0.167 ZnO nd nd nd atom prop 1.300 1.354 1.295 Total 92.460 92.660 92.900

Formula units based on 4 oxygens SiO 0.000 0.000 0.000 TiO 0.002 0.005 0.000 Al 0.000 0.006 0.000 Mg 0.004 0.011 0.001 Fe 3.849 3.325 3.968 Ca 0.000 0.000 0.001 Mn 0.005 0.030 0.002 Cr 0.177 0.858 0.028 Ni 0.013 0.012 0.007 Zn O 4.000 4.000 4.000

Cat total 4.049 4.247 4.008

190 B.4 - MAGNETITE

Formula units recalculated for Fe+2 and Fe+3 (Droop, 1987) PA1-4 PA1-8 PA1-9

SiO 0.000 0.000 0.000 TiO 0.002 0.003 0.000 Al 0.000 0.004 0.000 Mg 0.003 0.008 0.001 Fe2+ 1.315 0.690 1.464 Fe3+ 1.536 1.659 1.506 Ca 0.000 0.000 0.001 Mn 0.004 0.021 0.002 Cr 0.131 0.606 0.021 Ni 0.009 0.008 0.005 Zn nd nd nd

Cat total 3.000 3.000 3.000

Fe2/(Fe2+Fe3) 0.461 0.294 0.493

wt% recalculated to show Fe+2 and Fe+3 (Droop, 1987) SiO2 0.000 0.000 0.000 TiO2 0.056 0.130 0.003 Al2O3 0.000 0.046 0.000 MgO 0.049 0.148 0.016 FeO 39.112 22.016 43.079 Fe2O3 50.748 58.874 49.241 CaO 0.003 0.000 0.014 MnO 0.127 0.731 0.056 Cr2O3 2.060 10.430 0.329 Ni 0.307 0.294 0.167 ZnO nd nd nd

Total 92.461 92.669 92.905

191 B.4 - MAGNETITE

wt% of oxides MDL PA3-1 PA3-4 PA3-5 PA3-2

SiO2 0.051 0.000 0.000 0.000 0.000 TiO2 0.070 0.412 0.437 0.376 0.664 Al2O3 0.052 0.093 0.100 0.194 0.152 MgO 0.049 0.125 0.194 0.106 0.104 FeO 0.176 73.460 73.270 74.300 76.500 CaO 0.036 0.000 0.005 0.025 0.014 MnO 0.151 0.784 0.856 0.896 1.104 Cr2O3 0.131 11.760 12.720 14.390 13.920 Ni 0.172 0.241 0.132 0.091 0.123 ZnO nd nd nd nd atom prop 1.285 1.304 1.350 1.381 Total 86.870 87.720 90.380 92.580

Formula units based on 4 oxygens SiO 0.000 0.000 0.000 0.000 TiO 0.016 0.017 0.014 0.024 Al 0.013 0.013 0.025 0.019 Mg 0.010 0.015 0.008 0.007 Fe 3.182 3.129 3.063 3.085 Ca 0.000 0.000 0.001 0.001 Mn 0.034 0.037 0.037 0.045 Cr 1.020 1.087 1.187 1.123 Ni 0.010 0.005 0.004 0.005 Zn O 4.000 4.000 4.000 4.000

Cat total 4.285 4.304 4.340 4.309

192 B.4 - MAGNETITE

Formula units recalculated for Fe+2 and Fe+3 (Droop, 1987) PA3-1 PA3-4 PA3-5 PA3-2

SiO 0.000 0.000 0.000 0.000 TiO 0.011 0.012 0.010 0.017 Al 0.009 0.009 0.018 0.013 Mg 0.007 0.010 0.005 0.005 Fe2+ 0.548 0.491 0.410 0.455 Fe3+ 1.680 1.690 1.708 1.692 Ca 0.000 0.000 0.001 0.001 Mn 0.024 0.026 0.026 0.031 Cr 0.714 0.758 0.821 0.782 Ni 0.007 0.004 0.002 0.003 Zn nd nd nd nd

Cat total 3.000 3.000 3.000 3.000

Fe2/(Fe2+Fe3) 0.246 0.225 0.194 0.212

wt% recalculated to show Fe+2 and Fe+3 (Droop, 1987) SiO2 0.000 0.000 0.000 0.000 TiO2 0.412 0.437 0.376 0.664 Al2O3 0.093 0.100 0.194 0.152 MgO 0.125 0.194 0.106 0.104 FeO 16.679 15.198 13.198 14.906 Fe2O3 56.781 58.072 61.102 61.594 CaO 0.000 0.005 0.025 0.014 MnO 0.784 0.856 0.896 1.104 Cr2O3 11.760 12.720 14.390 13.920 Ni 0.241 0.132 0.091 0.123 ZnO nd nd nd nd

Total 86.876 87.714 90.378 92.581

193 B.4 - MAGNETITE

wt% of oxides MDL PA2-4 PA2-2 PA2-6

SiO2 0.051 0.124 0.000 0.000 TiO2 0.070 0.053 0.075 0.188 Al2O3 0.052 0.783 0.132 0.003 MgO 0.049 0.031 0.094 0.078 FeO 0.176 81.620 76.710 83.030 CaO 0.036 0.045 0.001 0.049 MnO 0.151 0.000 1.166 0.279 Cr2O3 0.131 4.190 15.640 7.360 Ni 0.172 0.364 0.173 0.314 ZnO nd nd nd atom prop 1.254 1.403 1.317 Total 87.210 93.980 91.300

Formula units based on 4 oxygens SiO 0.007 0.000 0.000 TiO 0.002 0.003 0.007 Al 0.110 0.017 0.000 Mg 0.002 0.007 0.006 Fe 3.625 3.043 3.511 Ca 0.003 0.000 0.003 Mn 0.000 0.047 0.012 Cr 0.372 1.242 0.623 Ni 0.016 0.007 0.013 Zn O 4.000 4.000 4.000

Cat total 4.137 4.364 4.174

194 B.4 - MAGNETITE

Formula units recalculated for Fe+2 and Fe+3 (Droop, 1987) PA2-4 PA2-2 PA2-6

SiO 0.005 0.000 0.000 TiO 0.002 0.002 0.005 Al 0.080 0.011 0.000 Mg 0.002 0.005 0.004 Fe2+ 1.035 0.373 0.906 Fe3+ 1.594 1.719 1.617 Ca 0.002 0.000 0.002 Mn 0.000 0.032 0.009 Cr 0.270 0.854 0.448 Ni 0.011 0.005 0.009 Zn nd nd nd

Cat total 3.000 3.000 3.000

Fe2/(Fe2+Fe3) 0.394 0.178 0.359

wt% recalculated to show Fe+2 and Fe+3 (Droop, 1987) SiO2 0.124 0.000 0.000 TiO2 0.053 0.075 0.188 Al2O3 0.783 0.132 0.003 MgO 0.031 0.094 0.078 FeO 30.092 12.522 27.818 Fe2O3 51.528 64.188 55.212 CaO 0.045 0.001 0.049 MnO 0.000 1.166 0.279 Cr2O3 4.190 15.640 7.360 Ni 0.364 0.173 0.314 ZnO nd nd nd

Total 87.210 93.991 91.300

195 B.4 - MAGNETITE

wt% of oxides MDL LO279-1 LO279-3 LO279-4 LO279-5 LO279-8

SiO2 0.051 0.107 0.089 0.054 2.769 0.052 TiO2 0.070 0.091 0.046 0.051 0.012 0.018 Al2O3 0.052 0.078 0.065 0.053 0.643 0.048 MgO 0.049 0.179 0.160 0.164 0.037 0.129 FeO 0.176 89.810 86.340 89.660 80.400 88.650 CaO 0.036 0.000 0.006 0.000 0.106 0.007 MnO 0.151 0.000 0.000 0.000 0.363 0.000 Cr2O3 0.131 2.809 2.920 2.816 0.000 2.855 Ni 0.172 0.172 0.240 0.208 0.254 0.331 ZnO 0.251 0.015 0.097 0.000 0.187 0.112 atom prop 1.320 1.274 1.315 1.244 1.303 Total 93.320 90.050 93.080 84.770 92.330

Formula units based on 4 oxygens SiO 0.005 0.005 0.003 0.148 0.003 TiO 0.003 0.002 0.002 0.000 0.001 Al 0.010 0.009 0.007 0.091 0.006 Mg 0.013 0.012 0.012 0.003 0.010 Fe 3.786 3.774 3.796 3.598 3.788 Ca 0.000 0.000 0.000 0.006 0.000 Mn 0.000 0.000 0.000 0.016 0.000 Cr 0.237 0.255 0.239 0.000 0.244 Ni 0.007 0.010 0.008 0.011 0.014 Zn 0.001 0.004 0.000 0.007 0.004 O 4.000 4.000 4.000 4.000 4.000

Cat total 4.064 4.071 4.067 3.882 4.070

196 B.4 - MAGNETITE

Formula units recalculated for Fe+2 and Fe+3 (Droop, 1987) LO279-1 LO279-3 LO279-4 LO279-5 LO279-8

SiO 0.004 0.003 0.002 0.115 0.002 TiO 0.003 0.001 0.001 0.000 0.001 Al 0.008 0.007 0.005 0.071 0.005 Mg 0.010 0.009 0.009 0.002 0.007 Fe2+ 1.249 1.230 1.252 1.376 1.242 Fe3+ 1.546 1.551 1.548 1.404 1.550 Ca 0.000 0.000 0.000 0.005 0.000 Mn 0.000 0.000 0.000 0.013 0.000 Cr 0.175 0.188 0.176 0.000 0.180 Ni 0.000 0.003 0.000 0.006 0.003 Zn 0.000 0.003 0.000 0.006 0.003

Cat total 2.995 2.995 2.994 2.997 2.993

Fe2/(Fe2+Fe3) 0.447 0.442 0.447 0.495 0.445

wt% recalculated to show Fe+2 and Fe+3 (Droop, 1987) SiO2 0.107 0.089 0.054 2.769 0.052 TiO2 0.091 0.046 0.051 0.012 0.018 Al2O3 0.078 0.065 0.053 0.643 0.048 MgO 0.179 0.160 0.164 0.037 0.129 FeO 37.816 35.953 37.755 37.678 37.136 Fe2O3 51.994 50.387 51.905 42.722 51.514 CaO 0.000 0.006 0.000 0.106 0.007 MnO 0.000 0.000 0.000 0.363 0.000 Cr2O3 2.809 2.920 2.816 0.000 2.855 Ni 0.172 0.240 0.208 0.254 0.331 ZnO 0.015 0.097 0.000 0.187 0.112

Total 93.260 89.962 93.006 84.769 92.200

197 B.4 - MAGNETITE

wt% of oxides wt% of oxides MDL LO67-3 LO67-4 MDL LO272-3 LO272-9

SiO2 0.051 0.110 0.239 SiO2 0.051 0.151 0.162 TiO2 0.070 0.089 0.026 TiO2 0.070 0.025 0.081 Al2O3 0.052 0.121 0.692 Al2O3 0.052 0.118 0.356 MgO 0.049 0.033 0.086 MgO 0.049 0.002 0.057 FeO 0.176 88.820 88.920 FeO 0.176 88.710 86.360 CaO 0.036 0.039 0.069 CaO 0.036 0.016 0.056 MnO 0.151 0.000 0.000 MnO 0.151 0.000 0.000 Cr2O3 0.131 0.000 0.133 Cr2O3 0.131 0.451 0.310 Ni 0.172 0.100 0.245 Ni 0.172 0.150 0.127 ZnO 0.251 0.000 0.127 ZnO 0.251 0.030 0.000 atom prop 1.248 1.277 atom prop 1.255 1.230 Total 89.440 90.550 Total 89.660 87.550

Formula units based on 4 oxygens Formula units based on 4 oxygens SiO 0.006 0.012 SiO 0.008 0.009 TiO 0.004 0.001 TiO 0.001 0.003 Al 0.017 0.096 Al 0.017 0.051 Mg 0.003 0.007 Mg 0.000 0.005 Fe 3.961 3.875 Fe 3.934 3.909 Ca 0.002 0.004 Ca 0.001 0.003 Mn 0.000 0.000 Mn 0.000 0.000 Cr 0.000 0.012 Cr 0.040 0.028 Ni 0.004 0.010 Ni 0.006 0.006 Zn 0.000 0.005 Zn 0.001 0.000 O 4.000 4.000 O 4.000 4.000

Cat total 3.996 4.022 Cat total 4.008 4.013

198 B.4 - MAGNETITE

Formula units recalculated for Fe+2 and Fe+3 (Droop, 1987) Formula units recalculated for Fe+2 and Fe+3 (Droop, 1987) LO67-3 LO67-4 LO272-3 LO272-9

SiO 0.004 0.009 SiO 0.006 0.007 TiO 0.003 0.001 TiO 0.001 0.002 Al 0.013 0.071 Al 0.012 0.038 Mg 0.002 0.005 Mg 0.000 0.003 Fe2+ 1.476 1.375 Fe2+ 1.438 1.412 Fe3+ 1.497 1.516 Fe3+ 1.506 1.510 Ca 0.002 0.003 Ca 0.001 0.002 Mn 0.000 0.000 Mn 0.000 0.000 Cr 0.000 0.009 Cr 0.030 0.021 Ni 0.000 0.004 Ni 0.001 0.000 Zn 0.000 0.004 Zn 0.001 0.000

Cat total 2.997 2.996 Cat total 2.996 2.996

Fe2/(Fe2+Fe3) 0.496 0.476 Fe2/(Fe2+Fe3) 0.488 0.483

wt% recalculated to show Fe+2 and Fe+3 (Droop, 1987) wt% recalculated to show Fe+2 and Fe+3 (Droop, 1987) SiO2 0.110 0.239 SiO2 0.151 0.162 TiO2 0.089 0.026 TiO2 0.025 0.081 Al2O3 0.121 0.692 Al2O3 0.118 0.356 MgO 0.033 0.086 MgO 0.002 0.057 FeO 41.755 39.955 FeO 41.000 39.467 Fe2O3 47.065 48.965 Fe2O3 47.710 46.893 CaO 0.039 0.069 CaO 0.016 0.056 MnO 0.000 0.000 MnO 0.000 0.000 Cr2O3 0.000 0.133 Cr2O3 0.451 0.310 Ni 0.100 0.245 Ni 0.150 0.127 ZnO 0.000 0.127 ZnO 0.030 0.000

Total 89.312 90.535 Total 89.652 87.508

199 B.4 - MAGNETITE

wt% of oxides wt% of oxides MDL LO195-2 LO195-6 LO195-7 MDL LO123-1 LO123-4 LO123-6

SiO2 0.051 0.774 0.356 0.379 SiO2 0.051 0.086 0.302 0.012 TiO2 0.070 0.118 0.035 0.059 TiO2 0.070 0.043 0.053 0.079 Al2O3 0.052 0.662 0.221 0.221 Al2O3 0.052 0.209 0.460 0.145 MgO 0.049 0.056 0.090 0.078 MgO 0.049 0.092 0.084 0.035 FeO 0.176 84.490 88.020 86.490 FeO 0.176 87.670 87.760 87.930 CaO 0.036 0.042 0.000 0.029 CaO 0.036 0.021 0.057 0.009 MnO 0.151 0.056 0.063 0.087 MnO 0.151 0.000 0.024 0.103 Cr2O3 0.131 0.647 0.486 1.675 Cr2O3 0.131 0.104 0.139 0.390 Ni 0.172 0.276 0.131 0.217 Ni 0.172 0.176 0.027 0.140 ZnO nd nd nd ZnO nd nd nd atom prop 1.243 1.259 1.264 atom prop 1.237 1.253 1.242 Total 87.120 89.400 89.240 Total 88.400 88.910 88.840

Formula units based on 4 oxygens Formula units based on 4 oxygens SiO 0.041 0.019 0.020 SiO 0.005 0.016 0.001 TiO 0.005 0.001 0.002 TiO 0.002 0.002 0.003 Al 0.094 0.031 0.031 Al 0.030 0.065 0.021 Mg 0.004 0.007 0.006 Mg 0.007 0.007 0.003 Fe 3.783 3.893 3.809 Fe 3.945 3.900 3.940 Ca 0.002 0.000 0.002 Ca 0.001 0.003 0.000 Mn 0.003 0.003 0.004 Mn 0.000 0.001 0.005 Cr 0.058 0.043 0.148 Cr 0.009 0.012 0.035 Ni 0.012 0.006 0.009 Ni 0.008 0.001 0.006 Zn Zn O 4.000 4.000 4.000 O 4.000 4.000 4.000

Cat total 4.002 4.003 4.031 Cat total 4.006 4.007 4.013

200 B.4 - MAGNETITE

Formula units recalculated for Fe+2 and Fe+3 (Droop, 1987) Formula units recalculated for Fe+2 and Fe+3 (Droop, 1987) LO195-2 LO195-6 LO195-7 LO123-1 LO123-4 LO123-6

SiO 0.031 0.014 0.015 SiO 0.003 0.012 0.000 TiO 0.004 0.001 0.002 TiO 0.001 0.002 0.002 Al 0.070 0.023 0.023 Al 0.022 0.049 0.015 Mg 0.003 0.005 0.005 Mg 0.006 0.005 0.002 Fe2+ 1.334 1.416 1.312 Fe2+ 1.449 1.414 1.435 Fe3+ 1.502 1.502 1.523 Fe3+ 1.505 1.505 1.510 Ca 0.002 0.000 0.001 Ca 0.001 0.002 0.000 Mn 0.002 0.002 0.003 Mn 0.000 0.001 0.003 Cr 0.043 0.032 0.110 Cr 0.007 0.009 0.026 Ni 0.009 0.004 0.007 Ni 0.006 0.001 0.005 Zn nd nd nd Zn nd nd nd

Cat total 3.000 3.000 3.000 Cat total 3.000 3.000 3.000

Fe2/(Fe2+Fe3) 0.470 0.485 0.463 Fe2/(Fe2+Fe3) 0.491 0.484 0.487

wt% recalculated to show Fe+2 and Fe+3 (Droop, 1987) wt% recalculated to show Fe+2 and Fe+3 (Droop, 1987) SiO2 0.774 0.356 0.379 SiO2 0.086 0.302 0.012 TiO2 0.118 0.035 0.059 TiO2 0.043 0.053 0.079 Al2O3 0.662 0.221 0.221 Al2O3 0.209 0.460 0.145 MgO 0.056 0.090 0.078 MgO 0.092 0.084 0.035 FeO 37.538 40.395 37.776 FeO 40.702 40.205 40.540 Fe2O3 46.952 47.625 48.714 Fe2O3 46.968 47.555 47.390 CaO 0.042 0.000 0.029 CaO 0.021 0.057 0.009 MnO 0.056 0.063 0.087 MnO 0.000 0.024 0.103 Cr2O3 0.647 0.486 1.675 Cr2O3 0.104 0.139 0.390 Ni 0.276 0.131 0.217 Ni 0.176 0.027 0.140 ZnO nd nd nd ZnO nd nd nd

Total 87.120 89.403 89.234 Total 88.401 88.905 88.842

201 B.4 - MAGNETITE

wt% of oxides wt% of oxides MDL LO310-7 LO310-2 LO310-3 MDL LO303-1 LO303-7 LO303-3

