Anthophyllite Asbestos in North Carolina", by Stephen G

Total Page:16

File Type:pdf, Size:1020Kb

Anthophyllite Asbestos in North Carolina CI 3:77 C 2 North Carolina Department of Conservation and Development Robert L. Stallings, Jr., Director Division of Mineral Resources Jasper L. Stuckey, State Geologist Bulletin 77 Anthophyllite Asbestos in North Carolina by Stephen G. Conrad, William F. Wilson, Eldon P. Allen Division of Mineral Resources and Thomas J. Wright North Carolina State Minerals Research Laboratory Raleigh 1963 North Carolina Department of Conservation and Development Robert L. Stallings, Jr., Director Division of Mineral Resources Jasper L. Stuckey, State Geologist Bulletin 77 Anthophyllite Asbestos in North Carolina by Stephen G. Conrad, William F. Wilson, Eldon P. Allen Division of Mineral Resources and Thomas J. Wright North Carolina State Minerals Research Laboratory Raleigh 1963 MEMBERS OF THE BOARD OF CONSERVATION AND DEVELOPMENT Hargrove Bowles, Jr., Chairman Greensboro Dr. Mott P. Blair, Vice Chairman Siler City John M. Akers Gastonia Robert E. Bryan , Goldsboro Mrs. B. F. Bullard Raleigh Daniel D. Cameron Wilmington Mrs. Fred Y. Campbell Waynesville Dr. John Dees Burgaw William P. Elliott, Sr. Marion E. Hervey Evans, Jr. Laurinburg E. R. Evans Ahoskie Andrew Gennett Asheville Luther W. Gurkin, Jr. Plymouth Woody R. Hampton Sylva Charles E. Hayworth High Point Gordon C. Hunter Roxboro Roger P. Kavanagh, Jr. __ Greensboro R. Walker Martin Raleigh Carl G. McCraw Charlotte Lorimer W. Midgett Elizabeth City Ernest E. Parker, Jr. Southport R. A. Pool Clinton Eric W. Rodgers Scotland Neck Robert W. Scott Haw River James A. Singleton, Jr. __ Red Springs J. Bernard Stein Fayetteville Paul H. Thompson Fayetteville Charles B. Wade, Jr. Winston-Salem ll LETTER OF TRANSMITTAL Raleigh, North Carolina September 25, 1963 To His Excellency, HONORABLE TERRY SANFORD Governor of North Carolina Sir: I have the honor to submit herewith manuscript for publication as Bulletin 77, "Anthophyllite Asbestos in North Carolina", by Stephen G. Conrad, William F. Wilson, Eldon P. Allen and Thomas J. Wright. This report contains the results of a detailed investigation of geology and mineral dressing characteristics of the anthophyllite asbestos de- posits in North Carolina and should be of value to those interested in the economic development of these deposits. Respectfully submitted, Robert L. Stallings, Jr. Director CONTENTS Page Abstract 1 Introduction 1 Location and distribution 1 Purpose of . investigation . 1 Previous work 3 Present investigation 3 Acknowledgments 4 Geography 4 Climate 4 Topography 4 Accessibility 5 Regional geology 5 Rock types 5 Structure and metamorphism 6 Peridotites and related ultramafic rocks 7 Distribution 7 Character and relations 7 Petrography 8 Dunite 8 Saxonite (harzburgite) 8 Pyroxenite 9 Enstatolite 9 Websterite 9 Soapstone 10 Alteration of peridotite 10 Serpentinization 10 Steatitization 11 Amphibolization 12 Chloritization 12 Origin 12 Age 13 Asbestos deposits 14 Mineralogy and geologic occurrence 14 Crysotile 14 Amphibole asbestos 14 Tremolite 14 Actinolite 15 Crocidolite 15 Amosite 15 Anthophyllite 15 Uses 15 Character and classification of North Carolina deposits 17 General statement 17 Cross-fiber veins 17 Slip-fiber veins 17 Mass-fiber deposits 17 Peripheral zones 18 Anthophyllite-enstatite bodies 18 Origin of anthophyllite asbestos 19 History of mining and production 20 Mining methods 21 Reserves 21 Description of mines and prospects 21 Spruce Pine area 21 Avery County 21 Burleson mine 21 Frank mine 22 Other prospects 22 Page Mitchell County 22 J. H. Pannell prospect 22 Soapstone Branch prospect 22 Other prospects 24 Yancey County 24 Blue Rock mine 24 Newdale mine ' 25 J. C. Woody mine 26 Sam Grindstaff mine 26 Gas Thomas prospect 27 C. W. Allen prospect 27 Other prospects 27 Lake Toxaway area 27 Transylvania County 29 Kilpatrick mine 29 Oakland