Cdk7 Is Essential for Mitosis and for in Vivo Cdk-Activating Kinase Activity

Total Page:16

File Type:pdf, Size:1020Kb

Cdk7 Is Essential for Mitosis and for in Vivo Cdk-Activating Kinase Activity Downloaded from genesdev.cshlp.org on September 25, 2021 - Published by Cold Spring Harbor Laboratory Press Cdk7 is essential for mitosis and for in vivo Cdk-activating kinase activity Ste´phane Larochelle,1 Judit Pandur,1 Robert P. Fisher,2 Helen K. Salz,3 and Beat Suter1,4 1Department of Biology, McGill University, Montreal, PQ, Canada H3A 1B1; 2Program in Cell Biology and Genetics, Memorial Sloan-Kettering Cancer Center, New York, NY 10021 USA; 3Department of Genetics, Case Western Reserve University, Cleveland, Ohio 44106-4955 USA Cdk7 has been shown previously to be able to phosphorylate and activate many different Cdks in vitro. However, conclusive evidence that Cdk7 acts as a Cdk-activating kinase (CAK) in vivo has remained elusive. Adding to the controversy is the fact that in the budding yeast Saccharomyces cerevisiae, CAK activity is provided by the CAK1/Civ1 protein, which is unrelated to Cdk7. Furthermore Kin28, the budding yeast Cdk7 homolog, functions not as a CAK but as the catalytic subunit of TFIIH. Vertebrate Cdk7 is also known to be part of TFIIH. Therefore, in the absence of better genetic evidence, it was proposed that the CAK activity of Cdk7 may be an in vitro artifact. In an attempt to resolve this issue, we cloned the Drosophila cdk7 homolog and created null and temperature-sensitive mutations. Here we demonstrate that cdk7 is necessary for CAK activity in vivo in a multicellular organism. We show that cdk7 activity is required for the activation of both Cdc2/Cyclin A and Cdc2/Cyclin B complexes, and for cell division. These results suggest that there may be a fundamental difference in the way metazoans and budding yeast effect a key modification of Cdks. [Key Words: Drosophila; Cdk; CAK; mitosis; cell cycle] Received November 7, 1997; revised version accepted December 2, 1997. The orderly succession of DNA synthesis and cell divi- 1993; Solomon et al. 1993; Fisher and Morgan 1994; sion is known to be largely regulated by the successive Ma¨kela¨ et al. 1994). A third subunit, MAT1, has also activity of different cyclin-dependent kinases (Cdks) been found to associate with Cdk7 and cyclin H and to (Nigg 1995). The activity of Cdks is regulated by their serve as an assembly factor (Devault et al. 1995; Fisher et association with positive and negative regulatory sub- al. 1995; Tassan et al. 1995a). However, unlike most units, and by multiple phosphorylation events (Morgan other Cdks, Cdk7 was found to be active throughout the 1995). Complete activation of Cdks requires the phos- cell cycle with no detectable oscillation in its activity phorylation of a conserved threonine residue located (Brown et al. 1994; Matsuoka et al. 1994; Poon et al. within the T-loop, a substructure common to all Cdks 1994; Tassan et al. 1994). These results suggest that the and many other protein kinases. In monomeric inactive CAK activity of Cdk7 could be sufficient to provide the Cdk molecules, the T-loop blocks the catalytic site and activating Thr-161 (or equivalent) phosphorylation to all hinders substrate binding (De Bondt et al. 1993). X-ray Cdks throughout the cell cycle (Fesquet et al. 1993; Poon structural analysis of the Cdk2/Cyclin A complex sug- et al. 1993; Solomon et al. 1993; Fisher and Morgan 1994, gests that the T-loop is displaced by cyclin binding, 1996; Matsuoka et al. 1994). In addition to its putative thereby opening up the active site for substrate binding. role in cell cycle regulation, Cdk7 is also able to phos- Phosphorylation of the T-loop threonine then allows full phorylate the carboxy-terminal domain (CTD) of RNA activation of the complex (Jeffrey et al. 1995; Russo et al. polymerase II (Pol II) as part of the TFIIH basic transcrip- 1996). Because this threonine phosphorylation of the dif- tion factor complex (Roy et al. 1994; Serizawa et al. 1995; ferent Cdks is a crucial step in their activation (Morgan Shiekhattar et al. 1995). 