SiO2 0.051 0.000 0.101 0.000 SiO2 0.051 0.094 0.000 0.000 TiO2 0.070 0.100 0.060 0.085 TiO2 0.070 0.053 0.097 0.076 Al2O3 0.052 0.077 0.190 0.115 Al2O3 0.052 0.085 0.104 0.141 MgO 0.049 0.082 0.080 0.106 MgO 0.049 0.147 0.225 0.331 FeO 0.176 85.950 86.240 84.550 FeO 0.176 86.100 91.220 88.980 CaO 0.036 0.057 0.021 0.033 CaO 0.036 0.006 0.000 0.006 MnO 0.151 0.120 0.048 0.000 MnO 0.151 0.008 0.000 0.000 Cr2O3 0.131 5.210 2.971 3.730 Cr2O3 0.131 1.904 2.209 2.201 Ni 0.172 0.114 0.178 0.036 Ni 0.172 0.155 0.100 0.155 ZnO nd nd nd ZnO nd nd nd atom prop 1.310 1.275 1.260 atom prop 1.249 1.326 1.298 Total 91.710 89.890 88.660 Total 88.560 93.950 91.890

Formula units based on 4 oxygens Formula units based on 4 oxygens SiO 0.000 0.005 0.000 SiO 0.005 0.000 0.000 TiO 0.004 0.002 0.003 TiO 0.002 0.004 0.003 Al 0.010 0.026 0.016 Al 0.012 0.014 0.019 Mg 0.006 0.006 0.008 Mg 0.012 0.017 0.025 Fe 3.652 3.766 3.737 Fe 3.838 3.831 3.816 Ca 0.003 0.001 0.002 Ca 0.000 0.000 0.000 Mn 0.005 0.002 0.000 Mn 0.000 0.000 0.000 Cr 0.443 0.260 0.330 Cr 0.170 0.186 0.189 Ni 0.005 0.007 0.002 Ni 0.007 0.004 0.006 Zn Zn O 4.000 4.000 4.000 O 4.000 4.000 4.000

Cat total 4.129 4.077 4.098 Cat total 4.046 4.055 4.059

202 B.4 - MAGNETITE

Formula units recalculated for Fe+2 and Fe+3 (Droop, 1987) Formula unitsFormula recalculated units recalculated for Fe+2 and for Fe+3 Fe+2 (Droop, and Fe+3 1987) (Droop, 1987) LO310-7 LO310-2 LO310-3 LO303-1 LO303-7 LO303-3

SiO 0.000 0.004 0.000 SiO SiO 0.004 0.000 0.000 TiO 0.003 0.002 0.002 TiO TiO 0.002 0.003 0.002 Al 0.008 0.019 0.012 Al Al 0.009 0.010 0.014 Mg 0.005 0.005 0.006 Mg Mg 0.009 0.012 0.019 Fe2+ 1.065 1.217 1.166 Fe2+ Fe2+ 1.312 1.294 1.278 Fe3+ 1.589 1.555 1.569 Fe3+ Fe3+ 1.534 1.540 1.542 Ca 0.002 0.001 0.001 Ca Ca 0.000 0.000 0.000 Mn 0.004 0.002 0.000 Mn Mn 0.000 0.000 0.000 Cr 0.322 0.191 0.242 Cr Cr 0.126 0.137 0.140 Ni 0.003 0.005 0.001 Ni Ni 0.005 0.003 0.005 Zn nd nd nd Zn Zn nd nd nd

Cat total 3.000 3.000 3.000 Cat total Cat total 3.000 3.000 3.000

Fe2/(Fe2+Fe3) 0.401 0.439 0.426 Fe2/(Fe2+Fe3) Fe2/(Fe2+Fe3) 0.461 0.457 0.453 wt% recalculated to show Fe+2 and Fe+3 (Droop, 1987) wt% recalculatedwt% recalculated to show Fe+2to show and Fe+2 Fe+3 and (Droop, Fe+3 1987) (Droop, 1987) SiO2 0.000 0.101 0.000 SiO2 SiO2 0.094 0.000 0.000 TiO2 0.100 0.060 0.085 TiO2 TiO2 0.053 0.097 0.076 Al2O3 0.077 0.190 0.115 Al2O3 Al2O3 0.085 0.104 0.141 MgO 0.082 0.080 0.106 MgO MgO 0.147 0.225 0.331 FeO 32.329 35.630 33.887 FeO FeO 37.449 39.284 38.009 Fe2O3 53.621 50.610 50.663 Fe2O3 Fe2O3 48.651 51.936 50.971 CaO 0.057 0.021 0.033 CaO CaO 0.006 0.000 0.006 MnO 0.120 0.048 0.000 MnO MnO 0.008 0.000 0.000 Cr2O3 5.210 2.971 3.730 Cr2O3 Cr2O3 1.904 2.209 2.201 Ni 0.114 0.178 0.036 Ni Ni 0.155 0.100 0.155 ZnO nd nd nd ZnO ZnO nd nd nd

Total 91.709 89.888 88.654 Total Total 88.551 93.954 91.888

203 B.4 - MAGNETITE

wt% of oxides MDL CW17-1 CW17-2 CW17-3 CW17-4 CW17-7

SiO2 0.051 0.059 0.237 0.000 0.057 0.052 TiO2 0.070 0.034 0.028 0.073 0.079 0.000 Al2O3 0.052 0.006 0.064 0.021 0.000 0.000 MgO 0.049 0.024 0.313 0.060 0.121 0.053 FeO 0.176 91.030 85.200 90.360 87.560 89.870 CaO 0.036 0.006 0.001 0.000 0.000 0.022 MnO 0.151 0.000 0.000 0.197 0.000 0.000 Cr2O3 0.131 1.161 3.070 2.943 2.825 2.131 Ni 0.172 0.145 0.100 0.027 0.000 0.100 ZnO 0.251 0.000 0.000 0.104 0.037 0.000 atom prop 1.296 1.266 1.324 1.282 1.298 Total 92.490 89.100 93.790 90.730 92.260

Formula units based on 4 oxygens SiO 0.003 0.012 0.000 0.003 0.003 TiO 0.001 0.001 0.003 0.003 0.000 Al 0.001 0.009 0.003 0.000 0.000 Mg 0.002 0.025 0.005 0.009 0.004 Fe 3.912 3.747 3.799 3.803 3.856 Ca 0.000 0.000 0.000 0.000 0.001 Mn 0.000 0.000 0.008 0.000 0.000 Cr 0.100 0.270 0.248 0.246 0.183 Ni 0.006 0.004 0.001 0.000 0.004 Zn 0.000 0.000 0.004 0.001 0.000 O 4.000 4.000 4.000 4.000 4.000

Cat total 4.025 4.068 4.070 4.065 4.051

204 B.4 - MAGNETITE

Formula units recalculated for Fe+2 and Fe+3 (Droop, 1987) CW17-1 CW17-2 CW17-3 CW17-4 CW17-7

SiO 0.002 0.009 0.000 0.002 0.002 TiO 0.001 0.001 0.002 0.002 0.000 Al 0.001 0.007 0.002 0.000 0.000 Mg 0.001 0.018 0.003 0.007 0.003 Fe2+ 1.397 1.214 1.250 1.259 1.319 Fe3+ 1.518 1.549 1.550 1.547 1.537 Ca 0.000 0.000 0.000 0.000 0.001 Mn 0.000 0.000 0.006 0.000 0.000 Cr 0.074 0.199 0.183 0.181 0.136 Ni 0.000 0.000 0.003 0.001 0.000 Zn 0.000 0.000 0.003 0.001 0.000

Cat total 2.996 2.997 3.002 3.001 2.997

Fe2/(Fe2+Fe3) 0.479 0.439 0.446 0.449 0.462

wt% recalculated to show Fe+2 and Fe+3 (Droop, 1987) SiO2 0.059 0.237 0.000 0.057 0.052 TiO2 0.034 0.028 0.073 0.079 0.000 Al2O3 0.006 0.064 0.021 0.000 0.000 MgO 0.024 0.313 0.060 0.121 0.053 FeO 41.231 35.237 37.986 37.016 39.158 Fe2O3 49.799 49.963 52.374 50.544 50.712 CaO 0.006 0.001 0.000 0.000 0.022 MnO 0.000 0.000 0.197 0.000 0.000 Cr2O3 1.161 3.070 2.943 2.825 2.131 Ni 0.145 0.100 0.027 0.000 0.100 ZnO 0.000 0.000 0.104 0.037 0.000

Total 92.465 89.012 93.786 90.680 92.227

205 B.4 - MAGNETITE

wt% of oxides MDL CW13-2 CW13-4 CW13-6

SiO2 0.051 0.011 0.019 0.031 TiO2 0.070 0.010 0.114 0.120 Al2O3 0.052 0.000 0.000 0.025 MgO 0.049 0.055 0.076 0.051 FeO 0.176 87.580 87.470 87.400 CaO 0.036 0.027 0.000 0.000 MnO 0.151 0.000 0.000 0.000 Cr2O3 0.131 3.230 3.240 3.360 Ni 0.172 0.086 0.073 0.054 ZnO 0.251 0.000 0.000 0.232 atom prop 1.286 1.288 1.292 Total 91.040 91.070 91.300

Formula units based on 4 oxygens SiO 0.001 0.001 0.002 TiO 0.000 0.004 0.005 Al 0.000 0.000 0.003 Mg 0.004 0.006 0.004 Fe 3.790 3.782 3.765 Ca 0.001 0.000 0.000 Mn 0.000 0.000 0.000 Cr 0.280 0.280 0.290 Ni 0.004 0.003 0.002 Zn 0.000 0.000 0.009 O 4.000 4.000 4.000

Cat total 4.081 4.076 4.079

206 B.4 - MAGNETITE

Formula units recalculated for Fe+2 and Fe+3 (Droop, 1987) CW13-2 CW13-4 CW13-6

SiO 0.000 0.001 0.001 TiO 0.000 0.003 0.003 Al 0.000 0.000 0.003 Mg 0.003 0.004 0.003 Fe2+ 1.229 1.229 1.212 Fe3+ 1.557 1.555 1.557 Ca 0.001 0.000 0.000 Mn 0.000 0.000 0.000 Cr 0.206 0.206 0.213 Ni 0.000 0.000 0.006 Zn 0.000 0.000 0.006

Cat total 2.997 2.998 3.005

Fe2/(Fe2+Fe3) 0.441 0.441 0.438

wt% recalculated to show Fe+2 and Fe+3 (Droop, 1987) SiO2 0.011 0.019 0.031 TiO2 0.010 0.114 0.120 Al2O3 0.000 0.000 0.025 MgO 0.055 0.076 0.051 FeO 36.371 36.353 36.011 Fe2O3 51.209 51.117 51.389 CaO 0.027 0.000 0.000 MnO 0.000 0.000 0.000 Cr2O3 3.230 3.240 3.360 Ni 0.086 0.073 0.054 ZnO 0.000 0.000 0.232

Total 91.000 90.991 91.273

207 B.4 - MAGNETITE

wt% of oxides wt% of oxides MDL CW3-4 MDL CW6-1 CW6-2 CW6-4

SiO2 0.051 0.076 SiO2 0.051 0.000 0.051 0.000 TiO2 0.070 0.216 TiO2 0.070 0.297 0.158 0.204 Al2O3 0.052 2.748 Al2O3 0.052 0.023 0.010 0.023 MgO 0.049 0.275 MgO 0.049 0.309 0.236 0.300 FeO 0.176 53.630 FeO 0.176 87.230 83.330 88.670 CaO 0.036 0.149 CaO 0.036 0.000 0.221 0.005 MnO 0.151 0.656 MnO 0.151 0.016 0.040 0.103 Cr2O3 0.131 34.500 Cr2O3 0.131 2.174 1.653 2.387 Ni 0.172 0.050 Ni 0.172 0.077 0.186 0.023 ZnO 0.251 1.015 ZnO nd nd nd atom prop 1.548 atom prop 1.274 1.211 1.296 Total 93.310 Total 90.120 85.880 91.710

Formula units based on 4 oxygens Formula units based on 4 oxygens SiO 0.003 SiO 0.000 0.003 0.000 TiO 0.007 TiO 0.012 0.007 0.008 Al 0.313 Al 0.003 0.001 0.003 Mg 0.018 Mg 0.024 0.019 0.023 Fe 1.929 Fe 3.812 3.830 3.808 Ca 0.007 Ca 0.000 0.013 0.000 Mn 0.024 Mn 0.001 0.002 0.004 Cr 2.483 Cr 0.190 0.152 0.205 Ni 0.002 Ni 0.003 0.008 0.001 Zn 0.032 Zn O 4.000 O 4.000 4.000 4.000

Cat total 4.818 Cat total 4.045 4.035 4.053

208 B.4 - MAGNETITE

Formula units recalculated for Fe+2 and Fe+3 (Droop, 1987) Formula units recalculated for Fe+2 and Fe+3 (Droop, 1987) CW3-4 CW6-1 CW6-2 CW6-4

SiO 0.002 SiO 0.000 0.002 0.000 TiO 0.004 TiO 0.009 0.005 0.006 Al 0.195 Al 0.002 0.001 0.002 Mg 0.011 Mg 0.018 0.014 0.017 Fe2+ 0.000 Fe2+ 1.295 1.321 1.280 Fe3+ 1.201 Fe3+ 1.533 1.526 1.538 Ca 0.004 Ca 0.000 0.010 0.000 Mn 0.015 Mn 0.001 0.001 0.003 Cr 1.546 Cr 0.141 0.113 0.152 Ni 0.020 Ni 0.002 0.006 0.001 Zn 0.020 Zn nd nd nd

Cat total 3.019 Cat total 3.000 3.000 3.000

Fe2/(Fe2+Fe3) 0.000 Fe2/(Fe2+Fe3) 0.458 0.464 0.454

wt% recalculated to show Fe+2 and Fe+3 (Droop, 1987) wt% recalculated to show Fe+2 and Fe+3 (Droop, 1987) SiO2 0.076 SiO2 0.000 0.051 0.000 TiO2 0.216 TiO2 0.297 0.158 0.204 Al2O3 2.748 Al2O3 0.023 0.010 0.023 MgO 0.275 MgO 0.309 0.236 0.300 FeO 0.000 FeO 37.669 36.495 37.971 Fe2O3 53.630 Fe2O3 49.561 46.835 50.699 CaO 0.149 CaO 0.000 0.221 0.005 MnO 0.656 MnO 0.016 0.040 0.103 Cr2O3 34.500 Cr2O3 2.174 1.653 2.387 Ni 0.050 Ni 0.077 0.186 0.023 ZnO 1.015 ZnO nd nd nd

Total 93.315 Total 90.126 85.884 91.714

209 B.4 - MAGNETITE

wt% of oxides MDL CW15-7 CW15-2 CW15-3 CW15-4

SiO2 0.051 0.000 0.000 0.000 0.165 TiO2 0.070 0.065 0.012 0.099 0.032 Al2O3 0.052 0.011 0.008 0.033 0.054 MgO 0.049 0.035 0.057 0.029 0.095 FeO 0.176 86.450 89.630 88.800 78.840 CaO 0.036 0.007 0.000 0.007 0.019 MnO 0.151 0.000 0.000 0.071 0.048 Cr2O3 0.131 2.374 2.765 3.210 1.960 Ni 0.172 0.081 0.036 0.154 0.145 ZnO nd nd nd nd atom prop 1.254 1.304 1.307 1.149 Total 89.020 92.510 92.400 81.350

Formula units based on 4 oxygens SiO 0.000 0.000 0.000 0.010 TiO 0.003 0.000 0.004 0.001 Al 0.002 0.001 0.004 0.008 Mg 0.003 0.004 0.002 0.008 Fe 3.838 3.825 3.783 3.819 Ca 0.000 0.000 0.000 0.001 Mn 0.000 0.000 0.003 0.002 Cr 0.211 0.236 0.274 0.190 Ni 0.003 0.001 0.006 0.007 Zn O 4.000 4.000 4.000 4.000

Cat total 4.059 4.069 4.077 4.047

210 B.4 - MAGNETITE

Formula units recalculated for Fe+2 and Fe+3 (Droop, 1987) CW15-7 CW15-2 CW15-3 CW15-4

SiO 0.000 0.000 0.000 0.007 TiO 0.002 0.000 0.003 0.001 Al 0.001 0.001 0.003 0.006 Mg 0.002 0.003 0.002 0.006 Fe2+ 1.293 1.271 1.228 1.297 Fe3+ 1.543 1.549 1.555 1.534 Ca 0.000 0.000 0.000 0.001 Mn 0.000 0.000 0.002 0.002 Cr 0.156 0.174 0.201 0.141 Ni 0.003 0.001 0.005 0.005 Zn nd nd nd nd

Cat total 3.000 3.000 3.000 3.000

Fe2/(Fe2+Fe3) 0.456 0.451 0.441 0.458

wt% recalculated to show Fe+2 and Fe+3 (Droop, 1987) SiO2 0.000 0.000 0.000 0.165 TiO2 0.065 0.012 0.099 0.032 Al2O3 0.011 0.008 0.033 0.054 MgO 0.035 0.057 0.029 0.095 FeO 37.168 38.066 36.892 34.058 Fe2O3 49.282 51.564 51.908 44.782 CaO 0.007 0.000 0.007 0.019 MnO 0.000 0.000 0.071 0.048 Cr2O3 2.374 2.765 3.210 1.960 Ni 0.081 0.036 0.154 0.145 ZnO nd nd nd nd

Total 89.023 92.507 92.403 81.357

211 B.4 - MAGNETITE

wt% of oxides MDL CW1-4 CW1-9 CW1-7

SiO2 0.051 0.000 0.000 0.000 TiO2 0.070 0.102 0.055 0.077 Al2O3 0.052 0.000 0.199 0.057 MgO 0.049 0.063 0.061 0.051 FeO 0.176 85.220 82.570 85.470 CaO 0.036 0.010 0.014 0.011 MnO 0.151 0.000 0.104 0.000 Cr2O3 0.131 3.170 3.620 3.840 Ni 0.172 0.087 0.100 0.141 ZnO nd nd nd atom prop 1.254 1.232 1.272 Total 88.650 86.720 89.650

Formula units based on 4 oxygens SiO 0.000 0.000 0.000 TiO 0.004 0.002 0.003 Al 0.000 0.028 0.008 Mg 0.005 0.005 0.004 Fe 3.783 3.730 3.740 Ca 0.001 0.001 0.001 Mn 0.000 0.005 0.000 Cr 0.282 0.327 0.336 Ni 0.004 0.004 0.006 Zn O 4.000 4.000 4.000

Cat total 4.078 4.103 4.098

212 B.4 - MAGNETITE

Formula units recalculated for Fe+2 and Fe+3 (Droop, 1987) CW1-4 CW1-9 CW1-7

SiO 0.000 0.000 0.000 TiO 0.003 0.002 0.002 Al 0.000 0.021 0.006 Mg 0.004 0.004 0.003 Fe2+ 1.227 1.155 1.169 Fe3+ 1.556 1.572 1.569 Ca 0.000 0.001 0.000 Mn 0.000 0.003 0.000 Cr 0.207 0.239 0.246 Ni 0.003 0.003 0.004 Zn nd nd nd

Cat total 3.000 3.000 3.000

Fe2/(Fe2+Fe3) 0.441 0.424 0.427

wt% recalculated to show Fe+2 and Fe+3 (Droop, 1987) SiO2 0.000 0.000 0.000 TiO2 0.102 0.055 0.077 Al2O3 0.000 0.199 0.057 MgO 0.063 0.061 0.051 FeO 35.381 32.864 34.310 Fe2O3 49.839 49.706 51.160 CaO 0.010 0.014 0.011 MnO 0.000 0.104 0.000 Cr2O3 3.170 3.620 3.840 Ni 0.087 0.100 0.141 ZnO nd nd nd