mine 29 Walnut Cove Creek mine 30 Miller mine 30 Jennings No. 1 mine 31 Socrates prospect 32 Other prospects 32 Jackson County 32 Asbestos mine 32 Rattlesnake prospect 34 Brockton mine 35 Bad Creek prospect 35 Jennings No. 2 mine 36 Round Mountain mine 36 Coldsides Mountain mine 36 Harris prospect 37 Glenville-Norton area 37 Bryson-Manus mines 37 Henderson mine 40 Alders mine 40 Holden mine 40 Other mines and prospects 40 Macon County 40 Higdon mine 40 Peterman mine 42 Commissioner Creek prospect 42 Caldwell County 42 Johns River mine 42 Evaluation and Beneficiation 45 Introduction 45 Dry processing 45 Sample 1855A 45 Sample 1855B 45 Sample 1856 45 Sample 1857A 45 Sample 1857B 45 Sample 1858 49 Sample 1859 49 Sample 1872A 49 Sample 1872B 49 Comparison of the plus 28 mesh fiber products 49 Acid leaching and wet processing 50 Conclusions 50 References cited 60 ILLUSTRATIONS Page Figure 1. Geographic distribution of ultramafic bodies in western North Carolina 2 2. Properties of asbestos fibers 16 3. Map showing location of asbestos mines in Yancey County, North Carolina 23 4. Map showing location of asbestos mines in the Brush Creek area, Yancey County, North Carolina 28 5. Map showing location of asbestos mines in the Sapphire Valley area, North Carolina 33 6. Map showing location of asbestos mines in Chattooga Ridge area, Jackson County, North Carolina 38 7. Map showing location of asbestos mines in the Glenville-Norton area 39 8. Map showing location of peridotites in Ellijay Creek area, Macon County 41 9. Map showing location of Johns River asbestos prospect, Caldwell County, North Carolina 43 10. Flowsheet for treatment of asbestos ore 46 11. Flowsheet for low grade, short-fiber ore 50 Table 1. Distribution and composition of products from dry process 47 2. Distribution and composition of products from dry process 47 3. Distribution and composition of products from dry process 48 4. Properties of plus 28 mesh aspirated fiber 48 5. Cleaning re-treatment of aspirated fiber 1857A Screen analysis of + 28 mesh fiber 1858 49 6. Comparison of chemical and mineralogical content of talc and anthophyllite concentrates 49 Plate 1. Photomicrographs of typical anthophyllite asbestos ores and related rocks 53 2. Photomicrographs of typical anthophyllite asbestos ores and related rocks 55 3. Photomicrographs of typical anthophyllite asbestos ores and related rocks 57 4. Geology of the Newdale asbestos mine, Yancey County, North Carolina in pocket 5. Geologic cross-sections of the Newdale asbestos mine, Yancey County, North Carolina in pocket 6. Geology of the Blue Rock asbestos mine, Yancey County, North Carolina in pocket 7. Photographs of typical ore samples; and contact relationships at the Newdale and Blue Rock mines, Yancey County, North Carolina 59 Vll Anthophyllite Asbestos in North Carolina by Stephen G. Conrad, William F. Wilson and Eldon P. Allen ABSTRACT Asbestos deposits in North Carolina are associated with a group of basic magnesian rocks com- monly referred to as peridotites. These rocks range from dunite to soapstone in composition, and are part of a discontinuous belt of ultramafic igneous rocks that traverse the eastern part of North America from east-central Alabama to western Newfoundland. In North Carolina the peridotite belt lies chiefly west of the Blue Ridge in the mountainous section of the State. However, a few isolated bodies occur in the Piedmont section of Burke, Caldwell, Polk, Wilkes and Wake counties. Although various types and quantities of asbestiform minerals can be found in practically all of the individual peridotite bodies throughout the area, the most important commercial deposits occur as anthophyllite asbestos associated with altered bodies in the Toxaway area of Jackson and Transylvania counties and in the Spruce Pine area of Yancey and Avery counties. Based on the arrangement of the fibers in respect to the wall rock and to each other, three types of