1995), much effort has been directed toward identifying What appears to be a functional as well as a sequence and characterizing the kinases responsible for this event. homolog to Cdk7 has been found in the fission yeast An enzyme complex has been identified that is able to Schizosaccharomyces pombe (Buck et al. 1995; Damag- phosphorylate a number of different Cdks on their acti- nez et al. 1995). The S. pombe Mop1/Crk1 gene is es- vating threonine residue in vitro and is known as Cdk- sential and its product behaves biochemically as a CAK. Activating Kinase (CAK). CAK itself is a Cdk/Cyclin However, mutations in the S. pombe Mop1/Crk1 do not complex: Cdk7/Cyclin H (Fesquet et al. 1993; Poon et al. lead to a uniform cell cycle arrest, presumably because its activity is also required for TFIIH to regulate the tran- scriptional activity of RNA Pol II (Buck et al. 1995; Da- 4Corresponding author. magnez et al. 1995). In Saccharomyces cerevisiae, the E-MAIL BEAT [email protected]; FAX (514) 398-8051. gene product with the highest sequence similarity to 370 GENES & DEVELOPMENT 12:370–381 © 1998 by Cold Spring Harbor Laboratory Press ISSN 0890-9369/98 $5.00; www.genesdev.org Downloaded from genesdev.cshlp.org on September 25, 2021 - Published by Cold Spring Harbor Laboratory Press Cdk7 requirement for Cdc2 activation in vivo Cdk7 is Kin28. Although Kin28 was shown to be part of of Cdc2 Thr-161 phosphorylation was shown to oscillate the TFIIH transcription factor (Feaver et al. 1994) and to during the late preblastoderm embryonic cycles (Edgar et be required for the phosphorylation of the CTD of RNA al. 1994). This indicates that the target site for CAK is Pol II, it is not involved in the phosphorylation of Cdc28, regulated at least during some cell cycles. the budding yeast Cdc2 homolog (Cismowski et al. Here we report the identification of the Drosophila 1995). The protein responsible for CAK activity in S. cdk7 gene. By creating null and temperature-sensitive cerevisiae was identified as CAK1/Civ1 (Espinoza et al. mutations of Dmcdk7 we were able to analyze the in 1996; Kaldis et al. 1996; Thuret et al. 1996). Surprisingly, vivo molecular and cellular requirements for Cdk7. Al- CAK1/Civ1 shares only limited sequence similarity though our analysis does not reveal a Cdk7 requirement with Cdk7 and other Cdks. The identification of this in for Cdk2/Cyclin E activity, it demonstrates that Cdk7 is vivo CAK in budding yeast and the demonstration that it required for mitosis and for the activation of Cdc2 in is not closely related to the vertebrate Cdk7 led to the vivo. postulation that Cdk7/Cyclin H may in fact not repre- sent a physiologically relevant CAK activity (Cimowski Results et al. 1995; Espinoza et al. 1996; Kaldis et al. 1996; Isolation of the Dmcdk7 gene Thuret et al. 1996). Besides the two yeast, Drosophila has become a sys- We isolated a Drosophila melanogaster sequence ho- tem of choice for an in vivo analysis of the cell cycle mologous to the vertebrate cdk7 genes using a degener- (Edgar and Lehner 1996; Follette and O’Farrell 1997). ate PCR-based approach. This Drosophila cdk7 gene One of its major values is that it allows the genetic codes for a predicted polypeptide of 353 amino acids with analysis of cell cycle events in a multicellular organism. a calculated molecular mass of 39 kD. Drosophila and Like vertebrates, but contrary to the unicellular yeast, human Cdk7 proteins share 65% identity over the entire Drosophila cells use distinct Cdks at the different cell polypeptide (Fig. 1A), a sequence similarity higher than cycle transitions. Interestingly, although the activity of to any other Cdk. A single 1.6-kb Dmcdk7 poly(A+) RNA Cdk7 has been shown in different systems to be constant