Total 88.651 86.723 89.646

213 B.4 - MAGNETITE

wt% of oxides wt% of oxides MDL A5-1 A5-8 A5-14 MDL A10-2 A10-9 A10-15

SiO2 0.052 0.000 0.089 0.000 SiO2 0.052 0.000 0.082 0.000 TiO2 0.062 0.000 0.041 0.000 TiO2 0.062 0.277 0.343 0.110 Al2O3 0.047 0.092 0.328 0.093 Al2O3 0.047 0.064 0.218 0.152 MgO 0.053 0.151 0.139 0.135 MgO 0.053 0.164 0.246 0.213 FeO 0.181 90.920 86.990 91.130 FeO 0.181 82.330 83.500 83.970 CaO 0.036 0.011 0.048 0.000 CaO 0.036 0.000 0.076 0.019 MnO 0.152 0.016 0.118 0.071 MnO 0.152 0.142 0.299 0.095 Cr2O3 0.203 0.086 0.537 0.440 Cr2O3 0.203 5.100 3.880 5.190 Ni 0.173 0.188 0.142 0.146 Ni 0.173 0.165 0.110 0.083 ZnO 0.253 0.000 0.000 0.000 ZnO 0.253 0.127 0.000 0.038 atom prop 1.276 1.243 1.286 atom prop 1.265 1.270 1.287 Total 91.460 88.430 92.010 Total 88.370 88.750 89.870

Formula units based on 4 oxygens Formula units based on 4 oxygens SiO 0.000 0.005 0.000 SiO 0.000 0.004 0.000 TiO 0.000 0.002 0.000 TiO 0.011 0.014 0.004 Al 0.013 0.047 0.013 Al 0.009 0.030 0.021 Mg 0.012 0.011 0.010 Mg 0.013 0.019 0.016 Fe 3.965 3.897 3.945 Fe 3.623 3.661 3.633 Ca 0.001 0.003 0.000 Ca 0.000 0.004 0.001 Mn 0.001 0.005 0.003 Mn 0.006 0.013 0.004 Cr 0.008 0.048 0.038 Cr 0.449 0.341 0.449 Ni 0.008 0.006 0.006 Ni 0.007 0.005 0.003 Zn 0.000 0.000 0.000 Zn 0.005 0.000 0.001 O 4.000 4.000 4.000 O 4.000 4.000 4.000

Cat total 4.006 4.023 4.015 Cat total 4.123 4.091 4.134

214 B.4 - MAGNETITE

Formula units recalculated for Fe+2 and Fe+3 (Droop, 1987) Formula units recalculated for Fe+2 and Fe+3 (Droop, 1987) A5-1 A5-8 A5-14 A10-2 A10-9 A10-15

SiO 0.000 0.004 0.000 SiO 0.000 0.003 0.000 TiO 0.000 0.001 0.000 TiO 0.008 0.010 0.003 Al 0.010 0.035 0.010 Al 0.006 0.022 0.015 Mg 0.009 0.008 0.008 Mg 0.009 0.014 0.012 Fe2+ 1.464 1.389 1.436 Fe2+ 1.051 1.120 1.044 Fe3+ 1.505 1.517 1.511 Fe3+ 1.585 1.565 1.592 Ca 0.000 0.002 0.000 Ca 0.000 0.003 0.001 Mn 0.001 0.004 0.002 Mn 0.005 0.010 0.003 Cr 0.006 0.036 0.028 Cr 0.327 0.250 0.326 Ni 0.000 0.000 0.000 Ni 0.004 0.000 0.001 Zn 0.000 0.000 0.000 Zn 0.004 0.000 0.001

Cat total 2.994 2.995 2.995 Cat total 2.999 2.997 2.999

Fe2/(Fe2+Fe3) 0.493 0.478 0.487 Fe2/(Fe2+Fe3) 0.399 0.417 0.396

wt% recalculated to show Fe+2 and Fe+3 (Droop, 1987) wt% recalculated to show Fe+2 and Fe+3 (Droop, 1987) SiO2 0.000 0.089 0.000 SiO2 0.000 0.082 0.000 TiO2 0.000 0.041 0.000 TiO2 0.277 0.343 0.110 Al2O3 0.092 0.328 0.093 Al2O3 0.064 0.218 0.152 MgO 0.151 0.139 0.135 MgO 0.164 0.246 0.213 FeO 42.447 39.290 42.000 FeO 30.758 32.708 31.161 Fe2O3 48.473 47.700 49.130 Fe2O3 51.572 50.792 52.809 CaO 0.011 0.048 0.000 CaO 0.000 0.076 0.019 MnO 0.016 0.118 0.071 MnO 0.142 0.299 0.095 Cr2O3 0.086 0.537 0.440 Cr2O3 5.100 3.880 5.190 Ni 0.188 0.142 0.146 Ni 0.165 0.110 0.083 ZnO 0.000 0.000 0.000 ZnO 0.127 0.000 0.038

Total 91.463 88.431 92.015 Total 88.368 88.755 89.869

215 B.4 - MAGNETITE

wt% of oxides wt% of oxides MDL A6-2 A6-8 A6-14 MDL A4-2 A4-7 A4-14

SiO2 0.052 0.000 0.000 0.000 SiO2 0.052 0.023 0.000 0.000 TiO2 0.062 0.136 0.116 0.163 TiO2 0.062 0.055 0.029 0.035 Al2O3 0.047 0.048 0.000 0.022 Al2O3 0.047 0.000 0.013 0.014 MgO 0.053 0.083 0.049 0.115 MgO 0.053 0.127 0.158 0.083 FeO 0.181 86.970 86.450 86.640 FeO 0.181 87.790 87.280 87.590 CaO 0.036 0.011 0.000 0.000 CaO 0.036 0.014 0.045 0.030 MnO 0.152 0.000 0.024 0.063 MnO 0.152 0.000 0.189 0.086 Cr2O3 0.203 3.370 3.070 3.190 Cr2O3 0.203 2.661 2.483 2.660 Ni 0.173 0.082 0.147 0.128 Ni 0.173 0.078 0.082 0.142 ZnO 0.253 0.127 0.000 0.067 ZnO 0.253 0.008 0.112 0.105 atom prop 1.287 1.270 1.280 atom prop 1.281 1.275 1.280 Total 90.840 89.860 90.380 Total 90.760 90.390 90.750

Formula units based on 4 oxygens Formula units based on 4 oxygens SiO 0.000 0.000 0.000 SiO 0.001 0.000 0.000 TiO 0.005 0.005 0.006 TiO 0.002 0.001 0.001 Al 0.007 0.000 0.003 Al 0.000 0.002 0.002 Mg 0.006 0.004 0.009 Mg 0.010 0.012 0.006 Fe 3.763 3.789 3.769 Fe 3.815 3.812 3.810 Ca 0.001 0.000 0.000 Ca 0.001 0.003 0.002 Mn 0.000 0.001 0.003 Mn 0.000 0.008 0.004 Cr 0.292 0.269 0.278 Cr 0.231 0.217 0.232 Ni 0.003 0.006 0.005 Ni 0.003 0.003 0.006 Zn 0.005 0.000 0.003 Zn 0.000 0.004 0.004 O 4.000 4.000 4.000 O 4.000 4.000 4.000

Cat total 4.082 4.074 4.076 Cat total 4.064 4.063 4.067

216 B.4 - MAGNETITE

Formula units recalculated for Fe+2 and Fe+3 (Droop, 1987) Formula units recalculated for Fe+2 and Fe+3 (Droop, 1987) A6-2 A6-8 A6-14 A4-2 A4-7 A4-14

SiO 0.000 0.000 0.000 SiO 0.001 0.000 0.000 TiO 0.004 0.003 0.005 TiO 0.002 0.001 0.001 Al 0.005 0.000 0.002 Al 0.000 0.001 0.001 Mg 0.005 0.003 0.007 Mg 0.007 0.009 0.005 Fe2+ 1.207 1.237 1.220 Fe2+ 1.270 1.270 1.263 Fe3+ 1.558 1.553 1.554 Fe3+ 1.546 1.545 1.548 Ca 0.000 0.000 0.000 Ca 0.001 0.002 0.001 Mn 0.000 0.001 0.002 Mn 0.000 0.006 0.003 Cr 0.214 0.198 0.204 Cr 0.171 0.160 0.171 Ni 0.004 0.000 0.002 Ni 0.000 0.003 0.003 Zn 0.004 0.000 0.002 Zn 0.000 0.003 0.003

Cat total 3.001 2.995 2.998 Cat total 2.998 3.001 2.999

Fe2/(Fe2+Fe3) 0.436 0.443 0.440 Fe2/(Fe2+Fe3) 0.451 0.451 0.449

wt% recalculated to show Fe+2 and Fe+3 (Droop, 1987) wt% recalculated to show Fe+2 and Fe+3 (Droop, 1987) SiO2 0.000 0.000 0.000 SiO2 0.023 0.000 0.000 TiO2 0.136 0.116 0.163 TiO2 0.055 0.029 0.035 Al2O3 0.048 0.000 0.022 Al2O3 0.000 0.013 0.014 MgO 0.083 0.049 0.115 MgO 0.127 0.158 0.083 FeO 35.721 36.098 35.870 FeO 37.312 37.100 37.074 Fe2O3 51.249 50.352 50.770 Fe2O3 50.478 50.180 50.516 CaO 0.011 0.000 0.000 CaO 0.014 0.045 0.030 MnO 0.000 0.024 0.063 MnO 0.000 0.189 0.086 Cr2O3 3.370 3.070 3.190 Cr2O3 2.661 2.483 2.660 Ni 0.082 0.147 0.128 Ni 0.078 0.082 0.142 ZnO 0.127 0.000 0.067 ZnO 0.008 0.112 0.105

Total 90.829 89.856 90.388 Total 90.755 90.390 90.745

217 B.4 - MAGNETITE

wt% of oxides wt% of oxides MDL A9-3 A9-8 A9-11 MDL A3-2 A3-8 A3-14

SiO2 0.052 0.000 0.000 0.000 SiO2 0.052 0.000 0.000 0.000 TiO2 0.062 0.000 0.019 0.048 TiO2 0.062 0.056 0.038 0.037 Al2O3 0.047 0.015 0.000 0.015 Al2O3 0.047 0.044 0.008 0.005 MgO 0.053 0.000 0.035 0.000 MgO 0.053 0.122 0.114 0.100 FeO 0.181 91.950 91.350 91.600 FeO 0.181 91.170 91.260 90.670 CaO 0.036 0.000 0.000 0.009 CaO 0.036 0.000 0.000 0.058 MnO 0.152 0.095 0.151 0.000 MnO 0.152 0.000 0.000 0.064 Cr2O3 0.203 2.622 2.726 2.612 Cr2O3 0.203 1.331 1.250 1.096 Ni 0.173 0.060 0.138 0.055 Ni 0.173 0.000 0.000 0.051 ZnO 0.253 0.000 0.000 0.030 ZnO 0.253 0.000 0.007 0.096 atom prop 1.334 1.331 1.329 atom prop 1.301 1.299 1.291 Total 94.742 94.419 94.369 Total 92.723 92.677 92.177

Formula units based on 4 oxygens Formula units based on 4 oxygens SiO 0.000 0.000 0.000 SiO 0.000 0.000 0.000 TiO 0.000 0.001 0.002 TiO 0.002 0.001 0.001 Al 0.002 0.000 0.002 Al 0.006 0.001 0.001 Mg 0.000 0.003 0.000 Mg 0.009 0.009 0.008 Fe 3.837 3.822 3.836 Fe 3.902 3.911 3.910 Ca 0.000 0.000 0.001 Ca 0.000 0.000 0.003 Mn 0.004 0.006 0.000 Mn 0.000 0.000 0.003 Cr 0.219 0.228 0.219 Cr 0.114 0.107 0.095 Ni 0.002 0.006 0.002 Ni 0.000 0.000 0.002 Zn 0.000 0.000 0.001 Zn 0.000 0.000 0.004 O 4.000 4.000 4.000 O 4.000 4.000 4.000

Cat total 4.064 4.066 4.063 Cat total 4.033 4.030 4.026

218 B.4 - MAGNETITE

Formula units recalculated for Fe+2 and Fe+3 (Droop, 1987) Formula units recalculated for Fe+2 and Fe+3 (Droop, 1987) A9-3 A9-8 A9-11 A3-2 A3-8 A3-14

SiO 0.000 0.000 0.000 SiO 0.000 0.000 0.000 TiO 0.000 0.001 0.001 TiO 0.002 0.001 0.001 Al 0.001 0.000 0.001 Al 0.004 0.001 0.001 Mg 0.000 0.002 0.000 Mg 0.007 0.006 0.006 Fe2+ 1.286 1.273 1.288 Fe2+ 1.378 1.389 1.394 Fe3+ 1.546 1.547 1.545 Fe3+ 1.524 1.522 1.519 Ca 0.000 0.000 0.000 Ca 0.000 0.000 0.002 Mn 0.003 0.005 0.000 Mn 0.000 0.000 0.002 Cr 0.162 0.168 0.162 Cr 0.085 0.080 0.071 Ni 0.000 0.000 0.001 Ni 0.000 0.000 0.003 Zn 0.000 0.000 0.001 Zn 0.000 0.000 0.003

Cat total 2.998 2.996 2.999 Cat total 3.000 3.000 3.001

Fe2/(Fe2+Fe3) 0.454 0.451 0.455 Fe2/(Fe2+Fe3) 0.475 0.477 0.478

wt% recalculated to show Fe+2 and Fe+3 (Droop, 1987) wt% recalculated to show Fe+2 and Fe+3 (Droop, 1987) SiO2 0.000 0.000 0.000 SiO2 0.000 0.000 0.000 TiO2 0.000 0.019 0.048 TiO2 0.056 0.038 0.037 Al2O3 0.015 0.000 0.015 Al2O3 0.044 0.008 0.005 MgO 0.000 0.035 0.000 MgO 0.122 0.114 0.100 FeO 39.352 38.858 39.251 FeO 40.896 41.156 41.003 Fe2O3 52.598 52.492 52.349 Fe2O3 50.274 50.104 49.667 CaO 0.000 0.000 0.009 CaO 0.000 0.000 0.058 MnO 0.095 0.151 0.000 MnO 0.000 0.000 0.064 Cr2O3 2.622 2.726 2.612 Cr2O3 1.331 1.250 1.096 Ni 0.060 0.138 0.055 Ni 0.000 0.000 0.051 ZnO 0.000 0.000 0.030 ZnO 0.000 0.007 0.096

Total 94.742 94.419 94.369 Total 92.723 92.677 92.177

219 B.4 - MAGNETITE

wt% of oxides wt% of oxides MDL A2-2 A2-8 A2-14 MDL A7-15 A7-1 A7-8

SiO2 0.052 0.000 0.000 0.000 SiO2 0.052 0.000 0.000 0.000 TiO2 0.062 0.104 0.054 0.003 TiO2 0.062 0.033 0.079 0.029 Al2O3 0.047 0.049 0.047 0.070 Al2O3 0.047 0.050 0.034 0.000 MgO 0.053 0.138 0.071 0.112 MgO 0.053 0.055 0.073 0.067 FeO 0.181 90.550 91.690 91.440 FeO 0.181 91.730 89.120 78.190 CaO 0.036 0.156 0.000 0.001 CaO 0.036 0.038 0.024 0.008 MnO 0.152 0.000 0.000 0.072 MnO 0.152 0.175 0.047 0.047 Cr2O3 0.203 2.104 2.311 2.199 Cr2O3 0.203 2.894 2.766 2.199 Ni 0.173 0.152 0.138 0.051 Ni 0.173 0.046 0.000 0.124 ZnO 0.253 0.000 0.000 0.000 ZnO 0.253 0.022 0.000 0.097 atom prop 1.314 1.328 1.323 atom prop 1.342 1.301 1.138 Total 93.251 94.312 93.946 Total 95.043 92.144 80.760

Formula units based on 4 oxygens Formula units based on 4 oxygens SiO 0.000 0.000 0.000 SiO 0.000 0.000 0.000 TiO 0.004 0.002 0.000 TiO 0.001 0.003 0.001 Al 0.007 0.006 0.009 Al 0.007 0.005 0.000 Mg 0.010 0.005 0.008 Mg 0.004 0.006 0.006 Fe 3.836 3.843 3.849 Fe 3.807 3.814 3.826 Ca 0.008 0.000 0.000 Ca 0.002 0.001 0.000 Mn 0.000 0.000 0.003 Mn 0.007 0.002 0.002 Cr 0.178 0.194 0.185 Cr 0.240 0.237 0.215 Ni 0.006 0.006 0.002 Ni 0.002 0.000 0.006 Zn 0.000 0.000 0.000 Zn 0.001 0.000 0.004 O 4.000 4.000 4.000 O 4.000 4.000 4.000

Cat total 4.050 4.057 4.057 Cat total 4.071 4.068 4.061

220 B.4 - MAGNETITE

Formula units recalculated for Fe+2 and Fe+3 (Droop, 1987) Formula units recalculated for Fe+2 and Fe+3 (Droop, 1987) A2-2 A2-8 A2-14 A7-15 A7-1 A7-8

SiO 0.000 0.000 0.000 SiO 0.000 0.000 0.000 TiO 0.003 0.002 0.000 TiO 0.001 0.002 0.001 Al 0.005 0.005 0.007 Al 0.005 0.003 0.000 Mg 0.008 0.004 0.006 Mg 0.003 0.004 0.004 Fe2+ 1.305 1.301 1.305 Fe2+ 1.254 1.264 1.282 Fe3+ 1.536 1.541 1.541 Fe3+ 1.551 1.549 1.544 Ca 0.006 0.000 0.000 Ca 0.001 0.001 0.000 Mn 0.000 0.000 0.002 Mn 0.005 0.002 0.002 Cr 0.132 0.143 0.137 Cr 0.177 0.175 0.159 Ni 0.000 0.000 0.000 Ni 0.001 0.000 0.003 Zn 0.000 0.000 0.000 Zn 0.001 0.000 0.003

Cat total 2.995 2.996 2.998 Cat total 2.999 3.000 2.999

Fe2/(Fe2+Fe3) 0.459 0.458 0.458 Fe2/(Fe2+Fe3) 0.447 0.449 0.454

wt% recalculated to show Fe+2 and Fe+3 (Droop, 1987) wt% recalculated to show Fe+2 and Fe+3 (Droop, 1987) SiO2 0.000 0.000 0.000 SiO2 0.000 0.000 0.000 TiO2 0.104 0.054 0.003 TiO2 0.033 0.079 0.029 Al2O3 0.049 0.047 0.070 Al2O3 0.050 0.034 0.000 MgO 0.138 0.071 0.112 MgO 0.055 0.073 0.067 FeO 39.227 39.593 39.540 FeO 38.639 37.746 33.430 Fe2O3 51.323 52.097 51.900 Fe2O3 53.091 51.374 44.760 CaO 0.156 0.000 0.001 CaO 0.038 0.024 0.008 MnO 0.000 0.000 0.072 MnO 0.175 0.047 0.047 Cr2O3 2.104 2.311 2.199 Cr2O3 2.894 2.766 2.199 Ni 0.152 0.138 0.051 Ni 0.046 0.000 0.124 ZnO 0.000 0.000 0.000 ZnO 0.022 0.000 0.097