anthophyllite asbestos ore are recognized. These types are referred to as cross-fiber veins, slip-fiber veins and mass-fiber deposits. Cross-and slip-fiber veins are the most common and are present to some extent in ultramafic bodies that range in composition from relatively unaltered dunite to soapstone. The mass-fiber deposits are divided into peripheral zones associated with partly to thoroughly altered bodies, and small, oval shaped bodies composed mostly of anthophyllite and enstatite. Past production from North Carolina has been mostly from mass-fiber deposits of the peripheral zone type. However, mass-fiber deposits of the anthophyllite-enstatite variety appear to have consider- able potential. The North Carolina State Minerals Research Laboratory determined the physical and chemical properties of nine selected ores and investigated methods of separating the major mineral components by dry and wet benefication processes. INTRODUCTION Location and Distribution highly altered bodies in the Lake Toxaway area of Jackson and Transylvania counties and in the The asbestos deposits in North Carolina are Spruce Pine area of Yancey and Avery counties. associated with a group of basic magnesian rocks, The accompanying map (Figure 1) of a portion commonly referred to as peridotites. These per- of western North Carolina shows the distribution idotites are part of a discontinuous belt that tra- of the main belt of peridotites and related ultra- verses the eastern part of North America from mafic rocks. Owing to the fact that most of the east-central Alabama to western Newfoundland, peridotites are lenticular or oval masses, usually a distance of more than 2,000 miles. In North less than 300 or 400 feet in length, it was neces- Carolina the peridotite belt lies chiefly west of the sary to exaggerate their dimensions
Recommended publications
  • Chemographic Exploration of Amphibole Assemblages from Central Massachusetts and Southwestern New Hampshire
    Mineral. Soc. Amer, Spec. Pap. 2, 251-274 (1969). CHEMOGRAPHIC EXPLORATION OF AMPHIBOLE ASSEMBLAGES FROM CENTRAL MASSACHUSETTS AND SOUTHWESTERN NEW HAMPSHIRE PETER ROBINSON AND HOWARD W. JAFFE Department of Geology, University of Massachusetts, Amherst, Massachusetts 01002 ABSTRACT Fourteen wet chemical and forty electron-probe analyses were made of amphiboles from critical assemblages in the kyanite and sillimanite zones of central Massachusetts and southwestern New Hampshire. The rocks studied in- clude plagioclase amphibolites that are metamorphosed mafic lavas and tuffs, aluminous anthophyllite rocks of uncertain derivation, quartz-garnet-amphibole granulites that are metamorphosed ferruginous cherts, and pods of ultramafic amphibolite. The rocks contain the following associations: hornblende-anthophyllite, hornblende-cummingtonite, anthophyllite-cummingtonite, hornblende-anthophyllite-cummingtonite, anthophyllite-cordierite, and anthophyllite- kyanite-sillimanite-staurolite_garnet. The following generalizations are made: 1) The cummingtonites are compositionally simple, containing neither sig- nificant AI/AI, NaJAI, nor Ca substitution. 2) The hornblendes are high in AI/AI substitution. Those coexisting with cummingtonite in the kyanite zone or in retrograded rocks have a higher Al content than those coexisting with cum- mingtonite in the sillimanite zone, in close agreement with the prograde reaction tschermakitic hornblende -7 cumming- tonite + plagioclase + H20 proposed by Shido. The Na content of hornblende is considerably less than that of the theoretical edenite end member and is relatively insensitive to variation in the Na content of coexisting plagioclase. 3) Anthophyllites coexisting with hornblende contain about 1as much AI/AI substitution and 1as much Na substitution as coexisting hornblendes. Ca is negligible. Anthophyllites with cordierite, aluminosilicates, or garnet equal or surpass hornblende in AI/AI and Na substitution.