species is present throughout development and accumu- throughout the cell cycle (Brown et al. 1994; Matsuoka lates most strongly in ovaries and young embryos where et al. 1994; Poon et al. 1994; Tassan et al. 1994), the level it is probably maternally deposited (Fig. 1B). Figure 1. Identification and characterization of the Drosophila cdk7 gene. (A) Comparison of Drosophila and vertebrate Cdk7 proteins. (B) poly(A+) RNA blot showing the develop- mental profile of accumulation of the Dm- cdk7 message. Embryonic stages (E) are in hours. (L1) First instar larvae; (L2) second in- star larvae; (eL3) early third instar larvae; (lL3) late third instar larvae; (eP) early pupae; (lP) late pupae. A single 1.6-kb transcript accumu- lates predominantly in samples containing the female germ line and in the early embryos where it is contributed maternally. (Bottom) An autoradiograph of the same filter after hy- bridization with the small ribosomal subunit protein gene DL11. GENES & DEVELOPMENT 371 Downloaded from genesdev.cshlp.org on September 25, 2021 - Published by Cold Spring Harbor Laboratory Press Larochelle et al. Dmcdk7 is an essential gene The Dmcdk7 gene is located in cytological interval 4F and is separated by ∼0.4 and 3 kb from its proximal neighbors sans fille (snf) and deadhead (dhd), respec- tively (Fig. 3). snf and Dmcdk7 are oriented head to head. To create a Dmcdk7 null mutation, we took advantage of a P-element insertion at the dhd locus (dhdP8). Impre- cise excision of this P-element produced a number of lethal mutations (Flickinger and Salz 1994). From this screen we identified a 4.4-kb deletion that removes the entire Dmcdk7 and snf coding regions, as well as part of Figure 2. (A) Cdk7 immunoblot on total 0- to 4-hr embryonic the dhd gene (Fig. 3). This new deficiency is designated lysate. (B) DmCdk7 protein phosphorylates and activates Cdk2/ Df(1)JB254.
Recommended publications
  • Cyclin-Dependent Kinase 5 Decreases in Gastric Cancer and Its
    Published OnlineFirst January 21, 2015; DOI: 10.1158/1078-0432.CCR-14-1950 Biology of Human Tumors Clinical Cancer Research Cyclin-Dependent Kinase 5 Decreases in Gastric Cancer and Its Nuclear Accumulation Suppresses Gastric Tumorigenesis Longlong Cao1,2, Jiechao Zhou2, Junrong Zhang1,2, Sijin Wu3, Xintao Yang1,2, Xin Zhao2, Huifang Li2, Ming Luo1, Qian Yu1, Guangtan Lin1, Huizhong Lin1, Jianwei Xie1, Ping Li1, Xiaoqing Hu3, Chaohui Zheng1, Guojun Bu2, Yun-wu Zhang2,4, Huaxi Xu2,4,5, Yongliang Yang3, Changming Huang1, and Jie Zhang2,4 Abstract Purpose: As a cyclin-independent atypical CDK, the role of correlated with the severity of gastric cancer based on tumor CDK5 in regulating cell proliferation in gastric cancer remains and lymph node metastasis and patient 5-year fatality rate. unknown. Nuclear localization of CDK5 was found to be significantly Experimental Design: Expression of CDK5 in gastric tumor decreased in tumor tissues and gastric cancer cell lines, and paired adjacent noncancerous tissues from 437 patients was whereas exogenously expression of nucleus-targeted CDK5 measured by Western blotting, immunohistochemistry, and real- inhibited the proliferation and xenograft implantation of time PCR. The subcellular translocation of CDK5 was monitored gastric cancer cells. Treatment with the small molecule during gastric cancer cell proliferation. The role of nuclear CDK5 NS-0011, which increases CDK5 accumulation in the nucleus, in gastric cancer tumorigenic proliferation and ex vivo xenografts suppressed both cancer cell proliferation and xenograft was explored. Furthermore, by screening for compounds in the tumorigenesis. PubChem database that disrupt CDK5 association with its nu- Conclusions: Our results suggest that low CDK5 expression is clear export facilitator, we identified a small molecular (NS-0011) associated with poor overall survival in patients with gastric that inhibits gastric cancer cell growth.