Total 93.251 94.312 93.946 Total 95.043 92.144 80.760

221 B.4 - MAGNETITE

wt% of oxides MDL A8-1 A8-13 A8-8

SiO2 0.052 0.000 0.000 0.000 TiO2 0.062 0.183 0.150 0.147 Al2O3 0.047 0.023 0.026 0.038 MgO 0.053 0.115 0.119 0.077 FeO 0.181 89.740 89.020 89.290 CaO 0.036 0.004 0.000 0.020 MnO 0.152 0.134 0.071 0.118 Cr2O3 0.203 1.960 2.091 1.816 Ni 0.173 0.137 0.105 0.000 ZnO 0.253 0.000 0.030 0.022 atom prop 1.300 1.290 1.288 Total 92.290 91.610 91.530

Formula units based on 4 oxygens SiO 0.000 0.000 0.000 TiO 0.007 0.006 0.006 Al 0.003 0.003 0.005 Mg 0.009 0.009 0.006 Fe 3.844 3.840 3.861 Ca 0.000 0.000 0.001 Mn 0.006 0.003 0.005 Cr 0.168 0.181 0.157 Ni 0.006 0.004 0.000 Zn 0.000 0.001 0.001 O 4.000 4.000 4.000

Cat total 4.043 4.048 4.042

222 B.4 - MAGNETITE

Formula units recalculated for Fe+2 and Fe+3 (Droop, 1987) A8-1 A8-13 A8-8

SiO 0.000 0.000 0.000 TiO 0.005 0.004 0.004 Al 0.002 0.003 0.004 Mg 0.007 0.007 0.004 Fe2+ 1.321 1.311 1.335 Fe3+ 1.531 1.535 1.531 Ca 0.000 0.000 0.001 Mn 0.004 0.002 0.004 Cr 0.125 0.134 0.117 Ni 0.000 0.001 0.001 Zn 0.000 0.001 0.001

Cat total 2.996 2.998 3.001

Fe2/(Fe2+Fe3) 0.463 0.461 0.466

wt% recalculated to show Fe+2 and Fe+3 (Droop, 1987) SiO2 0.000 0.000 0.000 TiO2 0.183 0.150 0.147 Al2O3 0.023 0.026 0.038 MgO 0.115 0.119 0.077 FeO 39.222 38.691 39.264 Fe2O3 50.518 50.329 50.026 CaO 0.004 0.000 0.020 MnO 0.134 0.071 0.118 Cr2O3 1.960 2.091 1.816 Ni 0.137 0.105 0.000 ZnO 0.000 0.030 0.022

Total 92.295 91.611 91.528

223 B.5 - ILMENITE

wt% of oxides wt% of oxides MDL PA7-3 MDL PA1-7

SiO2 0.051 0.052 SiO2 0.051 0.000 TiO2 0.070 53.030 TiO2 0.070 53.330 Al2O3 0.052 0.000 Al2O3 0.052 0.000 MgO 0.049 0.104 MgO 0.049 0.142 FeO 0.176 29.960 FeO 0.176 39.650 CaO 0.036 0.034 CaO 0.036 0.000 MnO 0.151 14.420 MnO 0.151 7.080 Cr2O3 0.131 0.138 Cr2O3 0.131 0.089 Ni 0.172 0.069 Ni 0.172 0.037 ZnO 0.251 0.182 ZnO nd atom prop 1.960 atom prop 1.993 Total 97.990 Total 100.330

Formula units based on 3 oxygens Formula units based on 3 oxygens SiO 0.001 SiO 0.000 TiO 1.016 TiO 1.005 Al 0.000 Al 0.000 Mg 0.004 Mg 0.005 Fe 0.638 Fe 0.831 Ca 0.001 Ca 0.000 Mn 0.311 Mn 0.150 Cr 0.006 Cr 0.004 Ni 0.001 Ni 0.001 Zn 0.003 Zn nd O 3.000 O 3.000

Cat total 1.983 Cat total 1.996

224 B.5 - ILMENITE

Formula units recalculated for Fe+2 and Fe+3 (Droop, 1987) Formula units recalculated for Fe+2 and Fe+3 (Droop, 1987) PA7-3 PA1-7

SiO 0.001 SiO 0.000 TiO 1.025 TiO 1.007 Al 0.000 Al 0.000 Mg 0.004 Mg 0.005 Fe2+ 0.644 Fe2+ 0.831 Fe3+ 0.000 Fe3+ 0.000 Ca 0.001 Ca 0.000 Mn 0.314 Mn 0.151 Cr 0.006 Cr 0.004 Ni 0.003 Ni 0.001 Zn 0.003 Zn nd

Cat total 2.002 Cat total 1.998

Fe2/(Fe2+Fe3) 1.000 Fe2/(Fe2+Fe3) 1.000

wt% recalculated to show Fe+2 and Fe+3 (Droop, 1987) wt% recalculated to show Fe+2 and Fe+3 (Droop, 1987) SiO2 0.052 SiO2 0.000 TiO2 53.030 TiO2 53.330 Al2O3 0.000 Al2O3 0.000 MgO 0.104 MgO 0.142 FeO 29.960 FeO 39.650 Fe2O3 0.000 Fe2O3 0.000 CaO 0.034 CaO 0.000 MnO 14.420 MnO 7.080 Cr2O3 0.138 Cr2O3 0.089 Ni 0.069 Ni 0.037 ZnO 0.182 ZnO nd

Total 97.988 Total 100.328

225 B.5 - ILMENITE

wt% of oxides wt% of oxides MDL PA3-6 PA3-7 MDL PA2-3 PA2-5 PA2-7

SiO2 0.051 0.000 0.000 SiO2 0.051 0.000 0.000 0.000 TiO2 0.070 52.980 53.720 TiO2 0.070 51.570 51.280 52.800 Al2O3 0.052 0.010 0.000 Al2O3 0.052 0.000 0.018 0.000 MgO 0.049 0.129 0.078 MgO 0.049 0.153 0.150 0.163 FeO 0.176 37.690 39.160 FeO 0.176 37.540 38.900 40.080 CaO 0.036 0.009 0.049 CaO 0.036 0.052 0.075 0.035 MnO 0.151 5.940 6.620 MnO 0.151 6.910 6.460 5.690 Cr2O3 0.131 0.000 0.045 Cr2O3 0.131 0.180 0.090 0.034 Ni 0.172 0.028 0.000 Ni 0.172 0.000 0.087 0.014 ZnO nd nd ZnO nd nd nd atom prop 1.939 1.988 atom prop 1.920 1.925 1.966 Total 96.800 99.670 Total 96.410 97.070 98.810

Formula units based on 3 oxygens Formula units based on 3 oxygens SiO 0.000 0.000 SiO 0.000 0.000 0.000 TiO 1.026 1.015 TiO 1.009 1.000 1.009 Al 0.001 0.000 Al 0.000 0.001 0.000 Mg 0.005 0.003 Mg 0.006 0.006 0.006 Fe 0.811 0.823 Fe 0.816 0.844 0.851 Ca 0.000 0.001 Ca 0.001 0.002 0.001 Mn 0.130 0.141 Mn 0.152 0.142 0.122 Cr 0.000 0.002 Cr 0.008 0.004 0.001 Ni 0.001 0.000 Ni 0.000 0.002 0.000 Zn nd nd Zn nd nd nd O 3.000 3.000 O 3.000 3.000 3.000

Cat total 1.974 1.985 Cat total 1.993 2.001 1.991

226 B.5 - ILMENITE

Formula units recalculated for Fe+2 and Fe+3 (Droop, 1987) Formula units recalculated for Fe+2 and Fe+3 (Droop, 1987) PA3-6 PA3-7 PA2-3 PA2-5 PA2-7

SiO 0.000 0.000 SiO 0.000 0.000 0.000 TiO 1.040 1.023 TiO 1.013 1.000 1.013 Al 0.001 0.000 Al 0.000 0.001 0.000 Mg 0.005 0.003 Mg 0.006 0.006 0.006 Fe2+ 0.811 0.823 Fe2+ 0.816 0.841 0.851 Fe3+ 0.000 0.000 Fe3+ 0.000 0.002 0.000 Ca 0.000 0.001 Ca 0.001 0.002 0.001 Mn 0.131 0.142 Mn 0.153 0.142 0.123 Cr 0.000 0.002 Cr 0.008 0.004 0.001 Ni 0.001 0.000 Ni 0.000 0.002 0.000 Zn nd nd Zn nd nd nd

Cat total 1.989 1.994 Cat total 1.997 2.000 1.996

Fe2/(Fe2+Fe3) 1.000 1.000 Fe2/(Fe2+Fe3) 1.000 0.998 1.000

wt% recalculated to show Fe+2 and Fe+3 (Droop, 1987) wt% recalculated to show Fe+2 and Fe+3 (Droop, 1987) SiO2 0.000 0.000 SiO2 0.000 0.000 0.000 TiO2 52.980 53.720 TiO2 51.570 51.280 52.800 Al2O3 0.010 0.000 Al2O3 0.000 0.018 0.000 MgO 0.129 0.078 MgO 0.153 0.150 0.163 FeO 37.690 39.160 FeO 37.540 38.804 40.080 Fe2O3 0.000 0.000 Fe2O3 0.000 0.096 0.000 CaO 0.009 0.049 CaO 0.052 0.075 0.035 MnO 5.940 6.620 MnO 6.910 6.460 5.690 Cr2O3 0.000 0.045 Cr2O3 0.180 0.090 0.034 Ni 0.028 0.000 Ni 0.000 0.087 0.014 ZnO nd nd ZnO nd nd nd

Total 96.786 99.672 Total 96.405 97.060 98.816

227 B.5 - ILMENITE

wt% of oxides MDL LO67-1 LO67-2 LO67-5 LO67-6

SiO2 0.051 0.024 0.054 0.030 0.039 TiO2 0.070 50.360 39.530 48.970 50.250 Al2O3 0.052 0.026 0.006 0.003 0.357 MgO 0.049 0.714 0.405 0.680 0.591 FeO 0.176 44.880 54.970 44.090 45.580 CaO 0.036 0.011 0.019 0.052 0.000 MnO 0.151 0.457 0.751 0.810 0.932 Cr2O3 0.131 0.000 0.207 0.000 0.000 Ni 0.172 0.059 0.119 0.027 0.032 ZnO 0.251 0.045 0.000 0.098 0.076 atom prop 1.913 1.784 1.872 1.934 Total 96.580 96.060 94.780 97.890

Formula units based on 3 oxygens SiO 0.001 0.002 0.001 0.001 TiO 0.989 0.832 0.983 0.976 Al 0.002 0.000 0.000 0.024 Mg 0.028 0.017 0.027 0.023 Fe 0.980 1.287 0.984 0.984 Ca 0.000 0.001 0.001 0.000 Mn 0.010 0.018 0.018 0.020 Cr 0.000 0.010 0.000 0.000 Ni 0.001 0.003 0.001 0.001 Zn 0.001 0.000 0.002 0.001 O 3.000 3.000 3.000 3.000

Cat total 2.011 2.169 2.017 2.031

228 B.5 - ILMENITE

Formula units recalculated for Fe+2 and Fe+3 (Droop, 1987) LO67-1 LO67-2 LO67-5 LO67-6

SiO 0.001 0.001 0.001 0.001 TiO 0.983 0.768 0.975 0.961 Al 0.002 0.000 0.000 0.024 Mg 0.028 0.016 0.027 0.022 Fe2+ 0.941 0.756 0.927 0.879 Fe3+ 0.033 0.431 0.049 0.090 Ca 0.000 0.001 0.001 0.000 Mn 0.010 0.016 0.018 0.020 Cr 0.000 0.009 0.000 0.000 Ni 0.001 0.000 0.002 0.001 Zn 0.001 0.000 0.002 0.001

Cat total 2.000 1.998 2.001 2.001

Fe2/(Fe2+Fe3) 0.966 0.637 0.950 0.907

wt% recalculated to show Fe+2 and Fe+3 (Droop, 1987) SiO2 0.024 0.054 0.030 0.039 TiO2 50.360 39.530 48.970 50.250 Al2O3 0.026 0.006 0.003 0.357 MgO 0.714 0.405 0.680 0.591 FeO 43.195 33.648 41.649 40.916 Fe2O3 1.685 21.322 2.441 4.664 CaO 0.011 0.019 0.052 0.000 MnO 0.457 0.751 0.810 0.932 Cr2O3 0.000 0.207 0.000 0.000 Ni 0.059 0.119 0.027 0.032 ZnO 0.045 0.000 0.098 0.076

Total 96.576 96.061 94.760 97.857

229 B.5 - ILMENITE

wt% of oxides wt% of oxides MDL LO272-6 LO272-2 LO272-4 MDL LO279-2 LO279-6 LO279-7

SiO2 0.051 0.014 0.030 0.026 SiO2 0.051 0.000 0.046 0.047 TiO2 0.070 49.340 50.010 50.080 TiO2 0.070 50.830 50.430 50.720 Al2O3 0.052 0.014 0.042 0.027 Al2O3 0.052 0.032 0.032 0.036 MgO 0.049 0.850 0.908 0.566 MgO 0.049 1.316 1.443 1.702 FeO 0.176 46.550 44.320 42.800 FeO 0.176 41.590 42.030 40.690 CaO 0.036 0.009 0.006 0.000 CaO 0.036 0.005 0.035 0.000 MnO 0.151 0.879 0.810 0.802 MnO 0.151 4.060 4.420 4.600 Cr2O3 0.131 0.247 0.361 0.000 Cr2O3 0.131 0.000 0.226 0.000 Ni 0.172 0.046 0.055 0.000 Ni 0.172 0.027 0.018 0.009 ZnO 0.251 0.273 1.977 2.128 ZnO 0.251 0.189 0.242 0.159 atom prop 1.927 1.938 1.903 atom prop 1.945 1.957 1.948 Total 98.220 98.520 96.550 Total 98.060 98.920 98.090

Formula units based on 3 oxygens Formula units based on 3 oxygens SiO 0.000 0.001 0.001 SiO 0.000 0.001 0.001 TiO 0.962 0.969 0.988 TiO 0.981 0.968 0.978 Al 0.001 0.003 0.002 Al 0.002 0.002 0.002 Mg 0.033 0.035 0.022 Mg 0.050 0.055 0.065 Fe 1.009 0.955 0.939 Fe 0.893 0.897 0.872 Ca 0.000 0.000 0.000 Ca 0.000 0.001 0.000 Mn 0.019 0.018 0.018 Mn 0.088 0.096 0.100 Cr 0.011 0.016 0.000 Cr 0.000 0.010 0.000 Ni 0.001 0.001 0.000 Ni 0.001 0.000 0.000 Zn 0.005 0.038 0.041 Zn 0.004 0.005 0.003 O 3.000 3.000 3.000 O 3.000 3.000 3.000

Cat total 2.041 2.035 2.011 Cat total 2.019 2.034 2.021

230 B.5 - ILMENITE

Formula units recalculated for Fe+2 and Fe+3 (Droop, 1987) Formula units recalculated for Fe+2 and Fe+3 (Droop, 1987) LO272-6 LO272-2 LO272-4 LO279-2 LO279-6 LO279-7

SiO 0.000 0.001 0.001 SiO 0.000 0.001 0.001 TiO 0.942 0.953 0.983 TiO 0.972 0.952 0.967 Al 0.001 0.003 0.002 Al 0.002 0.002 0.002 Mg 0.032 0.034 0.022 Mg 0.050 0.054 0.064 Fe2+ 0.870 0.837 0.900 Fe2+ 0.828 0.783 0.800 Fe3+ 0.119 0.102 0.034 Fe3+ 0.056 0.099 0.063 Ca 0.000 0.000 0.000 Ca 0.000 0.001 0.000 Mn 0.019 0.017 0.018 Mn 0.087 0.094 0.099 Cr 0.011 0.015 0.000 Cr 0.000 0.009 0.000 Ni 0.005 0.037 0.041 Ni 0.004 0.004 0.003 Zn 0.005 0.037 0.041 Zn 0.004 0.004 0.003

Cat total 2.004 2.036 2.041 Cat total 2.003 2.004 2.003

Fe2/(Fe2+Fe3) 0.880 0.891 0.964 Fe2/(Fe2+Fe3) 0.937 0.888 0.927

wt% recalculated to show Fe+2 and Fe+3 (Droop, 1987) wt% recalculated to show Fe+2 and Fe+3 (Droop, 1987) SiO2 0.014 0.030 0.026 SiO2 0.000 0.046 0.047 TiO2 49.340 50.010 50.080 TiO2 50.830 50.430 50.720 Al2O3 0.014 0.042 0.027 Al2O3 0.032 0.032 0.036 MgO 0.850 0.908 0.566 MgO 1.316 1.443 1.702 FeO 40.426 39.032 41.089 FeO 38.689 36.872 37.417 Fe2O3 6.124 5.288 1.711 Fe2O3 2.901 5.158 3.273 CaO 0.009 0.006 0.000 CaO 0.005 0.035 0.000 MnO 0.879 0.810 0.802 MnO 4.060 4.420 4.600 Cr2O3 0.247 0.361 0.000 Cr2O3 0.000 0.226 0.000 Ni 0.046 0.055 0.000 Ni 0.027 0.018 0.009 ZnO 0.273 1.977 2.128 ZnO 0.189 0.242 0.159

Total 98.222 98.518 96.429 Total 98.048 98.922 97.963

231 B.5 - ILMENITE

wt% of oxides wt% of oxides MDL LO195-3 LO195-1 LO195-5 MDL LO123-5 LO123-2 LO123-8

SiO2 0.051 0.000 0.000 0.000 SiO2 0.051 0.000 0.000 0.000 TiO2 0.070 48.590 50.080 50.720 TiO2 0.070 41.460 50.130 48.780 Al2O3 0.052 0.023 0.036 0.061 Al2O3 0.052 0.016 0.015 0.066 MgO 0.049 0.815 1.057 0.717 MgO 0.049 0.526 0.957 0.751 FeO 0.176 46.210 42.680 44.430 FeO 0.176 49.270 43.700 46.040 CaO 0.036 0.006 0.000 0.024 CaO 0.036 0.086 0.050 0.038 MnO 0.151 1.654 1.692 1.474 MnO 0.151 0.736 0.675 0.686 Cr2O3 0.131 0.000 0.145 0.111 Cr2O3 0.131 0.859 0.244 0.351 Ni 0.172 0.050 0.041 0.000 Ni 0.172 0.027 0.032 0.000 ZnO nd nd nd ZnO nd nd nd atom prop 1.905 1.903 1.931 atom prop 1.767 1.903 1.900 Total 97.340 95.730 97.540 Total 92.980 95.810 96.710

Formula units based on 3 oxygens Formula units based on 3 oxygens SiO 0.000 0.000 0.000 SiO 0.000 0.000 0.000 TiO 0.958 0.989 0.986 TiO 0.881 0.989 0.964 Al 0.002 0.003 0.004 Al 0.001 0.001 0.005 Mg 0.032 0.041 0.028 Mg 0.022 0.037 0.029 Fe 1.013 0.937 0.960 Fe 1.164 0.959 1.012 Ca 0.000 0.000 0.001 Ca 0.003 0.001 0.001 Mn 0.037 0.038 0.032 Mn 0.018 0.015 0.015 Cr 0.000 0.006 0.005 Cr 0.041 0.011 0.015 Ni 0.001 0.001 0.000 Ni 0.001 0.001 0.000 Zn nd nd nd Zn nd nd nd O 3.000 3.000 3.000 O 3.000 3.000 3.000