    [Show full text]
  • Crystal Structure of Protoamphibole
    Mineral. Soc. Amer. Spec. Pap. 2, 101-109 (1969). CRYSTAL STRUCTURE OF PROTOAMPHIBOLE G. V. GIBBS Department of Geological Sciences, Virginia Polytechnic Institute Blacksburg, Virginia 24061 ABSTRACT The structure proposed for protoamphibole (Gibbs et al., 1960) has been verified and refined by three-dimensional Fourier and least-squares methods using data collected with a Weissenberg single crystal counter-diffractometer. The symmetry is Pnmn with a = 9.330, b = 17.879 and c = 5.288 A and the unit-cell content is 2(Nao.03Li",oMg, ••) (Si r. ,.Alo.040,1.71) (OHo.15F,.14). The structure consists of layers of interlocking chains of fluorine-centered hexagonal rings of SiO. groups. The layers are bound together by Mg.Li cations which are coordinated between the chains, the coordination being effected by a ~(cI3) stagger between adjacent layers. An additional stagger of ~(-cI3) in the sequence along a gives an overall displacement of zero between alternate layers, accounting for the 9.33 A a cell edge and the orthogonal geometry. The direction of stagger can be related to the placement of the cations in the octahedral layer. The M -cation coordination groups are nearly regular octahedra with the exception of M(4) which is similar to Mg(l) in protoenstatite. The M(3), M(1) and M(2) sites are occupied principally by Mg. In addition to being randomly distributed around the cavity walls of the A-site, Li ions are also segregated in about 25% of the M(4) sites, the others being occupied by Mg ions. The individual Si-O bond distances in the chains are consistent with Cruickshank's d-p -n: bonding model: Si-O(non- bridging) bonds [Si(1)-O(1) = 1.592; Si(2)-0(4) = 1.592; Si(2)-0(2) = 1.605 AJ are significantly shorter, on the average, than the Si-O(bridging) bonds [Si(1)-0(5) = 1.616; Si(1)-0(6) = 1.623; Si(1)-0(7) = 1.624; Si(2)-0(5) = 1.626; Si(2)-0(6) = 1.655 AJ.
    [Show full text]
  • ANTHOPHYLLITE Revised: Published by A.E
    FROM: Robinson, G.W., 2004 Mineralogy of Michigan by E.W. Heinrich updated and ANTHOPHYLLITE revised: published by A.E. Seaman Mineral Mg7Si8O22(OH)2 Museum, Houghton, MI, 252p. The only common orthorhombic member of the amphibole group; forms a solid solution series with ferro-anthophyllite. Anthophyllite is a metamorphic mineral, occurring in various schists, gneisses, and some iron formations. It also occurs as a hydrothermal mineral species in altered peridotites. The Marquette County localities cited below were reported by Brooks (1873). The identity of his anthophyllites has never been verified or supported by optical data. It is suspected that some, if not all, of the amphibole he reported as anthophyllite may actually be grunerite, inasmuch as some of Brooks’ localities are underlain by Bijiki or Negaunee Iron Formation which in the Marquette district includes grunerite- magnetite schists (Van Hise and Leith, 1911; Richarz, 1927a, b, c; 1932). Northern Peninsula. Baraga County: Spurr Mountain: “Anthophylite” containing 1.78% Mn is reported by Brooks (1873). Dickinson County: 1. Metronite quarry near Felch: Lamey (1934) reports, along with other silicates, the presence of “feranthophyllite” (=ferro-anthophyllite). This has not been verified and is very doubtful (Heinrich, 1962b). 2. NE ¼ NE ¼, section 23, T42N, R29W: In the Skunk Creek Member of the Solberg Schist, actinolite(?) fringed by an amphibole that “may be anthophyllite” was found in a hornblende- magnetite schist (James et al., 1961). 3. Vulcan Iron Formation: One variant consists of grunerite with magnetite, quartz, and anthophyllite (James et al., 1961). Marquette County: 1. Washington mine: Anthophyllite-quartz-magnetite schist. 2. South of New England mine: In slaty magnetite schist.