    [Show full text]
  • The Cryoelectron Microscopy Structure of the Human CDK-Activating Kinase
    The cryoelectron microscopy structure of the human CDK-activating kinase Basil J. Grebera,b,1,2, Juan M. Perez-Bertoldic, Kif Limd, Anthony T. Iavaronee, Daniel B. Tosoa, and Eva Nogalesa,b,d,f,2 aCalifornia Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720; bMolecular Biophysics and Integrative Bio-Imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720; cBiophysics Graduate Group, University of California, Berkeley, CA 94720; dDepartment of Molecular and Cell Biology, University of California, Berkeley, CA 94720; eQB3/Chemistry Mass Spectrometry Facility, University of California, Berkeley, CA 94720; and fHoward Hughes Medical Institute, University of California, Berkeley, CA 94720 Edited by Seth A. Darst, Rockefeller University, New York, NY, and approved August 4, 2020 (received for review May 14, 2020) The human CDK-activating kinase (CAK), a complex composed of phosphoryl transfer (11). However, in addition to cyclin binding, cyclin-dependent kinase (CDK) 7, cyclin H, and MAT1, is a critical full activation of cell cycle CDKs requires phosphorylation of the regulator of transcription initiation and the cell cycle. It acts by T-loop (9, 12). In animal cells, these activating phosphorylations phosphorylating the C-terminal heptapeptide repeat domain of are carried out by CDK7 (13, 14), itself a cyclin-dependent ki- the RNA polymerase II (Pol II) subunit RPB1, which is an important nase whose activity depends on cyclin H (14). regulatory event in transcription initiation by Pol II, and it phos- In human and other metazoan cells, regulation of transcription phorylates the regulatory T-loop of CDKs that control cell cycle initiation by phosphorylation of the Pol II-CTD and phosphor- progression.
    [Show full text]
  • The P16 Status of Tumor Cell Lines Identifies Small Molecule Inhibitors Specific for Cyclin-Dependent Kinase 41
    Vol. 5, 4279–4286, December 1999 Clinical Cancer Research 4279 The p16 Status of Tumor Cell Lines Identifies Small Molecule Inhibitors Specific for Cyclin-dependent Kinase 41 Akihito Kubo,2 Kazuhiko Nakagawa,2, 3 CDK4 kinase inhibitors that may selectively induce growth Ravi K. Varma, Nicholas K. Conrad, inhibition of p16-altered tumors. Jin Quan Cheng, Wen-Ching Lee, INTRODUCTION Joseph R. Testa, Bruce E. Johnson, INK4A 4 The p16 gene (also known as CDKN2A) encodes p16 , Frederic J. Kaye, and Michael J. Kelley which inhibits the CDK45:cyclin D and CDK6:cyclin D com- Medicine Branch [A. K., K. N., N. K. C., F. J. K., B. E. J.] and plexes (1). These complexes mediate phosphorylation of the Rb Developmental Therapeutics Program [R. K. V.], National Cancer Institute, Bethesda, Maryland 20889; Department of Medical protein and allow cell cycle progression beyond the G1-S-phase Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania checkpoint (2). Alterations of p16 have been described in a wide 19111 [J. Q. C., W-C. L., J. R. T.]; and Department of Medicine, variety of histological types of human cancers including astro- Duke University Medical Center, Durham, North Carolina 27710 cytoma, melanoma, leukemia, breast cancer, head and neck [M. J. K.] squamous cell carcinoma, malignant mesothelioma, and lung cancer. Alterations of p16 can occur through homozygous de- ABSTRACT letion, point mutation, and transcriptional suppression associ- ated with hypermethylation in cancer cell lines and primary Loss of p16 functional activity leading to disruption of tumors (reviewed in Refs. 3–5). the p16/cyclin-dependent kinase (CDK) 4:cyclin D/retino- Whereas the Rb gene is inactivated in a narrow range of blastoma pathway is the most common event in human tumor cells, the pattern of mutational inactivation of Rb is tumorigenesis, suggesting that compounds with CDK4 ki- inversely correlated with p16 alterations (6–8), suggesting that nase inhibitory activity may be useful to regulate cancer cell a single defect in the p16/CDK4:cyclin D/Rb pathway is suffi- growth.