Cat total 2.042 2.014 2.016 Cat total 2.131 2.014 2.042

232 B.5 - ILMENITE

Formula units recalculated for Fe+2 and Fe+3 (Droop, 1987) Formula units recalculated for Fe+2 and Fe+3 (Droop, 1987) LO195-3 LO195-1 LO195-5 LO123-5 LO123-2 LO123-8

SiO 0.000 0.000 0.000 SiO 0.000 0.000 0.000 TiO 0.938 0.982 0.978 TiO 0.827 0.982 0.945 Al 0.002 0.003 0.004 Al 0.001 0.001 0.004 Mg 0.031 0.041 0.027 Mg 0.021 0.037 0.029 Fe2+ 0.870 0.889 0.904 Fe2+ 0.748 0.910 0.871 Fe3+ 0.122 0.041 0.048 Fe3+ 0.346 0.042 0.120 Ca 0.000 0.000 0.001 Ca 0.002 0.001 0.001 Mn 0.036 0.037 0.032 Mn 0.017 0.015 0.015 Cr 0.000 0.006 0.005 Cr 0.038 0.011 0.015 Ni 0.001 0.001 0.000 Ni 0.001 0.001 0.000 Zn nd nd nd Zn nd nd nd

Cat total 2.000 2.000 2.000 Cat total 2.000 2.000 2.000

Fe2/(Fe2+Fe3) 0.877 0.956 0.949 Fe2/(Fe2+Fe3) 0.684 0.956 0.879

wt% recalculated to show Fe+2 and Fe+3 (Droop, 1987) wt% recalculated to show Fe+2 and Fe+3 (Droop, 1987) SiO2 0.000 0.000 0.000 SiO2 0.000 0.000 0.000 TiO2 48.590 50.080 50.720 TiO2 41.460 50.130 48.780 Al2O3 0.023 0.036 0.061 Al2O3 0.016 0.015 0.066 MgO 0.815 1.057 0.717 MgO 0.526 0.957 0.751 FeO 39.993 40.590 41.943 FeO 32.551 41.573 39.926 Fe2O3 6.217 2.090 2.487 Fe2O3 16.719 2.127 6.114 CaO 0.006 0.000 0.024 CaO 0.086 0.050 0.038 MnO 1.654 1.692 1.474 MnO 0.736 0.675 0.686 Cr2O3 0.000 0.145 0.111 Cr2O3 0.859 0.244 0.351 Ni 0.050 0.041 0.000 Ni 0.027 0.032 0.000 ZnO nd nd nd ZnO nd nd nd

Total 97.348 95.731 97.537 Total 92.980 95.804 96.710

233 B.5 - ILMENITE

wt% of oxides wt% of oxides MDL LO310-3 LO310-1 LO310-6 MDL LO303-4 LO303-2 LO303-6

SiO2 0.051 0.000 0.028 0.000 SiO2 0.051 0.278 0.388 0.000 TiO2 0.070 49.220 49.630 51.440 TiO2 0.070 52.440 52.110 48.220 Al2O3 0.052 0.009 0.133 0.023 Al2O3 0.052 0.009 0.028 0.077 MgO 0.049 1.207 1.186 0.289 MgO 0.049 0.165 0.356 0.199 FeO 0.176 41.330 43.930 43.020 FeO 0.176 40.350 37.740 40.830 CaO 0.036 0.310 0.256 0.000 CaO 0.036 0.028 0.039 0.000 MnO 0.151 2.300 2.765 4.040 MnO 0.151 5.540 6.480 5.030 Cr2O3 0.131 0.090 0.156 0.168 Cr2O3 0.131 0.314 0.214 0.179 Ni 0.172 0.000 0.000 0.000 Ni 0.172 0.000 0.060 0.000 ZnO nd nd nd ZnO nd nd nd atom prop 1.878 1.935 1.955 atom prop 1.973 1.950 1.858 Total 94.460 98.080 98.980 Total 99.130 97.420 94.540

Formula units based on 3 oxygens Formula units based on 3 oxygens SiO 0.000 0.001 0.000 SiO 0.007 0.010 0.000 TiO 0.985 0.963 0.988 TiO 0.998 1.004 0.975 Al 0.001 0.009 0.002 Al 0.001 0.002 0.006 Mg 0.048 0.046 0.011 Mg 0.006 0.014 0.008 Fe 0.919 0.948 0.919 Fe 0.854 0.808 0.918 Ca 0.009 0.007 0.000 Ca 0.001 0.001 0.000 Mn 0.052 0.060 0.087 Mn 0.119 0.141 0.115 Cr 0.004 0.007 0.007 Cr 0.013 0.009 0.008 Ni 0.000 0.000 0.000 Ni 0.000 0.001 0.000 Zn nd nd nd Zn nd nd nd O 3.000 3.000 3.000 O 3.000 3.000 3.000

Cat total 2.017 2.041 2.014 Cat total 1.998 1.989 2.029

234 B.5 - ILMENITE

Formula units recalculated for Fe+2 and Fe+3 (Droop, 1987) Formula units recalculated for Fe+2 and Fe+3 (Droop, 1987) LO310-3 LO310-1 LO310-6 LO303-4 LO303-2 LO303-6

SiO 0.000 0.001 0.000 SiO 0.007 0.010 0.000 TiO 0.976 0.944 0.981 TiO 0.999 1.009 0.961 Al 0.001 0.009 0.002 Al 0.001 0.002 0.005 Mg 0.047 0.045 0.011 Mg 0.006 0.014 0.008 Fe2+ 0.862 0.812 0.871 Fe2+ 0.854 0.808 0.821 Fe3+ 0.049 0.117 0.042 Fe3+ 0.000 0.000 0.084 Ca 0.009 0.007 0.000 Ca 0.001 0.001 0.000 Mn 0.051 0.059 0.087 Mn 0.119 0.141 0.113 Cr 0.004 0.007 0.007 Cr 0.013 0.009 0.008 Ni 0.000 0.000 0.000 Ni 0.000 0.001 0.000 Zn nd nd nd Zn nd nd nd

Cat total 2.000 2.000 2.000 Cat total 1.999 1.996 2.000

Fe2/(Fe2+Fe3) 0.946 0.874 0.955 Fe2/(Fe2+Fe3) 1.000 1.000 0.907

wt% recalculated to show Fe+2 and Fe+3 (Droop, 1987) wt% recalculated to show Fe+2 and Fe+3 (Droop, 1987) SiO2 0.000 0.028 0.000 SiO2 0.278 0.388 0.000 TiO2 49.220 49.630 51.440 TiO2 52.440 52.110 48.220 Al2O3 0.009 0.133 0.023 Al2O3 0.009 0.028 0.077 MgO 1.207 1.186 0.289 MgO 0.165 0.356 0.199 FeO 38.871 37.844 40.856 FeO 40.350 37.740 36.673 Fe2O3 2.459 6.086 2.164 Fe2O3 0.000 0.000 4.157 CaO 0.310 0.256 0.000 CaO 0.028 0.039 0.000 MnO 2.300 2.765 4.040 MnO 5.540 6.480 5.030 Cr2O3 0.090 0.156 0.168 Cr2O3 0.314 0.214 0.179 Ni 0.000 0.000 0.000 Ni 0.000 0.060 0.000 ZnO nd nd nd ZnO nd nd nd

Total 94.466 98.083 98.979 Total 99.124 97.415 94.535

235 B.5 - ILMENITE

wt% of oxides wt% of oxides MDL CW17-5 CW17-6 MDL CW13-1 CW13-3 CW13-5

SiO2 0.051 0.061 0.004 SiO2 0.051 0.047 0.005 0.035 TiO2 0.070 51.620 52.300 TiO2 0.070 51.860 52.490 52.710 Al2O3 0.052 0.019 0.000 Al2O3 0.052 0.010 0.000 0.005 MgO 0.049 0.148 0.127 MgO 0.049 0.128 0.247 0.140 FeO 0.176 45.280 41.800 FeO 0.176 43.890 44.350 43.420 CaO 0.036 0.000 0.000 CaO 0.036 0.000 0.000 0.029 MnO 0.151 1.842 1.708 MnO 0.151 1.709 1.726 1.909 Cr2O3 0.131 0.135 0.000 Cr2O3 0.131 0.238 0.170 0.000 Ni 0.172 0.000 0.032 Ni 0.172 0.000 0.000 0.000 ZnO 0.251 0.000 0.000 ZnO 0.251 0.000 0.091 0.197 atom prop 1.958 1.919 atom prop 1.943 1.967 1.959 Total 99.100 96.040 Total 97.882 99.079 98.443

Formula units based on 3 oxygens Formula units based on 3 oxygens SiO 0.002 0.000 SiO 0.001 0.000 0.001 TiO 0.990 1.024 TiO 1.002 1.002 1.011 Al 0.001 0.000 Al 0.001 0.000 0.000 Mg 0.006 0.005 Mg 0.005 0.009 0.005 Fe 0.966 0.909 Fe 0.943 0.942 0.926 Ca 0.000 0.000 Ca 0.000 0.000 0.001 Mn 0.040 0.038 Mn 0.037 0.037 0.041 Cr 0.006 0.000 Cr 0.010 0.007 0.000 Ni 0.000 0.001 Ni 0.000 0.000 0.000 Zn 0.000 0.000 Zn 0.000 0.002 0.004 O 3.000 3.000 O 3.000 3.000 3.000

Cat total 2.010 1.976 Cat total 2.000 1.999 1.988

236 B.5 - ILMENITE

Formula units recalculated for Fe+2 and Fe+3 (Droop, 1987) Formula units recalculated for Fe+2 and Fe+3 (Droop, 1987) CW17-5 CW17-6 CW13-1 CW13-3 CW13-5

SiO 0.002 0.000 SiO 0.001 0.000 0.001 TiO 0.985 1.036 TiO 1.003 1.003 1.017 Al 0.001 0.000 Al 0.001 0.000 0.000 Mg 0.006 0.005 Mg 0.005 0.009 0.005 Fe2+ 0.931 0.920 Fe2+ 0.943 0.942 0.931 Fe3+ 0.030 0.000 Fe3+ 0.000 0.000 0.000 Ca 0.000 0.000 Ca 0.000 0.000 0.001 Mn 0.040 0.038 Mn 0.037 0.037 0.041 Cr 0.006 0.000 Cr 0.010 0.007 0.000 Ni 0.000 0.000 Ni 0.000 0.002 0.004 Zn 0.000 0.000 Zn 0.000 0.002 0.004

Cat total 2.000 1.999 Cat total 2.000 2.002 2.004

Fe2/(Fe2+Fe3) 0.969 1.000 Fe2/(Fe2+Fe3) 1.000 1.000 1.000

wt% recalculated to show Fe+2 and Fe+3 (Droop, 1987) wt% recalculated to show Fe+2 and Fe+3 (Droop, 1987) SiO2 0.061 0.004 SiO2 0.047 0.005 0.035 TiO2 51.620 52.300 TiO2 51.860 52.490 52.710 Al2O3 0.019 0.000 Al2O3 0.010 0.000 0.005 MgO 0.148 0.127 MgO 0.128 0.247 0.140 FeO 43.721 41.800 FeO 43.890 44.350 43.420 Fe2O3 1.559 0.000 Fe2O3 0.000 0.000 0.000 CaO 0.000 0.000 CaO 0.000 0.000 0.029 MnO 1.842 1.708 MnO 1.709 1.726 1.909 Cr2O3 0.135 0.000 Cr2O3 0.238 0.170 0.000 Ni 0.000 0.032 Ni 0.000 0.000 0.000 ZnO 0.000 0.000 ZnO 0.000 0.091 0.197

Total 99.105 95.970 Total 97.882 99.079 98.443

237 B.5 - ILMENITE

wt% of oxides wt% of oxides MDL CW6-5 CW6-3 CW6-7 MDL CW15-8 CW15-1 CW15-5

SiO2 0.051 0.000 0.000 0.000 SiO2 0.051 0.229 0.000 0.000 TiO2 0.070 54.030 53.710 54.590 TiO2 0.070 47.650 53.410 52.940 Al2O3 0.052 0.008 0.003 0.000 Al2O3 0.052 0.100 0.029 0.015 MgO 0.049 5.000 4.180 0.185 MgO 0.049 0.306 0.164 0.169 FeO 0.176 38.900 40.640 38.910 FeO 0.176 35.510 41.930 41.740 CaO 0.036 0.037 0.235 0.012 CaO 0.036 0.006 0.000 0.000 MnO 0.151 1.394 0.931 3.400 MnO 0.151 2.614 2.545 2.719 Cr2O3 0.131 0.113 0.169 0.056 Cr2O3 0.131 0.101 0.145 0.078 Ni 0.172 0.000 0.005 0.032 Ni 0.172 0.028 0.000 0.110 ZnO nd nd nd ZnO nd nd nd atom prop 2.041 2.035 1.963 atom prop 1.745 1.965 1.953 Total 99.490 99.880 97.190 Total 86.540 98.220 97.770

Formula units based on 3 oxygens Formula units based on 3 oxygens SiO 0.000 0.000 0.000 SiO 0.007 0.000 0.000 TiO 0.994 0.991 1.045 TiO 1.026 1.021 1.018 Al 0.001 0.000 0.000 Al 0.008 0.002 0.001 Mg 0.182 0.153 0.007 Mg 0.013 0.006 0.006 Fe 0.796 0.834 0.828 Fe 0.850 0.891 0.893 Ca 0.001 0.006 0.000 Ca 0.000 0.000 0.000 Mn 0.029 0.019 0.073 Mn 0.063 0.055 0.059 Cr 0.005 0.007 0.002 Cr 0.005 0.006 0.003 Ni 0.000 0.000 0.001 Ni 0.001 0.000 0.002 Zn Zn O 3.000 3.000 3.000 O 3.000 3.000 3.000

Cat total 2.007 2.011 1.956 Cat total 1.971 1.981 1.983

238 B.5 - ILMENITE

Formula units recalculated for Fe+2 and Fe+3 (Droop, 1987) Formula units recalculated for Fe+2 and Fe+3 (Droop, 1987) CW6-5 CW6-3 CW6-7 CW15-8 CW15-1 CW15-5

SiO 0.000 0.000 0.000 SiO 0.007 0.000 0.000 TiO 0.991 0.986 1.068 TiO 1.040 1.031 1.027 Al 0.001 0.000 0.000 Al 0.008 0.002 0.001 Mg 0.182 0.152 0.007 Mg 0.013 0.006 0.007 Fe2+ 0.771 0.798 0.828 Fe2+ 0.850 0.891 0.893 Fe3+ 0.021 0.032 0.000 Fe3+ 0.000 0.000 0.000 Ca 0.001 0.006 0.000 Ca 0.000 0.000 0.000 Mn 0.029 0.019 0.075 Mn 0.064 0.055 0.059 Cr 0.005 0.007 0.002 Cr 0.005 0.006 0.003 Ni 0.000 0.000 0.000 Ni 0.000 0.000 0.000 Zn nd nd nd Zn nd nd nd

Cat total 2.000 2.000 1.981 Cat total 1.987 1.992 1.990

Fe2/(Fe2+Fe3) 0.973 0.962 1.000 Fe2/(Fe2+Fe3) 1.000 1.000 1.000

wt% recalculated to show Fe+2 and Fe+3 (Droop, 1987) wt% recalculated to show Fe+2 and Fe+3 (Droop, 1987) SiO2 0.000 0.000 0.000 SiO2 0.229 0.000 0.000 TiO2 54.030 53.710 54.590 TiO2 47.650 53.410 52.940 Al2O3 0.008 0.003 0.000 Al2O3 0.100 0.029 0.015 MgO 5.000 4.180 0.185 MgO 0.306 0.164 0.169 FeO 37.733 38.914 38.910 FeO 35.510 41.930 41.740 Fe2O3 1.167 1.726 0.000 Fe2O3 0.000 0.000 0.000 CaO 0.037 0.235 0.012 CaO 0.006 0.000 0.000 MnO 1.394 0.931 3.400 MnO 2.614 2.545 2.719 Cr2O3 0.113 0.169 0.056 Cr2O3 0.101 0.145 0.078 Ni 0.000 0.005 0.032 Ni 0.028 0.000 0.110 ZnO ZnO

Total 99.482 99.872 97.185 Total 86.542 98.224 97.771

239 B.5 - ILMENITE

wt% of oxides wt% of oxides MDL A8-1 A8-7 A8-14 MDL A5-1 A5-7 A5-14

SiO2 0.052 0.008 0.000 0.000 SiO2 0.052 0.000 0.000 0.000 TiO2 0.062 51.150 51.200 52.070 TiO2 0.062 49.000 49.770 52.210 Al2O3 0.047 0.000 0.000 0.003 Al2O3 0.047 0.000 0.021 0.035 MgO 0.053 0.155 1.079 0.126 MgO 0.053 1.610 2.328 2.852 FeO 0.181 38.020 41.630 37.140 FeO 0.181 48.020 46.060 42.900 CaO 0.036 0.000 0.016 0.033 CaO 0.036 0.000 0.000 0.015 MnO 0.152 9.090 6.000 8.710 MnO 0.152 0.965 1.248 1.540 Cr2O3 0.203 0.256 0.288 0.100 Cr2O3 0.203 0.000 0.088 0.033 Ni 0.173 0.000 0.037 0.000 Ni 0.173 0.042 0.060 0.060 ZnO 0.253 0.190 0.000 0.396 ZnO 0.253 0.214 0.000 0.000 atom prop 1.950 1.980 1.955 atom prop 1.952 1.966 2.000 Total 98.870 100.260 98.570 Total 99.850 99.580 99.640

Formula units based on 3 oxygens Formula units based on 3 oxygens SiO 0.000 0.000 0.000 SiO 0.000 0.000 0.000 TiO 0.985 0.971 1.001 TiO 0.943 0.951 0.981 Al 0.000 0.000 0.000 Al 0.000 0.001 0.002 Mg 0.006 0.041 0.005 Mg 0.061 0.088 0.106 Fe 0.814 0.878 0.793 Fe 1.027 0.978 0.896 Ca 0.000 0.000 0.001 Ca 0.000 0.000 0.000 Mn 0.197 0.128 0.188 Mn 0.021 0.027 0.033 Cr 0.011 0.012 0.004 Cr 0.000 0.004 0.001 Ni 0.000 0.001 0.000 Ni 0.001 0.001 0.001 Zn 0.004 0.000 0.007 Zn 0.004 0.000 0.000 O 3.000 3.000 3.000 O 3.000 3.000 3.000

Cat total 2.017 2.032 2.000 Cat total 2.057 2.051 2.020

240 B.5 - ILMENITE

Formula units recalculated for Fe+2 and Fe+3 (Droop, 1987) Formula units recalculated for Fe+2 and Fe+3 (Droop, 1987) A8-1 A8-7 A8-14 A5-1 A5-7 A5-14

SiO 0.000 0.000 0.000 SiO 0.000 0.000 0.000 TiO 0.977 0.956 1.001 TiO 0.917 0.927 0.971 Al 0.000 0.000 0.000 Al 0.000 0.001 0.002 Mg 0.006 0.040 0.005 Mg 0.060 0.086 0.105 Fe2+ 0.757 0.773 0.793 Fe2+ 0.837 0.810 0.827 Fe3+ 0.050 0.092 0.000 Fe3+ 0.162 0.144 0.060 Ca 0.000 0.000 0.001 Ca 0.000 0.000 0.000 Mn 0.195 0.126 0.188 Mn 0.020 0.026 0.032 Cr 0.011 0.012 0.004 Cr 0.000 0.004 0.001 Ni 0.004 0.000 0.007 Ni 0.004 0.000 0.000 Zn 0.004 0.000 0.007 Zn 0.004 0.000 0.000