    [Show full text]
  • Arts of the Indus Valley
    2 ARTS OF THE INDUS VALLEY HE arts of the Indus Valley Civilisation emerged during Tthe second half of the third millennium BCE. The forms of art found from various sites of the civilisation include sculptures, seals, pottery, jewellery, terracotta figures, etc. The artists of that time surely had fine artistic sensibilities and a vivid imagination. Their delineation of human and animal figures was highly realistic in nature, since the anatomical details included in them were unique, and, in the case of terracotta art, the modelling of animal figures was done in an extremely careful manner. The two major sites of the Indus Valley Civilisation, along the Indus river—the cities of Harappa in the north and Mohenjodaro in the south—showcase one of earliest examples of civic planning. Other markers were houses, markets, storage facilities, offices, public baths, etc., arranged in a grid-like pattern. There was also a highly developed drainage system. While Harappa and Mohenjodaro are situated in Pakistan, the important sites excavated in India are Lothal and Dholavira in Gujarat, Rakhigarhi in Haryana, Bust of a bearded priest Ropar in Punjab, Kalibangan in Rajasthan, etc. Stone Statues Statues whether in stone, bronze or terracotta found in Harappan sites are not abundant, but refined. The stone statuaries found at Harappa and Mohenjodaro are excellent examples of handling three-dimensional volumes. In stone are two male figures—one is a torso in red sandstone and the other is a bust of a bearded man in soapstone—which are extensively discussed. The figure of the bearded man, interpreted as a priest, is draped in a shawl coming under the right arm and covering the left shoulder.
    [Show full text]
  • Cordierite-Anthophyllite Rocks at Rat Lake, Manitoba
    ., , .,. '-'-' . MANlTiBA DEPARTMENJ Of MINES. RESOURCES & ENVIRONMENTAl MANIiGEMENT MINERAL BES(lJRCES DIvtSION OPEN FIIB REPORl' 76/1 OORDlERI'l'FI-ANTHOPHIWTE ROCKS AT RAT LAKE, MlNI'l'OBA; A METAMORPHOSED ALTERATION ZONE By D. A. Baldwin 19'16 Electronic Capture, 2011 The PDF file from which this document was printed was generated by scanning an original copy of the publication. Because the capture method used was 'Searchable Image (Exact)', it was not possible to proofread the resulting file to remove errors resulting from the capture process. Users should therefore verify critical information in an original copy of the publication. .. :., ,.' . .... .- .• I Tt'! OF CC!fl!fl'S .. ' i. -, Page Ifttraduct10n 1 ," Glael'll QeoloIJ 3 · ~ · " "'ell.e. ot unJcnom aft1DitJ (3, 4) 4 .' Coderite-AnthopbJlllte Roc1c1 6 ~I beU'.I.DI l'Ockl 6 .. " Quarts tree l'Ockl 6 ChIld..tl7 ot the Rat take Cordier1tWnthophJllite " BoGIe. 11 Oripn ot the Cord1.r1te-Antho~1l1tl Rocke 15 0I0phJ11ft81 IW'VI),' 18 '. :,(~, Airbome INPUT IVVi,Y 18 ..16 IUl'VI)' 20 OoIIalulonl IDCi Recoanendatianl 21 Iet.rtnael 2, Appendix "A" 25 Appendix "I" 27 \ , I .. ·. ~ . : . ~ . ·-. - 1-· IN'lRODUCTION -==ar=====:==s COrdierite-anthophyllite rocks containing disseminated sulphides of il'Onand copper, and traces of molybdn1te outcrop on the south shore of a small bay at Rat take, Manitoba (Location "5", Fig. 1). These rocks are siDdlar to those that occur in association with massive sulphide ore bodies at the Sherridon MLne, Manitoba, and the Coronation Mine, Saskatchewan. '!'he outcrops are found in an amphibolitic unit within cordierite­ s1 1limarrlte-anthophyll1te-biotite gneisses of ''unknown affinity" (Schledewitz, 1972).
    [Show full text]
  • Anthophyllite Asbestos: State of the Science Review Shannon H
    Review article Received: 11 May 2016, Accepted: 17 May 2016 Published online in Wiley Online Library: 11 July 2016 (wileyonlinelibrary.com) DOI 10.1002/jat.3356 Anthophyllite asbestos: state of the science review Shannon H. Gaffneya*, Matthew Grespinb, Lindsey Garnicka, Derek A. Drechselb, Rebecca Hazanc,DennisJ.Paustenbachd and Brooke D. Simmonsa ABSTRACT: Anthophyllite is an amphibole form of asbestos historically used in only a limited number of products. No published resource currently exists that offers a complete overview of anthophyllite toxicity or of its effects on exposed human populations. We performed a review focusing on how anthophyllite toxicity was understood over time by conducting a comprehensive search of publicly available documents that discussed the use, mining, properties, toxicity, exposure and potential health effects of anthophyllite. Over 200 documents were identified; 114 contained relevant and useful information which we present chronolog- ically in this assessment. Our analysis confirms that anthophyllite toxicity has not been well studied compared to other asbestos types. We found that toxicology studies in animals from the 1970s onward have indicated that, at sufficient doses, anthophyllite can cause asbestosis, lung cancer and mesothelioma. Studies of Finnish anthophyllite miners, conducted in the 1970s, found an increased incidence of asbestosis and lung cancer, but not mesothelioma. Not until the mid-1990s was an epidemiological link with mesothelioma in humans observed. Its presence in talc has been of recent significance in relation to potential asbestos exposure through the use of talc-containing products. Characterizing the health risks of anthophyllite is difficult, and distinguishing between its asbestiform and non-asbestiform mineral form is essential from both a toxicological and regulatory perspective.