    [Show full text]
  • Cyclin E-CDK2 Is a Regulator of P27 Kip1
    Downloaded from genesdev.cshlp.org on October 4, 2021 - Published by Cold Spring Harbor Laboratory Press Cyclin E-CDK2 is a regulator of p27 Kip1 Robert J. Sheaff, 1 Mark Groudine, 1'4 Matthew Gordon, 1 James M. Roberts, 1's and Bruce E. Clurman 1-3,5 Divisions of 1Basic Sciences and 2Clinical Research, Fred Hutchinson Cancer Research Center (FHCRC), Seattle, Washington 98104; Departments of 3Medicine and 4Radiation Oncology, University of Washington, Seattle, Washington 98104 CDK inhibitors are thought to prevent cell proliferation by negatively regulating cyclin-CDK complexes. We propose that the opposite is also true, that cyclin-CDK complexes in mammmalian cells can promote cell cycle progression by directly down-regulating CDK inhibitors. We show that expression of cyclin E-CDK2 in murine fibroblasts causes phosphorylation of the CDK inhibitor p27 Kip1 on T187, and that cyclin E-CDK2 can directly phosphorylate p27 T187 in vitro. We further show that cyclin E-CDK2-dependent phosphorylation of p27 results in elimination of p27 from the cell, allowing cells to transit from G1 to S phase. Moreover, mutation of T187 in p27 to alanine creates a p27 protein that causes a G1 block resistant to cyclin E and whose level of expression is not modulated by cyclin E. A kinetic analysis of the interaction between p27 and cyclin E-CDK2 explains how p27 can be regulated by the same enzyme it targets for inhibition. We show that p27 interacts with cyclin E-CDK2 in at least two distinct ways: one resulting in p27 phosphorylation and release, the other in tight binding and cyclin E-CDK2 inhibition.