Cat total 2.004 1.999 2.007 Cat total 2.003 1.999 1.999

Fe2/(Fe2+Fe3) 0.938 0.894 1.000 Fe2/(Fe2+Fe3) 0.838 0.849 0.932

wt% recalculated to show Fe+2 and Fe+3 (Droop, 1987) wt% recalculated to show Fe+2 and Fe+3 (Droop, 1987) SiO2 0.008 0.000 0.000 SiO2 0.000 0.000 0.000 TiO2 51.150 51.200 52.070 TiO2 49.000 49.770 52.210 Al2O3 0.000 0.000 0.003 Al2O3 0.000 0.021 0.035 MgO 0.155 1.079 0.126 MgO 1.610 2.328 2.852 FeO 35.413 36.775 37.140 FeO 39.520 38.449 39.700 Fe2O3 2.607 4.855 0.000 Fe2O3 8.500 7.611 3.200 CaO 0.000 0.016 0.033 CaO 0.000 0.000 0.015 MnO 9.090 6.000 8.710 MnO 0.965 1.248 1.540 Cr2O3 0.256 0.288 0.100 Cr2O3 0.000 0.088 0.033 Ni 0.000 0.037 0.000 Ni 0.042 0.060 0.060 ZnO 0.190 0.000 0.396 ZnO 0.214 0.000 0.000

Total 100.250 98.578 Total 99.850 99.575 99.645

241 B.5 - ILMENITE

wt% of oxides wt% of oxides MDL A10-1 A10-8 A10-14 MDL A6-1 A6-7 A6-13

SiO2 0.052 0.000 0.000 0.000 SiO2 0.052 0.000 0.000 0.000 TiO2 0.062 51.250 44.860 45.870 TiO2 0.062 53.380 55.320 52.060 Al2O3 0.047 0.017 0.020 0.015 Al2O3 0.047 0.000 0.000 0.042 MgO 0.053 2.439 2.023 1.963 MgO 0.053 0.091 0.075 0.103 FeO 0.181 44.550 49.190 46.430 FeO 0.181 40.300 37.330 40.780 CaO 0.036 0.002 0.032 0.000 CaO 0.036 0.006 0.003 0.039 MnO 0.152 0.670 0.576 0.767 MnO 0.152 5.060 4.230 5.090 Cr2O3 0.203 0.299 0.458 0.439 Cr2O3 0.203 0.167 0.247 0.100 Ni 0.173 0.028 0.023 0.000 Ni 0.173 0.028 0.000 0.009 ZnO 0.253 0.000 0.000 0.130 ZnO 0.253 0.069 0.015 0.000 atom prop 1.980 1.877 1.865 atom prop 1.976 1.972 1.950 Total 99.250 97.180 95.610 Total 99.100 97.230 98.220

Formula units based on 3 oxygens Formula units based on 3 oxygens SiO 0.000 0.000 0.000 SiO 0.000 0.000 0.000 TiO 0.972 0.898 0.924 TiO 1.015 1.054 1.003 Al 0.001 0.001 0.001 Al 0.000 0.000 0.003 Mg 0.092 0.080 0.078 Mg 0.003 0.003 0.004 Fe 0.939 1.094 1.039 Fe 0.852 0.791 0.873 Ca 0.000 0.001 0.000 Ca 0.000 0.000 0.001 Mn 0.014 0.013 0.017 Mn 0.108 0.091 0.110 Cr 0.013 0.020 0.020 Cr 0.007 0.010 0.004 Ni 0.001 0.000 0.000 Ni 0.001 0.000 0.000 Zn 0.000 0.000 0.003 Zn 0.001 0.000 0.000 O 3.000 3.000 3.000 O 3.000 3.000 3.000

Cat total 2.032 2.109 2.082 Cat total 1.987 1.949 1.999

242 B.5 - ILMENITE

Formula units recalculated for Fe+2 and Fe+3 (Droop, 1987) Formula units recalculated for Fe+2 and Fe+3 (Droop, 1987) A10-1 A10-8 A10-14 A6-1 A6-7 A6-13

SiO 0.000 0.000 0.000 SiO 0.000 0.000 0.000 TiO 0.957 0.852 0.887 TiO 1.021 1.082 1.003 Al 0.001 0.001 0.001 Al 0.000 0.000 0.003 Mg 0.090 0.076 0.075 Mg 0.003 0.003 0.004 Fe2+ 0.832 0.745 0.771 Fe2+ 0.852 0.791 0.873 Fe3+ 0.093 0.293 0.228 Fe3+ 0.000 0.000 0.000 Ca 0.000 0.001 0.000 Ca 0.000 0.000 0.001 Mn 0.014 0.012 0.017 Mn 0.109 0.093 0.110 Cr 0.012 0.019 0.019 Cr 0.007 0.011 0.004 Ni 0.000 0.000 0.002 Ni 0.001 0.000 0.000 Zn 0.000 0.000 0.002 Zn 0.001 0.000 0.000

Cat total 1.999 2.000 2.002 Cat total 1.995 1.980 1.999

Fe2/(Fe2+Fe3) 0.900 0.718 0.772 Fe2/(Fe2+Fe3) 1.000 1.000 1.000

wt% recalculated to show Fe+2 and Fe+3 (Droop, 1987) wt% recalculated to show Fe+2 and Fe+3 (Droop, 1987) SiO2 0.000 0.000 0.000 SiO2 0.000 0.000 0.000 TiO2 51.250 44.860 45.870 TiO2 53.380 55.320 52.060 Al2O3 0.017 0.020 0.015 Al2O3 0.000 0.000 0.042 MgO 2.439 2.023 1.963 MgO 0.091 0.075 0.103 FeO 39.642 34.229 34.957 FeO 40.300 37.330 40.780 Fe2O3 4.908 14.961 11.473 Fe2O3 0.000 0.000 0.000 CaO 0.002 0.032 0.000 CaO 0.006 0.003 0.039 MnO 0.670 0.576 0.767 MnO 5.060 4.230 5.090 Cr2O3 0.299 0.458 0.439 Cr2O3 0.167 0.247 0.100 Ni 0.028 0.023 0.000 Ni 0.028 0.000 0.009 ZnO 0.000 0.000 0.130 ZnO 0.069 0.015 0.000

Total 99.255 97.181 95.614 Total 99.101 97.220 98.224

243 B.5 - ILMENITE

wt% of oxides wt% of oxides MDL A4-1 A4-6 A4-13 MDL A3-1 A3-7 A3-13

SiO2 0.052 0.000 0.000 0.000 SiO2 0.052 0.000 0.000 0.000 TiO2 0.062 52.250 51.200 51.210 TiO2 0.062 52.490 49.770 50.400 Al2O3 0.047 0.000 0.005 0.000 Al2O3 0.047 0.000 0.001 0.000 MgO 0.053 1.828 1.638 1.234 MgO 0.053 0.302 0.226 0.151 FeO 0.181 38.870 39.650 40.510 FeO 0.181 40.850 43.530 41.310 CaO 0.036 0.038 0.044 0.021 CaO 0.036 0.071 0.163 0.270 MnO 0.152 4.990 4.700 4.720 MnO 0.152 3.050 2.929 3.500 Cr2O3 0.203 0.156 0.111 0.267 Cr2O3 0.203 0.253 0.092 0.092 Ni 0.173 0.019 0.014 0.000 Ni 0.173 0.084 0.023 0.000 ZnO 0.253 0.084 0.000 0.122 ZnO 0.253 0.000 0.279 0.746 atom prop 1.970 1.944 1.951 atom prop 1.941 1.908 1.906 Total 98.230 97.370 98.080 Total 97.101 97.013 96.469

Formula units based on 3 oxygens Formula units based on 3 oxygens SiO 0.000 0.000 0.000 SiO 0.000 0.000 0.000 TiO 0.996 0.989 0.986 TiO 1.016 0.980 0.993 Al 0.000 0.000 0.000 Al 0.000 0.000 0.000 Mg 0.069 0.063 0.047 Mg 0.012 0.009 0.006 Fe 0.824 0.851 0.867 Fe 0.879 0.953 0.905 Ca 0.001 0.001 0.001 Ca 0.002 0.005 0.008 Mn 0.107 0.102 0.102 Mn 0.066 0.065 0.078 Cr 0.007 0.005 0.011 Cr 0.011 0.004 0.004 Ni 0.000 0.000 0.000 Ni 0.002 0.000 0.000 Zn 0.002 0.000 0.002 Zn 0.000 0.005 0.014 O 3.000 3.000 3.000 O 3.000 3.000 3.000

Cat total 2.005 2.012 2.017 Cat total 1.987 2.021 2.008

244 B.5 - ILMENITE

Formula units recalculated for Fe+2 and Fe+3 (Droop, 1987) Formula units recalculated for Fe+2 and Fe+3 (Droop, 1987) A4-1 A4-6 A4-13 A3-1 A3-7 A3-13

SiO 0.000 0.000 0.000 SiO 0.000 0.000 0.000 TiO 0.993 0.983 0.978 TiO 1.022 0.970 0.989 Al 0.000 0.000 0.000 Al 0.000 0.000 0.000 Mg 0.069 0.062 0.047 Mg 0.012 0.009 0.006 Fe2+ 0.805 0.811 0.810 Fe2+ 0.879 0.881 0.879 Fe3+ 0.016 0.036 0.050 Fe3+ 0.000 0.062 0.023 Ca 0.001 0.001 0.001 Ca 0.002 0.005 0.008 Mn 0.107 0.102 0.101 Mn 0.067 0.064 0.077 Cr 0.007 0.005 0.011 Cr 0.011 0.004 0.004 Ni 0.002 0.000 0.002 Ni 0.000 0.005 0.014 Zn 0.002 0.000 0.002 Zn 0.000 0.005 0.014

Cat total 2.001 2.000 2.002 Cat total 1.993 2.005 2.014

Fe2/(Fe2+Fe3) 0.980 0.958 0.942 Fe2/(Fe2+Fe3) 1.000 0.935 0.975

wt% recalculated to show Fe+2 and Fe+3 (Droop, 1987) wt% recalculated to show Fe+2 and Fe+3 (Droop, 1987) SiO2 0.000 0.000 0.000 SiO2 0.000 0.000 0.000 TiO2 52.250 51.200 51.210 TiO2 52.490 49.770 50.400 Al2O3 0.000 0.005 0.000 Al2O3 0.000 0.001 0.000 MgO 1.828 1.638 1.234 MgO 0.302 0.226 0.151 FeO 38.014 37.802 37.922 FeO 40.850 40.389 40.148 Fe2O3 0.856 1.848 2.588 Fe2O3 0.000 3.141 1.162 CaO 0.038 0.044 0.021 CaO 0.071 0.163 0.270 MnO 4.990 4.700 4.720 MnO 3.050 2.929 3.500 Cr2O3 0.156 0.111 0.267 Cr2O3 0.253 0.092 0.092 Ni 0.019 0.014 0.000 Ni 0.084 0.023 0.000 ZnO 0.084 0.000 0.122 ZnO 0.000 0.279 0.746

Total 98.235 97.363 98.084 Total 97.101 97.013 96.469

245 B.5 - ILMENITE

wt% of oxides wt% of oxides MDL A2-1 A2-7 A2-13 MDL A7 A7 A7

SiO2 0.052 0.000 0.000 0.000 SiO2 0.052 0.000 0.000 0.000 TiO2 0.062 50.560 51.730 49.220 TiO2 0.062 50.440 51.480 47.350 Al2O3 0.047 0.016 0.025 0.015 Al2O3 0.047 0.017 0.000 0.021 MgO 0.053 0.107 0.143 0.126 MgO 0.053 1.016 0.924 1.191 FeO 0.181 42.620 43.640 43.270 FeO 0.181 42.170 41.470 39.260 CaO 0.036 0.102 0.000 0.000 CaO 0.036 0.011 0.021 0.000 MnO 0.152 5.570 4.320 4.780 MnO 0.152 5.730 5.390 5.200 Cr2O3 0.203 0.137 0.092 0.183 Cr2O3 0.203 0.069 0.189 0.033 Ni 0.173 0.028 0.084 0.033 Ni 0.173 0.009 0.097 0.000 ZnO 0.253 0.271 0.181 0.000 ZnO 0.253 0.128 0.000 0.000 atom prop 1.949 1.973 1.910 atom prop 1.960 1.971 1.836 Total 99.411 100.214 97.626 Total 99.591 99.571 93.055

Formula units based on 3 oxygens Formula units based on 3 oxygens SiO 0.000 0.000 0.000 SiO 0.000 0.000 0.000 TiO 0.974 0.985 0.968 TiO 0.967 0.981 0.968 Al 0.001 0.002 0.001 Al 0.001 0.000 0.001 Mg 0.004 0.005 0.005 Mg 0.039 0.035 0.048 Fe 0.913 0.923 0.946 Fe 0.898 0.879 0.893 Ca 0.003 0.000 0.000 Ca 0.000 0.001 0.000 Mn 0.121 0.093 0.106 Mn 0.124 0.116 0.120 Cr 0.006 0.004 0.008 Cr 0.003 0.008 0.002 Ni 0.001 0.002 0.001 Ni 0.000 0.002 0.000 Zn 0.005 0.003 0.000 Zn 0.002 0.000 0.000 O 3.000 3.000 3.000 O 3.000 3.000 3.000

Cat total 2.027 2.017 2.034 Cat total 2.034 2.021 2.032

246 B.5 - ILMENITE

Formula units recalculated for Fe+2 and Fe+3 (Droop, 1987) Formula units recalculated for Fe+2 and Fe+3 (Droop, 1987) A2-1 A2-7 A2-13 A7 A7 A7

SiO 0.000 0.000 0.000 SiO 0.000 0.000 0.000 TiO 0.961 0.977 0.952 TiO 0.950 0.971 0.953 Al 0.001 0.002 0.001 Al 0.001 0.000 0.001 Mg 0.004 0.005 0.005 Mg 0.038 0.035 0.047 Fe2+ 0.821 0.867 0.831 Fe2+ 0.784 0.809 0.785 Fe3+ 0.080 0.049 0.099 Fe3+ 0.099 0.061 0.093 Ca 0.003 0.000 0.000 Ca 0.000 0.001 0.000 Mn 0.119 0.092 0.104 Mn 0.122 0.114 0.118 Cr 0.006 0.004 0.008 Cr 0.003 0.008 0.001 Ni 0.005 0.003 0.000 Ni 0.002 0.000 0.000 Zn 0.005 0.003 0.000 Zn 0.002 0.000 0.000

Cat total 2.004 2.002 1.999 Cat total 2.002 1.998 2.000

Fe2/(Fe2+Fe3) 0.911 0.946 0.893 Fe2/(Fe2+Fe3) 0.888 0.930 0.894

wt% recalculated to show Fe+2 and Fe+3 (Droop, 1987) wt% recalculated to show Fe+2 and Fe+3 (Droop, 1987) SiO2 0.000 0.000 0.000 SiO2 0.000 0.000 0.000 TiO2 50.560 51.730 49.220 TiO2 50.440 51.480 47.350 Al2O3 0.016 0.025 0.015 Al2O3 0.017 0.000 0.021 MgO 0.107 0.143 0.126 MgO 1.016 0.924 1.191 FeO 38.454 41.054 38.188 FeO 36.983 38.262 34.692 Fe2O3 4.166 2.586 5.082 Fe2O3 5.187 3.208 4.568 CaO 0.102 0.000 0.000 CaO 0.011 0.021 0.000 MnO 5.570 4.320 4.780 MnO 5.730 5.390 5.200 Cr2O3 0.137 0.092 0.183 Cr2O3 0.069 0.189 0.033 Ni 0.028 0.084 0.033 Ni 0.009 0.097 0.000 ZnO 0.271 0.181 0.000 ZnO 0.128 0.000 0.000

Total 99.411 100.214 97.626 Total 99.591 99.571 93.055

247 B.6 - RUTILE

wt% of oxides wt% of oxides MDL LO272-1 MDL LO123-10

SiO2 0.051 0.007 SiO2 0.051 0.000 TiO2 0.070 98.590 TiO2 0.070 98.680 Al2O3 0.052 0.007 Al2O3 0.052 0.060 MgO 0.049 0.006 MgO 0.049 0.000 FeO 0.176 0.175 FeO 0.176 0.302 CaO 0.036 0.000 CaO 0.036 0.201 MnO 0.151 0.000 MnO 0.151 0.000 Cr2O3 0.131 0.450 Cr2O3 0.131 0.381 Ni 0.172 0.028 Ni 0.172 0.000 ZnO 0.251 0.000 ZnO nd atom prop 2.481 atom prop 2.488 Total 99.280 Total 99.630

Formula units based on 3 oxygens Formula units based on 3 oxygens SiO 0.000 SiO 0.000 TiO 0.995 TiO 0.993 Al 0.000 Al 0.002 Mg 0.000 Mg 0.000 Fe 0.002 Fe 0.003 Ca 0.000 Ca 0.003 Mn 0.000 Mn 0.000 Cr 0.010 Cr 0.009 Ni 0.000 Ni 0.000 Zn 0.000 Zn nd O 2.000 O 2.000

Cat total 1.008 Cat total 1.010

248 B.6 - RUTILE

Formula units recalculated for Fe+2 and Fe+3 (Droop, 1987) Formula units recalculated for Fe+2 and Fe+3 (Droop, 1987) LO272-1 LO123-10

SiO 0.000 SiO 0.000 TiO 0.987 TiO 0.983 Al 0.000 Al 0.002 Mg 0.000 Mg 0.000 Fe2+ 0.000 Fe2+ 0.000 Fe3+ 0.002 Fe3+ 0.003 Ca 0.000 Ca 0.003 Mn 0.000 Mn 0.000 Cr 0.010 Cr 0.008 Ni 0.000 Ni 0.000 Zn 0.000 Zn nd

Cat total 1.000 Cat total 1.000

Fe2/(Fe2+Fe3) 0.000 Fe2/(Fe2+Fe3) 0.000

wt% recalculated to show Fe+2 and Fe+3 (Droop, 1987) wt% recalculated to show Fe+2 and Fe+3 (Droop, 1987) SiO2 0.007 SiO2 0.000 TiO2 98.590 TiO2 98.680 Al2O3 0.007 Al2O3 0.060 MgO 0.006 MgO 0.000 FeO 0.000 FeO 0.000 Fe2O3 0.175 Fe2O3 0.302 CaO 0.000 CaO 0.201 MnO 0.000 MnO 0.000 Cr2O3 0.450 Cr2O3 0.381 Ni 0.028 Ni 0.000 ZnO 0.000 ZnO nd

Total 99.263 Total 99.624

249 B.6 - RUTILE

wt% of oxides MDL CW3-1 CW3-2 CW3-3 CW3-5 CW3-7

SiO2 0.051 0.028 0.014 0.056 0.043 0.011 TiO2 0.070 98.860 98.450 99.140 99.720 100.050 Al2O3 0.052 0.023 0.018 0.000 0.000 0.030 MgO 0.049 0.025 0.000 0.015 0.029 0.000 FeO 0.176 0.672 0.385 0.574 0.175 0.399 CaO 0.036 0.015 0.014 0.003 0.020 0.018 MnO 0.151 0.000 0.000 0.000 0.000 0.000 Cr2O3 0.131 0.237 0.262 0.337 0.175 0.262 Ni 0.172 0.028 0.000 0.000 0.005 0.060 ZnO 0.251 0.031 0.000 0.031 0.000 0.000 atom prop 2.493 2.477 2.500 2.505 2.518 Total 99.920 99.180 100.160 100.170 100.850