    [Show full text]
  • Talc, Soapstone & Steatite
    TALC, SOAPSTONE AND STEATITE Indian Minerals Yearbook 2013 (Part- III : Mineral Reviews) 52nd Edition TALC, SOAPSTONE AND STEATITE (FINAL RELEASE) GOVERNMENT OF INDIA MINISTRY OF MINES INDIAN BUREAU OF MINES Indira Bhavan, Civil Lines, NAGPUR – 440 001 PHONE/FAX NO. (0712) 2565471 PBX : (0712) 2562649, 2560544, 2560648 E-MAIL : [email protected] Website: www.ibm.gov.in July, 2015 47-1 TALC, SOAPSTONE AND STEATITE 47 Talc, Soapstone and Steatite alc is a hydrous magnesium silicate. In trade EXPLORATION & DEVELOPMENT Tparlance, talc often includes: (i) the mineral No exploration was carried out during the talc in the form of flakes and fibres; (ii) steatite, year 2012-13. the massive compact cryptocrystalline variety of high-grade talc; and (iii) soapstone, the massive PRODUCTION, STOCKS & talcose rock containing variable talc (usually 50%), which is soft and soapy in nature. PRICES Commercial talc may contain other minerals like The production of steatite in 2012-13 was quartz, calcite, dolomite, magnesite, serpentine, 939 thousand tonnes which decreased by about chlorite, tremolite and anthophyllite as impurities. 6% as compared to that in the previous year. The properties of talc that enables its use in a There were 133 reporting mines in 2012-13 as wide variety of applications are its extreme against 138 in the previous year. Besides softness & smoothness, good lustre & sheen, production of steatite was reported by nine high slip & lubricating property, low moisture mines as associated mineral in 2012-13 as against content, ability to absorb oil & grease, chemical eight mines in previous year. Ten principal inertness, high fusion point, low electrical & heat producers accounted for nearly 70% of the total conductivity, high dielectric strength, good production during 2012-13.
    [Show full text]
  • Asbestos in Commercial Cosmetic Talcum Powder As a Cause of Mesothelioma in Women
    Asbestos in commercial cosmetic talcum powder as a cause of mesothelioma in women Ronald E. Gordon1, Sean Fitzgerald2, James Millette3 1Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, USA, 2SAI Laboratory, Greensboro, NC, USA, 3MVA Inc., Duluth, GA, USA Background: Cosmetic talcum powder products have been used for decades. The inhalation of talc may cause lung fibrosis in the form of granulomatose nodules called talcosis. Exposure to talc has also been suggested as a causative factor in the development of ovarian carcinomas, gynecological tumors, and mesothelioma. Purpose: To investigate one historic brand of cosmetic talcum powder associated with mesothelioma in women. Methods: Transmission electron microscope (TEM) formvar-coated grids were prepared with concentra- tions of one brand of talcum powder directly, on filters, from air collections on filters in glovebox and simulated bathroom exposures and human fiber burden analyses. The grids were analyzed on an analytic TEM using energy-dispersive spectrometer (EDS) and selected-area electron diffraction (SAED) to determine asbestos fiber number and type. Results: This brand of talcum powder contained asbestos and the application of talcum powder released inhalable asbestos fibers. Lung and lymph node tissues removed at autopsy revealed pleural mesothelioma. Digestions of the tissues were found to contain anthophyllite and tremolite asbestos. Discussion: Through many applications of this particular brand of talcum powder, the deceased inhaled asbestos fibers, which then accumulated in her lungs and likely caused or contributed to her mesothelioma as well as other women with the same scenario. Keywords: Asbestos, Talcum powder, Chamber test, TEM, SEM, EDS, SAED, Mesothelioma Introduction In 1976, Rohl and Langer tested 20 consumer Malignant mesothelioma occurs in both the perito- products labeled as talc or talcum powder, including 1 neum and in the lung pleura.