Formula units based on 3 oxygens SiO 0.000 0.000 0.001 0.001 0.000 TiO 0.993 0.995 0.993 0.997 0.995 Al 0.001 0.001 0.000 0.000 0.001 Mg 0.000 0.000 0.000 0.001 0.000 Fe 0.008 0.004 0.006 0.002 0.004 Ca 0.000 0.000 0.000 0.000 0.000 Mn 0.000 0.000 0.000 0.000 0.000 Cr 0.005 0.006 0.008 0.004 0.006 Ni 0.000 0.000 0.000 0.000 0.001 Zn 0.000 0.000 0.000 0.000 0.000 O 2.000 2.000 2.000 2.000 2.000

Cat total 1.008 1.007 1.008 1.004 1.007

250 B.6 - RUTILE

Formula units recalculated for Fe+2 and Fe+3 (Droop, 1987) CW3-1 CW3-2 CW3-3 CW3-5 CW3-7

SiO 0.000 0.000 0.001 0.001 0.000 TiO 0.985 0.989 0.985 0.993 0.988 Al 0.001 0.001 0.000 0.000 0.001 Mg 0.000 0.000 0.000 0.001 0.000 Fe2+ 0.000 0.000 0.000 0.000 0.000 Fe3+ 0.008 0.004 0.006 0.002 0.004 Ca 0.000 0.000 0.000 0.000 0.000 Mn 0.000 0.000 0.000 0.000 0.000 Cr 0.005 0.006 0.007 0.004 0.006 Ni 0.000 0.000 0.000 0.000 0.000 Zn 0.000 0.000 0.000 0.000 0.000

Cat total 1.000 1.000 1.000 1.000 0.999

Fe2/(Fe2+Fe3) 0.000 0.000 0.000 0.000 0.000

wt% recalculated to show Fe+2 and Fe+3 (Droop, 1987) SiO2 0.028 0.014 0.056 0.043 0.011 TiO2 98.860 98.450 99.140 99.720 100.050 Al2O3 0.023 0.018 0.000 0.000 0.030 MgO 0.025 0.000 0.015 0.029 0.000 FeO 0.000 0.000 0.000 0.000 0.000 Fe2O3 0.672 0.385 0.574 0.175 0.399 CaO 0.015 0.014 0.003 0.020 0.018 MnO 0.000 0.000 0.000 0.000 0.000 Cr2O3 0.237 0.262 0.337 0.175 0.262 Ni 0.028 0.000 0.000 0.005 0.060 ZnO 0.031 0.000 0.031 0.000 0.000

Total 99.919 99.143 100.156 100.167 100.831

251 B.6 - RUTILE

wt% of oxides wt% of oxides MDL CW1-1 CW1-3 MDL CW16-2 CW16-4 CW16-5 CW16-6

SiO2 0.051 0.000 0.000 SiO2 0.051 0.000 0.000 0.000 0.000 TiO2 0.070 100.510 100.640 TiO2 0.070 100.930 100.340 100.750 100.490 Al2O3 0.052 0.028 0.012 Al2O3 0.052 0.000 0.020 0.008 0.026 MgO 0.049 0.014 0.020 MgO 0.049 0.000 0.017 0.019 0.031 FeO 0.176 0.290 0.311 FeO 0.176 0.219 0.430 0.113 0.388 CaO 0.036 0.016 0.013 CaO 0.036 0.020 0.011 0.028 0.024 MnO 0.151 0.070 0.000 MnO 0.151 0.000 0.026 0.018 0.000 Cr2O3 0.131 0.272 0.458 Cr2O3 0.131 0.334 0.432 0.284 0.321 Ni 0.172 0.093 0.014 Ni 0.172 0.000 0.047 0.000 0.019 ZnO nd nd ZnO nd nd nd nd atom prop 2.530 2.535 atom prop 2.537 2.529 2.531 2.530 Total 101.290 101.470 Total 101.500 101.320 101.220 101.300

Formula units based on 3 oxygens Formula units based on 3 oxygens SiO 0.000 0.000 SiO 0.000 0.000 0.000 0.000 TiO 0.995 0.994 TiO 0.996 0.993 0.997 0.994 Al 0.001 0.000 Al 0.000 0.001 0.000 0.001 Mg 0.000 0.000 Mg 0.000 0.000 0.000 0.001 Fe 0.003 0.003 Fe 0.002 0.005 0.001 0.004 Ca 0.000 0.000 Ca 0.000 0.000 0.000 0.000 Mn 0.001 0.000 Mn 0.000 0.000 0.000 0.000 Cr 0.006 0.010 Cr 0.007 0.010 0.006 0.007 Ni 0.001 0.000 Ni 0.000 0.000 0.000 0.000 Zn nd nd Zn nd nd nd nd O 2.000 2.000 O 2.000 2.000 2.000 2.000

Cat total 1.007 1.009 Cat total 1.006 1.010 1.005 1.008

252 B.6 - RUTILE

Formula units recalculated for Fe+2 and Fe+3 (Droop, 1987) Formula units recalculated for Fe+2 and Fe+3 (Droop, 1987) CW1-1 CW1-3 CW16-2 CW16-4 CW16-5 CW16-6

SiO 0.000 0.000 SiO 0.000 0.000 0.000 0.000 TiO 0.988 0.986 TiO 0.990 0.984 0.991 0.987 Al 0.001 0.000 Al 0.000 0.001 0.000 0.001 Mg 0.000 0.000 Mg 0.000 0.000 0.000 0.001 Fe2+ 0.000 0.000 Fe2+ 0.000 0.000 0.000 0.000 Fe3+ 0.003 0.003 Fe3+ 0.002 0.005 0.001 0.004 Ca 0.000 0.000 Ca 0.000 0.000 0.000 0.000 Mn 0.001 0.000 Mn 0.000 0.000 0.000 0.000 Cr 0.006 0.010 Cr 0.007 0.009 0.006 0.007 Ni 0.001 0.000 Ni 0.000 0.000 0.000 0.000 Zn nd nd Zn nd nd nd nd

Cat total 1.000 1.000 Cat total 1.000 1.000 1.000 1.000

Fe2/(Fe2+Fe3) 0.000 0.000 Fe2/(Fe2+Fe3) 0.000 0.000 0.000 0.000

wt% recalculated to show Fe+2 and Fe+3 (Droop, 1987) wt% recalculated to show Fe+2 and Fe+3 (Droop, 1987) SiO2 0.000 0.000 SiO2 0.000 0.000 0.000 0.000 TiO2 100.510 100.640 TiO2 100.930 100.340 100.750 100.490 Al2O3 0.028 0.012 Al2O3 0.000 0.020 0.008 0.026 MgO 0.014 0.020 MgO 0.000 0.017 0.019 0.031 FeO 0.000 0.000 FeO 0.000 0.000 0.000 0.000 Fe2O3 0.290 0.311 Fe2O3 0.219 0.430 0.113 0.388 CaO 0.016 0.013 CaO 0.020 0.011 0.028 0.024 MnO 0.070 0.000 MnO 0.000 0.026 0.018 0.000 Cr2O3 0.272 0.458 Cr2O3 0.334 0.432 0.284 0.321 Ni 0.093 0.014 Ni 0.000 0.047 0.000 0.019 ZnO nd nd ZnO nd nd nd nd

Total 101.292 101.468 Total 101.503 101.323 101.220 101.299

253 B.6 - RUTILE

wt% of oxides wt% of oxides MDL A9-2 A9-6 A9-7 MDL A1-1 A1-2 A1-11

SiO2 0.052 0.000 0.000 0.000 SiO2 0.052 0.000 0.000 0.000 TiO2 0.062 97.210 98.920 97.350 TiO2 0.062 97.690 96.590 97.720 Al2O3 0.047 0.000 0.027 0.000 Al2O3 0.047 0.017 0.030 0.000 MgO 0.053 0.051 0.020 0.012 MgO 0.053 0.021 0.000 0.008 FeO 0.181 0.362 0.263 0.426 FeO 0.181 0.319 0.347 0.468 CaO 0.036 0.010 0.000 0.004 CaO 0.036 0.001 0.000 0.160 MnO 0.152 0.035 0.000 0.061 MnO 0.152 0.105 0.000 0.044 Cr2O3 0.203 0.342 0.406 0.533 Cr2O3 0.203 1.191 1.102 1.217 Ni 0.173 0.014 0.000 0.033 Ni 0.173 0.005 0.005 0.000 ZnO 0.253 0.000 0.069 0.054 ZnO 0.253 0.023 0.092 0.054 atom prop 2.448 2.490 2.456 atom prop 2.477 2.446 2.481 Total 98.024 99.705 98.472 Total 99.372 98.166 99.670

Formula units based on 3 oxygens Formula units based on 3 oxygens SiO 0.000 0.000 0.000 SiO 0.000 0.000 0.000 TiO 0.994 0.995 0.993 TiO 0.988 0.989 0.986 Al 0.000 0.001 0.000 Al 0.001 0.001 0.000 Mg 0.001 0.000 0.000 Mg 0.000 0.000 0.000 Fe 0.004 0.003 0.005 Fe 0.004 0.004 0.005 Ca 0.000 0.000 0.000 Ca 0.000 0.000 0.002 Mn 0.000 0.000 0.001 Mn 0.001 0.000 0.000 Cr 0.008 0.009 0.012 Cr 0.027 0.025 0.027 Ni 0.000 0.000 0.000 Ni 0.000 0.000 0.000 Zn 0.000 0.001 0.001 Zn 0.000 0.001 0.001 O 2.000 2.000 2.000 O 2.000 2.000 2.000

Cat total 1.008 1.009 1.011 Cat total 1.021 1.020 1.022

254 B.6 - RUTILE

Formula units recalculated for Fe+2 and Fe+3 (Droop, 1987) Formula units recalculated for Fe+2 and Fe+3 (Droop, 1987) A9-2 A9-6 A9-7 A1-1 A1-2 A1-11

SiO 0.000 0.000 0.000 SiO 0.000 0.000 0.000 TiO 0.986 0.986 0.981 TiO 0.968 0.970 0.965 Al 0.000 0.001 0.000 Al 0.001 0.001 0.000 Mg 0.001 0.000 0.000 Mg 0.000 0.000 0.000 Fe2+ 0.000 0.000 0.000 Fe2+ 0.000 0.000 0.000 Fe3+ 0.004 0.003 0.005 Fe3+ 0.004 0.004 0.005 Ca 0.000 0.000 0.000 Ca 0.000 0.000 0.002 Mn 0.000 0.000 0.001 Mn 0.001 0.000 0.000 Cr 0.008 0.009 0.012 Cr 0.026 0.025 0.027 Ni 0.000 0.001 0.001 Ni 0.000 0.001 0.001 Zn 0.000 0.001 0.001 Zn 0.000 0.001 0.001

Cat total 1.000 1.001 1.000 Cat total 1.000 1.001 1.001

Fe2/(Fe2+Fe3) 0.000 0.000 0.000 Fe2/(Fe2+Fe3) 0.000 0.000 0.000

wt% recalculated to show Fe+2 and Fe+3 (Droop, 1987) wt% recalculated to show Fe+2 and Fe+3 (Droop, 1987) SiO2 0.000 0.000 0.000 SiO2 0.000 0.000 0.000 TiO2 97.210 98.920 97.350 TiO2 97.690 96.590 97.720 Al2O3 0.000 0.027 0.000 Al2O3 0.017 0.030 0.000 MgO 0.051 0.020 0.012 MgO 0.021 0.000 0.008 FeO 0.000 0.000 0.000 FeO 0.000 0.000 0.000 Fe2O3 0.362 0.263 0.426 Fe2O3 0.319 0.347 0.468 CaO 0.010 0.000 0.004 CaO 0.001 0.000 0.160 MnO 0.035 0.000 0.061 MnO 0.105 0.000 0.044 Cr2O3 0.342 0.406 0.533 Cr2O3 1.191 1.102 1.217 Ni 0.014 0.000 0.033 Ni 0.005 0.005 0.000 ZnO 0.000 0.069 0.054 ZnO 0.023 0.092 0.054

Total 98.024 99.705 98.472 Total 99.372 98.166 99.670

255 B.7 - TALC

wt% of oxides MDL PA2-2 PA2-4 PA2-6 PA2-8 PA2-10

SiO2 0.049 61.120 61.020 60.600 60.940 61.070 MgO 0.051 28.510 28.990 28.540 29.170 29.010 FeO 0.177 3.600 3.590 3.330 3.150 3.460 Ni 0.168 0.242 0.205 0.166 0.134 0.190 atom prop. 2.795 2.803 2.774 2.798 2.803 Total 93.460 93.790 92.630 93.380 93.730

Formula units based on 22 oxygens Si 8.006 7.971 7.999 7.975 7.977 Mg 5.567 5.645 5.616 5.691 5.649 Fe 0.394 0.392 0.368 0.345 0.378 Ni 0.025 0.022 0.018 0.014 0.020 O 22.000 22.000 22.000 22.000 22.000

Cat total 13.994 14.029 14.001 14.025 14.023

wt% of oxides MDL PA1-5 PA1-6 PA1-7 PA1-8 PA1-9

SiO2 0.049 61.860 62.180 62.250 62.910 60.820 MgO 0.051 30.280 30.740 30.650 30.080 30.020 FeO 0.187 1.144 0.987 0.956 0.926 1.181 Ni 0.164 0.035 0.020 0.115 0.095 0.135 atom prop. 2.826 2.846 2.847 2.854 2.787 Total 93.320 93.920 93.970 94.010 92.170

Formula units based on 22 oxygens Si 8.013 7.999 8.005 8.070 7.989 Mg 5.847 5.895 5.875 5.752 5.878 Fe 0.124 0.106 0.103 0.099 0.130 Ni 0.004 0.002 0.012 0.010 0.014 O 22.000 22.000 22.000 22.000 22.000

Cat total 13.987 14.001 13.995 13.930 14.011

256 B.7 - TALC

wt% of oxides MDL PA3-11 PA3-12 PA3-13 PA3-13a

SiO2 0.049 61.540 61.880 61.590 61.530 MgO 0.051 29.820 30.330 29.900 30.400 FeO 0.187 2.569 1.467 1.640 1.623 Ni 0.164 0.155 0.170 0.130 0.265 atom prop. 2.826 2.835 2.816 2.828 Total 94.080 93.840 93.260 93.820

Formula units based on 22 oxygens Si 7.973 7.992 8.007 7.965 Mg 5.759 5.840 5.794 5.866 Fe 0.278 0.158 0.178 0.176 Ni 0.016 0.018 0.014 0.028 O 22.000 22.000 22.000 22.000

Cat total 14.027 14.008 13.993 14.035

wt% of oxides MDL PA4-9 PA4-9a PA4-10 PA4-11

SiO2 0.049 59.720 60.620 61.330 60.660 MgO 0.051 29.500 30.410 30.140 30.140 FeO 0.187 1.346 1.279 1.045 1.075 Ni 0.164 0.130 0.020 0.140 0.075 atom prop. 2.740 2.790 2.805 2.783 Total 90.690 92.330 92.650 91.940

Formula units based on 22 oxygens Si 7.980 7.955 8.004 7.981 Mg 5.876 5.948 5.864 5.911 Fe 0.150 0.140 0.114 0.118 Ni 0.014 0.002 0.015 0.008 O 22.000 22.000 22.000 22.000

Cat total 14.020 14.045 13.996 14.019

257 B.7 - TALC

wt% of oxides MDL PA5-2 PA5-4 PA5-6 PA5-8 PA5-10

SiO2 0.049 62.060 61.940 61.420 61.720 61.990 MgO 0.051 30.250 30.490 28.410 30.120 29.950 FeO 0.177 1.730 1.811 3.430 1.571 1.701 Ni 0.168 0.204 0.239 0.134 0.113 0.236 atom prop. 2.843 2.846 2.799 2.825 2.833 Total 94.240 94.470 93.400 93.530 93.870

Formula units based on 22 oxygens Si 7.993 7.967 8.035 7.999 8.011 Mg 5.807 5.846 5.540 5.819 5.770 Fe 0.186 0.195 0.375 0.170 0.184 Ni 0.021 0.025 0.014 0.012 0.025 O 22.000 22.000 22.000 22.000 22.000

Cat total 14.007 14.033 13.965 14.001 13.989

wt% of oxides MDL PA7-3 PA7-5 PA7-7 PA7-9 PA7-11

SiO2 0.049 60.910 60.970 61.730 60.990 61.890 MgO 0.051 29.540 29.380 30.770 29.430 29.800 FeO 0.177 2.129 1.598 1.373 2.168 1.401 Ni 0.168 0.186 0.120 0.072 0.088 0.078 atom prop. 2.792 2.782 2.838 2.791 2.820 Total 92.750 92.060 93.950 92.670 93.160

Formula units based on 22 oxygens Si 7.987 8.024 7.964 7.999 8.036 Mg 5.774 5.764 5.917 5.754 5.768 Fe 0.233 0.176 0.148 0.238 0.152 Ni 0.020 0.013 0.007 0.009 0.008 O 22.000 22.000 22.000 22.000 22.000

Cat total 14.013 13.976 14.036 14.001 13.964

258 B.7 - TALC

wt% of oxides MDL LO272-6 LO272-7 LO272-8 LO272-9 LO272-10

SiO2 0.049 60.940 61.260 60.320 60.050 60.970 MgO 0.051 28.510 29.140 28.130 28.150 29.080 FeO 0.187 3.490 3.620 3.420 3.360 3.160 Ni 0.164 0.299 0.254 0.190 0.175 0.190 atom prop. 2.788 2.816 2.756 2.746 2.797 Total 93.230 94.280 92.060 91.730 93.400

Formula units based on 22 oxygens Si 8.002 7.966 8.014 8.006 7.980 Mg 5.581 5.648 5.571 5.595 5.674 Fe 0.383 0.394 0.380 0.375 0.346 Ni 0.032 0.027 0.020 0.019 0.020 O 22.000 22.000 22.000 22.000 22.000

Cat total 13.998 14.034 13.986 13.994 14.020

wt% of oxides MDL LO303-6 LO303-7 LO303-8 LO303-9 LO303-10

SiO2 0.049 61.170 61.180 61.750 61.160 61.970 MgO 0.051 29.510 29.860 30.300 29.580 29.950 FeO 0.187 2.118 1.900 2.124 1.831 1.885 Ni 0.164 0.085 0.090 0.165 0.235 0.140 atom prop. 2.799 2.805 2.839 2.798 2.834 Total 93.230 94.280 92.060 91.730 93.400

Formula units based on 22 oxygens Si 8.002 7.986 7.964 8.003 8.007 Mg 5.755 5.811 5.826 5.770 5.768 Fe 0.232 0.207 0.229 0.200 0.204 Ni 0.009 0.009 0.017 0.025 0.015 O 22.000 22.000 22.000 22.000 22.000