    [Show full text]
  • Petrology and Origin of the Day Book Dunite, Yancey County, North Carolina
    PETROLOGY AND ORIGIN OF THE DAY BOOK DUNITE, YANCEY COUNTY, NORTH CAROLINA A Thesis Presented in Partial Fulfillment of the Requirements for the Degree Bachelor of Science By James S. Guentert The Ohio State U~iversity 1984 Approved By: ABSTRACT The Day Book dunite body is one of many 11 alpine-type 11 ultramafic bodies that outcrop in the Blue Ridge belt of the southern Appalachians.n The petrography of the Day Book dunite was studied in thin sections and polished surfaces to identify primary and secondary minerals, paragenetic relationships, and recrystallization and deformational textures. 01 ivine, enstat ite and chromite comprise the primary mineral assemb 1age, and theh secondary minerals include serpentine, talc, chlorite, anthophyllite, magnesite, tremolite and magnetite. Small, recrystallized olivine grains form a mosaic in which are found large, deformed, relict olivine grains. 11 Disseminated 11 chromite occurs as polygonal, straight­ sided grains that represent annealing recrystallization, whereas 11 11 massive chromite exhibits cataclastic texture and alterationn to magnetite. The Day Book body formed as upwelled mantle material in a Precambrian rift system along the margin of the North American continent, and it was squeezed and thrust into p1 ace during the Tac on i c orogeny. Lack of contact metamorphism and evidence of chilled borders indicate 11 11 that the dunite body was emplaced as cold , solid, mantle-derived ultramafic material that later underwent hydrous alteration during regional metamorphism and/or the intrusion of pegmatites. ACKNOWLEDGEMENTS I would like to thank Dr. Douglas Pride for his guidance during the research and writing of this thesis. I also would like to thank Robin Baker, Scott Langford and Mary Dylewski for preparing the thin sections and polished surfaces.
    [Show full text]
  • Crystal Structure of Protoanthophyllite: a New Mineral from the Takase Ultramafic Complex, Japan
    American Mineralogist, Volume 88, pages 1718–1723, 2003 Crystal structure of protoanthophyllite: A new mineral from the Takase ultramafic complex, Japan HIROMI KONISHI,1,* THOMAS L. GROY,2 ISTVÁN DÓDONY,2,3 RITSURO MIYAWAKI,4 SATOSHI MATSUBARA,4 AND PETER R. BUSECK1,2 1Department of Geological Sciences, Arizona State University, Tempe, Arizona 85287-1404, U.S.A. 2Department of Chemistry/Biochemistry, Arizona State University, Tempe, Arizona 85287-1604, U.S.A. 3Department of Mineralogy, Eötvös L. University, Budapest, H-1117, Pázmány Péter sétány 1/C, Hungary 4Department of Geology, National Science Museum, 3-23-1 Hyakunincho, Shinjuku, Tokyo 169-0073, Japan ABSTRACT Protoanthophyllite, (Mg, Fe)7Si8O22(OH)2, is a newly discovered amphibole species from the Takase ultramafic complex in Japan. It occurs as prismatic crystals up to 5 mm in length in a ther- mally altered serpentinite that experienced contact metamorphism. The protoanthophyllite is asso- ciated with forsterite, talc, serpentine minerals, chlorite, chromian spinel, magnetite, pentlandite, and calcite. Some protoanthophyllite crystals contain minute lamellae of anthophyllite, other pyriboles, or both. Protoanthophyllite is biaxial negative, with refractive indices na = 1.593(2), nb (calc.) = 1.609, ng = 1.615(2), and 2Vx = 64(5)∞. Electron microprobe analyses give an empirical formula of (Mg6.31Fe0.61Na0.06Mn0.01Ni0.01)S7.00(Si7.90Al0.14)S8.04O22(OH)2. It is orthorhombic with space group Pnmn. The unit-cell dimensions are a = 9.3553(8), b = 17.9308(15), and c = 5.3117(4) Å: with V = 891.0(3) Å3 and Z = 2. A single-crystal X-ray structure determination shows that, following the convention of Thompson (1981), protoanthophyllite has an (X) configuration.
    [Show full text]
  • Thn AUERICAN Mtl,Ieralogist of AMERICA JOURNAL of the MINERALOGICAL SOCIETY
    THn AUERICAN Mtl,IERALoGIST OF AMERICA JOURNAL OF THE MINERALOGICAL SOCIETY 6 Vol. 33 MAY-JUNE, 1948 Nos. 5 and A NEW STUDY OF THE ANTHOPHYLLITE SERIES*I JorN C. RAnBrrt, U. S. GeologicalSuruey, Washington, D' C' ColltrNrs Abstiact...... 263 The problem. 264 Nomenclatureandclassification...... 266 Conclusions and suggestions for a revision of the series. 315 316 Acknowledgments. 317 References and selected bibliography ' AssrRect series The composition and some physical properties of 96 varieties in the anthophyllite Cherry are studied. Included is data on- r"u"n ,t"* anthophyllites from the pie-Beltian optical Creek rocks of Southwestern Montana. Chemical analyses, spectrographic analyses, presented for the Montana varieties' -similarproperties, densities, and unit-cell structure are x-ray information is presented in part for 89 varieties described in the literature' * Abridged from a Ph.D. thesis, "Anthophyllite and Its Occurrence in Southwestern Montana,"bepartment of Mineralogy and Petrography, Harvard University, 1946' and Petrography, Harvard Uni- t Contribuion from the Department of Mineralogy versity, No. 296. 264 JOHN C. RABBITT The name anthophyllite should be used for all members of the series. Chemical suffixes as proposed by Schaller (1930) can be used to indicate any variation in composition if krrown' All synonymsr such as gedrite, amosite, picroamosite, and ferroanthophylite, should be dropped. The series can be characterized by the general formula XzyeOz(OH, F)e where X is chiefly Mg, Fe", Al and in minor part Mn, Ti, Fe,.,,,Ca, Na, K; y is chiefly Si and in part Al. In X the maximum of Al is (Mg, Fe,,)sAlr and the maximum amount of Fe,, is about (Mg3.s Fe3.s).In Y the maximum amount of Al is (Si6Alr).
    [Show full text]
  • Serpentinites and Associated Rock Types Near Hopedale, Nunatsiavut: Potential for Artisanal Carving-Stone Resources
    Current Research (2019) Newfoundland and Labrador Department of Natural Resources Geological Survey, Report 19-1, pages 39-57 SERPENTINITES AND ASSOCIATED ROCK TYPES NEAR HOPEDALE, NUNATSIAVUT: POTENTIAL FOR ARTISANAL CARVING-STONE RESOURCES A. Kerr and G.C. Squires1 Department of Earth Sciences, Memorial University of Newfoundland, St. John’s, NL, A1B 3X5 (Mineral Deposits Section, Emeritus) 110 Fair Haven Place, St. John’s, NL, A1E 4S1 ABSTRACT The carving of stone is a traditional activity in Nunatsiavut, with thousands of years of history, and it continues to con- tribute to the economic development of communities on the north coast of Labrador. Although modern carvers use a wide vari- ety of materials and employ power tools, soft, altered ultramafic rocks (typically called ‘soapstone’, although technically ser- pentinite) remain the medium of choice. Serpentinite and true soapstone occur on a small scale in the Archean Nain Province, notably around Hopedale, and have been exploited on a small scale by local artists. Previous investigations suggested that larger scale extraction of carving stone might be possible at Tooktoosner Bay, very close to Hopedale, and at Adlatok Bay, located some 35 km south of Hopedale. This report discusses the Tooktoosner Bay area. At Tooktoonsner Bay, elongated zones of variably altered ultramafic rocks, up to 1 km in strike length, are surrounded by complex quartzofeldspathic orthogneisses, and are spatially associated with unusual metasedimentary (?) rocks rich in quartz and diopside. The ultramafic rocks range from relatively fresh harzburgite with preserved igneous textures to pervasively altered serpentinite that retains only vestiges of primary minerals. Some distinctive bright-green-weathering serpentinite out- crops along the shoreline have long provided small amounts of carving stone, obtained mostly from loose material.
    [Show full text]