Cat total 13.998 14.014 14.036 13.997 13.993

259 B.7 - TALC

wt% of oxides MDL LO195-2 LO195-4 LO195-6 LO195-8 LO195-10

SiO2 0.049 61.330 61.370 60.470 61.230 61.200 MgO 0.051 29.310 29.750 29.040 29.340 29.480 FeO 0.177 3.210 2.484 2.488 2.108 2.641 Ni 0.168 0.140 0.090 0.141 0.114 0.098 atom prop. 2.815 2.816 2.770 2.797 2.806 Total 93.230 94.280 92.060 91.730 93.400

Formula units based on 22 oxygens Si 7.977 7.978 7.994 8.016 7.984 Mg 5.683 5.765 5.723 5.726 5.733 Fe 0.349 0.270 0.275 0.231 0.288 Ni 0.015 0.009 0.015 0.012 0.010 O 22.000 22.000 22.000 22.000 22.000

Cat total 14.023 14.022 14.006 13.984 14.016

wt% of oxides MDL LO279-2 LO279-4 LO279-6 LO279-8 LO279-10

SiO2 0.049 62.380 60.680 61.980 62.240 61.850 MgO 0.051 30.090 31.140 30.000 29.980 30.010 FeO 0.177 2.089 1.612 2.036 1.816 1.796 Ni 0.168 0.031 0.139 0.072 0.179 0.052 atom prop. 2.852 2.816 2.836 2.843 2.829 Total 93.230 94.280 92.060 91.730 93.400

Formula units based on 22 oxygens Si 8.007 7.888 8.000 8.015 8.005 Mg 5.758 6.034 5.772 5.755 5.790 Fe 0.224 0.175 0.220 0.196 0.194 Ni 0.003 0.015 0.007 0.019 0.005 O 22.000 22.000 22.000 22.000 22.000

Cat total 13.993 14.112 14.000 13.985 13.995

260 B.7 - TALC

wt% of oxides MDL LO310-3 LO310-5 LO310-7 LO310-9 LO310-11

SiO2 0.049 61.150 61.050 61.080 61.700 61.850 MgO 0.051 29.950 29.600 29.430 29.820 29.800 FeO 0.177 2.451 2.552 3.090 2.581 3.040 Ni 0.168 0.108 0.134 0.041 0.112 0.202 atom prop. 2.814 2.804 2.807 2.831 2.843 Total 93.230 94.280 92.060 91.730 93.400

Formula units based on 22 oxygens Si 7.956 7.972 7.968 7.980 7.965 Mg 5.809 5.762 5.723 5.749 5.721 Fe 0.267 0.279 0.337 0.279 0.327 Ni 0.011 0.014 0.004 0.012 0.021 O 22.000 22.000 22.000 22.000 22.000

Cat total 14.044 14.028 14.032 14.020 14.035

wt% of oxides MDL LO123-4 LO123-6 LO123-8 LO123-10 LO123-12

SiO2 0.049 62.020 62.150 61.780 61.790 62.100 MgO 0.051 30.890 30.040 29.840 29.980 30.590 FeO 0.177 1.359 1.460 2.118 1.557 1.388 Ni 0.168 0.143 0.210 0.041 0.000 0.133 atom prop. 2.851 2.837 2.827 2.822 2.847 Total 93.230 94.280 92.060 91.730 93.400

Formula units based on 22 oxygens Si 7.963 8.021 8.002 8.016 7.986 Mg 5.913 5.779 5.762 5.798 5.864 Fe 0.146 0.158 0.229 0.169 0.149 Ni 0.015 0.022 0.004 0.000 0.014 O 22.000 22.000 22.000 22.000 22.000

Cat total 14.037 13.979 13.998 13.984 14.014

261 B.7 - TALC

wt% of oxides MDL LO67-2 LO67-4 LO67-6 LO67-8 LO67-10

SiO2 0.049 60.930 61.170 61.590 61.110 60.550 MgO 0.051 29.100 28.980 29.720 28.920 28.630 FeO 0.177 3.430 3.490 3.080 3.020 3.130 Ni 0.168 0.297 0.149 0.135 0.293 0.211 atom prop. 2.802 2.805 2.832 2.797 2.772 Total 93.760 93.790 94.520 93.350 92.520

Formula units based on 22 oxygens Si 7.962 7.983 7.963 7.998 7.997 Mg 5.669 5.638 5.728 5.642 5.637 Fe 0.375 0.381 0.333 0.331 0.346 Ni 0.031 0.016 0.014 0.031 0.022 O 22.000 22.000 22.000 22.000 22.000

Cat total 14.038 14.017 14.037 14.002 14.003

262 B.7 - TALC

wt% of oxides wt% of oxides MDL CW3.4 CW3.5 MDL CW6G1 CW6G4 CW6G6

SiO2 0.051 60.350 60.500 SiO2 0.052 60.350 61.640 61.400 MgO 0.055 28.590 27.910 MgO 0.044 28.300 28.350 28.860 FeO 0.175 4.370 4.740 FeO 0.173 3.660 3.320 2.561 atom prop. 2.779 2.772 atom prop. 2.762 2.801 2.795 Total 93.320 93.150 Total 92.320 93.310 92.810

Formula units based on 22 oxygens Formula units based on 22 oxygens Si 7.952 7.991 Si 8.001 8.057 8.042 Mg 5.615 5.495 Mg 5.593 5.524 5.635 Fe 0.482 0.524 Fe 0.406 0.363 0.281 O 22.000 22.000 O 22.000 22.000 22.000

Cat total 14.048 14.009 Cat total 13.999 13.943 13.958

wt% of oxides MDL CW161 CW165 CW167 CW169

SiO2 0.052 60.740 60.370 60.730 60.060 MgO 0.044 28.210 27.290 27.240 27.030 FeO 0.173 4.140 4.350 3.900 4.700 atom prop. 2.779 2.747 2.751 2.735 Total 93.100 92.010 91.870 91.790

Formula units based on 22 oxygens Si 8.002 8.046 8.081 8.040 Mg 5.540 5.422 5.403 5.394 Fe 0.456 0.485 0.434 0.526 O 22.000 22.000 22.000 22.000

Cat total 13.998 13.954 13.919 13.960

263 B.7 - TALC

wt% of oxides MDL CW17.4 CW17.4 CW17.5 CW17.6 CW17.7 CW17.11 CW17.12

SiO2 0.051 61.950 61.950 60.760 60.840 61.330 61.160 59.980 MgO 0.055 29.170 29.170 29.170 28.940 29.640 29.340 29.440 FeO 0.175 2.435 2.435 2.106 1.983 1.953 2.434 2.487 atom prop. 2.819 2.819 2.775 2.771 2.804 2.797 2.761 Total 93.560 93.560 92.040 91.760 92.920 92.920 91.910

Formula units based on 22 oxygens Si 8.044 8.044 8.016 8.040 8.009 8.005 7.953 Mg 5.647 5.647 5.736 5.701 5.770 5.724 5.819 Fe 0.264 0.264 0.232 0.219 0.213 0.266 0.276 O 22.000 22.000 22.000 22.000 22.000 22.000 22.000

Cat total 13.956 13.956 13.984 13.960 13.991 13.995 14.047

wt% of oxides MDL CW13.3 CW13.4 CW13.6 CW13.8 CW13.9 CW131

SiO2 0.051 61.120 60.730 61.020 60.050 61.780 61.280 MgO 0.055 29.410 29.630 29.650 28.570 29.810 28.810 FeO 0.175 2.489 2.634 2.552 2.396 2.289 2.216 atom prop. 2.799 2.793 2.802 2.741 2.828 2.785 Total 92.310 91.930 92.140 92.430 92.670 92.310

Formula units based on 22 oxygens Si 7.996 7.961 7.973 8.022 7.999 8.055 Mg 5.736 5.790 5.775 5.689 5.754 5.646 Fe 0.272 0.289 0.279 0.268 0.248 0.244 O 22.000 22.000 22.000 22.000 22.000 22.000

Cat total 14.004 14.039 14.027 13.978 14.001 13.945

264 B.7 - TALC

wt% of oxides MDL CW1A3 CW1A5 CW1A7 CW1A9

SiO2 0.052 62.160 61.920 62.020 61.090 MgO 0.044 28.800 28.590 29.050 28.870 FeO 0.173 1.919 1.980 2.360 2.072 atom prop. 2.810 2.798 2.818 2.778 Total 92.890 92.490 93.440 92.030

Formula units based on 22 oxygens Si 8.099 8.103 8.058 8.050 Mg 5.594 5.577 5.627 5.671 Fe 0.209 0.217 0.256 0.228 O 22.000 22.000 22.000 22.000

Cat total 13.901 13.897 13.942 13.950

wt% of oxides MDL CW134 CW136 CW138 CW1310

SiO2 0.052 60.940 60.860 60.320 61.580 MgO 0.044 28.750 28.850 29.530 28.110 FeO 0.173 2.231 2.429 2.589 2.976 atom prop. 2.773 2.775 2.776 2.788 Total 91.930 92.140 92.430 92.670

Formula units based on 22 oxygens Si 8.047 8.029 7.955 8.086 Mg 5.659 5.674 5.805 5.502 Fe 0.246 0.268 0.286 0.327 O 22.000 22.000 22.000 22.000

Cat total 13.953 13.971 14.045 13.914

265 B.7 - TALC

wt% of oxides wt% of oxides MDL CW3.2 CW3.4 CW3.8 MDL CW15.3 CW15.5 CW3.5

SiO2 0.050 59.770 59.940 59.750 SiO2 0.050 60.670 61.280 60.460 TiO2 0.060 0.035 0.080 0.086 TiO2 0.060 0.029 0.061 0.035 Al2O3 0.050 1.122 1.260 0.996 Al2O3 0.050 0.197 0.360 0.778 MgO 0.050 27.770 28.260 28.420 MgO 0.050 29.790 29.300 29.810 FeO 0.150 3.920 4.190 4.270 FeO 0.150 2.245 2.633 2.111 CaO 0.040 0.031 0.013 0.021 CaO 0.040 0.034 0.027 0.019 MnO 0.170 0.027 0.036 0.045 MnO 0.170 0.045 0.108 0.027 K2O 0.030 0.006 0.010 0.007 K2O 0.030 0.010 0.017 0.004 Na2O 0.070 0.104 0.108 0.027 Na2O 0.070 0.041 0.138 0.318 BaO 0.140 0.024 0.034 0.000 BaO 0.140 0.000 0.000 0.000

Total 92.800 93.940 93.620 Total 93.060 93.930 93.550

Formula units based on 22 oxygens Formula units based on 22 oxygens Si 7.901 7.848 7.852 Si 7.938 7.957 7.875 Ti 0.003 0.008 0.009 Ti 0.003 0.006 0.003 Al 0.175 0.194 0.154 Al 0.030 0.055 0.119 Mg 5.472 5.516 5.567 Mg 5.811 5.671 5.788 Fe 0.433 0.459 0.469 Fe 0.246 0.286 0.230 Ca 0.004 0.002 0.003 Ca 0.005 0.004 0.003 Mn 0.003 0.004 0.005 Mn 0.005 0.012 0.003 K 0.001 0.002 0.001 K 0.002 0.003 0.001 Na 0.027 0.028 0.007 Na 0.010 0.035 0.080 Ba 0.001 0.002 0.000 Ba 0.000 0.000 0.000 O 22.000 22.000 22.000 O 22.000 22.000 22.000

Cat total 14.022 14.061 14.067 Cat total 14.050 14.028 14.102

266 B.7 - TALC

wt% of oxides MDL A7-6 A7-11 A7-20 A7-22

SiO2 0.049 63.750 63.990 65.380 63.840 MgO 0.051 29.860 29.780 30.880 29.480 FeO 0.177 2.020 2.002 2.022 2.261 Ni 0.168 0.055 0.160 0.202 0.096 atom prop. 2.891 2.899 2.973 2.889 Total 95.690 95.930 98.490 95.670

Formula units based on 22 oxygens Si 8.072 8.083 8.051 8.091 Mg 5.636 5.607 5.669 5.569 Fe 0.214 0.211 0.208 0.240 Ni 0.006 0.016 0.020 0.010 O 22.000 22.000 22.000 22.000

Cat total 13.928 13.917 13.949 13.909

wt% of oxides MDL A5-4 A5-10 A5-11 A5-17

SiO2 0.049 60.310 64.220 63.650 63.060 MgO 0.051 27.380 29.290 29.780 30.130 FeO 0.187 2.450 2.164 1.990 2.513 Ni 0.164 0.060 0.135 0.090 0.080 atom prop. 2.721 2.896 2.886 2.882 Total 90.190 95.810 95.510 95.780

Formula units based on 22 oxygens Si 8.114 8.119 8.074 8.010 Mg 5.491 5.520 5.631 5.705 Fe 0.276 0.229 0.211 0.267 Ni 0.007 0.014 0.009 0.008 O 22.000 22.000 22.000 22.000

Cat total 13.886 13.881 13.926 13.990

267 B.7 - TALC

wt% of oxides wt% of oxides MDL A10-4 A10-11 A10-16 MDL A6-4 A6-10 A6-16

SiO2 0.049 62.800 64.680 61.490 SiO2 0.049 63.080 63.770 63.640 MgO 0.051 29.150 30.210 29.630 MgO 0.051 29.390 29.990 29.740 FeO 0.177 2.232 1.854 2.138 FeO 0.177 2.333 2.419 2.634 Ni 0.168 0.161 0.070 0.090 Ni 0.168 0.065 0.130 0.000 atom prop. 2.847 2.929 2.813 atom prop. 2.862 2.902 2.893 Total 94.340 96.820 93.340 Total 94.870 96.310 96.010

Formula units based on 22 oxygens Formula units based on 22 oxygens Si 8.077 8.085 8.004 Si 8.070 8.046 8.055 Mg 5.589 5.629 5.750 Mg 5.605 5.640 5.611 Fe 0.240 0.194 0.233 Fe 0.250 0.255 0.279 Ni 0.017 0.007 0.009 Ni 0.007 0.013 0.000 O 22.000 22.000 22.000 O 22.000 22.000 22.000

Cat total 13.923 13.915 13.996 Cat total 13.930 13.954 13.945

wt% of oxides wt% of oxides MDL A4-4 A4-9 A4-16 MDL A9-5 A9-10 A9-13

SiO2 0.049 65.040 63.320 64.130 SiO2 0.049 64.250 63.330 62.730 MgO 0.051 30.230 30.060 30.240 MgO 0.051 30.070 30.000 30.020 FeO 0.187 1.853 1.626 1.779 FeO 0.187 2.840 2.335 2.682 Ni 0.164 0.125 0.135 0.130 Ni 0.164 0.091 0.056 0.171 atom prop. 2.942 2.878 2.911 atom prop. 2.925 2.885 2.872 Total 97.250 95.140 96.280 Total 97.260 95.720 95.610

Formula units based on 22 oxygens Formula units based on 22 oxygens Si 8.093 8.056 8.065 Si 8.042 8.036 7.996 Mg 5.608 5.701 5.669 Mg 5.610 5.675 5.704 Fe 0.193 0.173 0.187 Fe 0.297 0.248 0.286 Ni 0.013 0.014 0.013 Ni 0.009 0.006 0.018 O 22.000 22.000 22.000 O 22.000 22.000 22.000

Cat total 13.907 13.944 13.935 Cat total 13.958 13.964 14.004

268 B.7 - TALC

wt% of oxides MDL A3-4 A3-9 A3-10 A3-16

SiO2 0.049 63.910 65.960 64.390 64.120 MgO 0.051 30.150 30.290 29.520 29.610 FeO 0.177 1.742 1.714 1.862 1.689 Ni 0.168 0.106 0.066 0.061 0.126 atom prop. 2.901 2.972 2.902 2.894 Total 95.910 98.030 95.840 95.540

Formula units based on 22 oxygens Si 8.066 8.127 8.123 8.112 Mg 5.673 5.563 5.551 5.584 Fe 0.184 0.177 0.196 0.179 Ni 0.011 0.007 0.006 0.013 O 22.000 22.000 22.000 22.000

Cat total 13.934 13.873 13.877 13.888

wt% of oxides wt% of oxides MDL A2-4 A2-10 A2-16 MDL A1-4 A1-8 A1-13

SiO2 0.049 64.100 64.070 63.630 SiO2 0.049 62.550 63.070 62.680 MgO 0.051 30.040 30.150 29.880 MgO 0.051 28.110 28.680 28.280 FeO 0.187 2.263 2.055 2.751 FeO 0.187 4.170 2.744 3.810 Ni 0.164 0.051 0.071 0.061 Ni 0.164 0.020 0.061 0.096 atom prop. 2.911 2.910 2.898 atom prop. 2.838 2.850 2.842 Total 96.460 96.340 96.320 Total 94.850 94.560 94.870

Formula units based on 22 oxygens Formula units based on 22 oxygens Si 8.062 8.061 8.038 Si 8.071 8.103 8.074 Mg 5.632 5.655 5.627 Mg 5.407 5.493 5.431 Fe 0.238 0.216 0.291 Fe 0.450 0.295 0.410 Ni 0.005 0.007 0.006 Ni 0.002 0.006 0.010 O 22.000 22.000 22.000 O 22.000 22.000 22.000

Cat total 13.938 13.939 13.962 Cat total 13.929 13.897 13.926

269 B.7 - TALC

wt% of oxides MDL A8-4 A8-10 A8-16

SiO2 0.049 62.340 64.250 62.630 MgO 0.051 30.300 30.260 30.710 FeO 0.177 2.145 1.925 2.267 Ni 0.168 0.020 0.085 0.100 atom prop. 2.857 2.917 2.879 Total 94.800 96.520 95.710

Formula units based on 22 oxygens Si 7.990 8.064 7.964 Mg 5.789 5.662 5.821 Fe 0.230 0.202 0.241 Ni 0.002 0.009 0.010 O 22.000 22.000 22.000

Cat total 14.010 13.936 14.036

270 B.7a - TALC

wt% of oxides MDL A3-2 A3-3 A3-4 A3-5

SiO2 0.056 61.550 61.510 59.520 61.310 *SiO2 wt% and wt% totals for talc were found to be MgO 0.061 30.060 29.980 29.610 29.480 consistantly above the norm in artifact samples measured FeO 0.204 2.261 1.798 1.975 1.821 during one probe session. A sample from this session Ni 0.197 0.137 0.058 0.050 0.007 (A3) was analyzed alongside one from a previous session atom prop. 2.828 2.817 2.744 2.797 (PA1). The results are shown below. Total 94.010 93.340 91.150 92.620

Formula units based on 22 oxygens Si 7.969 7.995 7.942 8.024 Mg 5.802 5.809 5.890 5.752 Fe 0.245 0.195 0.220 0.199 Ni 0.014 0.006 0.005 0.001 O 22.000 22.000 22.000 22.000

Cat total 14.031 14.005 14.058 13.976

wt% of oxides MDL PA1-1 PA1-2 PA1-3 PA1-4 PA1-5

SiO2 0.056 61.400 62.370 63.260 62.770 62.500 MgO 0.061 29.810 29.860 30.960 30.400 30.520 FeO 0.204 1.167 1.056 1.301 1.100 1.089 Ni 0.197 0.079 0.000 0.036 0.216 0.086 atom prop. 2.800 2.831 2.892 2.862 2.854 Total 92.460 93.290 95.560 94.490 94.190

Formula units based on 22 oxygens Si 8.027 8.065 8.008 8.031 8.019 Mg 5.810 5.756 5.842 5.798 5.837 Fe 0.128 0.114 0.138 0.118 0.117 Ni 0.008 0.000 0.004 0.022 0.009 O 22.000 22.000 22.000 22.000 23.000

Cat total 13.973 13.935 13.992 13.969 13.981

271