    [Show full text]
  • Targeting Cyclin-Dependent Kinase 9 and Myeloid Cell Leukaemia 1 in MYC-Driven B-Cell Lymphoma
    Targeting cyclin-dependent kinase 9 and myeloid cell leukaemia 1 in MYC-driven B-cell lymphoma Gareth Peter Gregory ORCID ID: 0000-0002-4170-0682 Thesis for Doctor of Philosophy September 2016 Sir Peter MacCallum Department of Oncology The University of Melbourne Doctor of Philosophy Submitted in total fulfilment of the degree of Abstract Aggressive B-cell lymphomas include diffuse large B-cell lymphoma, Burkitt lymphoma and intermediate forms. Despite high response rates to conventional immuno-chemotherapeutic approaches, an unmet need for novel therapeutic by resistance to chemotherapy and radiotherapy. The proto-oncogene MYC is strategies is required in the setting of relapsed and refractory disease, typified frequently dysregulated in the aggressive B-cell lymphomas, however, it has proven an elusive direct therapeutic target. MYC-dysregulated disease maintains a ‘transcriptionally-addicted’ state, whereby perturbation of A significant body of evidence is accumulating to suggest that RNA polymerase II activity may indirectly antagonise MYC activity. Furthermore, very recent studies implicate anti-apoptotic myeloid cell leukaemia 1 (MCL-1) as a critical survival determinant of MYC-driven lymphoma. This thesis utilises pharmacologic and genetic techniques in MYC-driven models of aggressive B-cell lymphoma to demonstrate that cyclin-dependent kinase 9 (CDK9) and MCL-1 are oncogenic dependencies of this subset of disease. The cyclin-dependent kinase inhibitor, dinaciclib, and more selective CDK9 inhibitors downregulation of MCL1 are used
    [Show full text]
  • Cyclin E2, a Novel Human G1 Cyclin and Activating Partner of CDK2 and CDK3, Is Induced by Viral Oncoproteins
    Oncogene (1998) 17, 2787 ± 2798 ã 1998 Stockton Press All rights reserved 0950 ± 9232/98 $12.00 http://www.stockton-press.co.uk/onc Cyclin E2, a novel human G1 cyclin and activating partner of CDK2 and CDK3, is induced by viral oncoproteins Maimoona Zariwala1, Jidong Liu2 and Yue Xiong*,1,2,3 1Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3280; 2Department of Biochemistry and Biophysics; University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599- 3280; 3Program in Molecular Biology and Biotechnology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3280, USA G1 cyclin E controls the initiation of DNA synthesis by complexes with CDK4 or CDK6 to prevent the CDKs activating CDK2, and abnormally high levels of cyclin E from binding with and becoming activated by D-type expression have frequently been observed in human cyclins. The main function of CDK inhibitors is cancers. We have isolated a novel human cyclin, cyclin believed to couple diversi®ed growth inhibitory signals E2, that contains signi®cant homology to cyclin E. to the cell cycle clock. Cyclin E2 speci®cally interacts with CDK inhibitors of The decision to enter the replicative DNA synthesis the CIP/KIP family and activates both CDK2 and (S) phase or arrest in G1 is linked to diverse cellular CDK3. The expression of cyclin E2 mRNA oscillates processes such as signal transduction, cell differentia- periodically throughout the cell cycle, peaking at the tion, senescence, and oncogenic transformation G1/S transition, and exhibits a pattern of tissue (Hunter and Pines, 1994).
    [Show full text]
  • Regulation of P27kip1 and P57kip2 Functions by Natural Polyphenols
    biomolecules Review Regulation of p27Kip1 and p57Kip2 Functions by Natural Polyphenols Gian Luigi Russo 1,* , Emanuela Stampone 2 , Carmen Cervellera 1 and Adriana Borriello 2,* 1 National Research Council, Institute of Food Sciences, 83100 Avellino, Italy; [email protected] 2 Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 81031 Napoli, Italy; [email protected] * Correspondence: [email protected] (G.L.R.); [email protected] (A.B.); Tel.: +39-0825-299-331 (G.L.R.) Received: 31 July 2020; Accepted: 9 September 2020; Published: 13 September 2020 Abstract: In numerous instances, the fate of a single cell not only represents its peculiar outcome but also contributes to the overall status of an organism. In turn, the cell division cycle and its control strongly influence cell destiny, playing a critical role in targeting it towards a specific phenotype. Several factors participate in the control of growth, and among them, p27Kip1 and p57Kip2, two proteins modulating various transitions of the cell cycle, appear to play key functions. In this review, the major features of p27 and p57 will be described, focusing, in particular, on their recently identified roles not directly correlated with cell cycle modulation. Then, their possible roles as molecular effectors of polyphenols’ activities will be discussed. Polyphenols represent a large family of natural bioactive molecules that have been demonstrated to exhibit promising protective activities against several human diseases. Their use has also been proposed in association with classical therapies for improving their clinical effects and for diminishing their negative side activities. The importance of p27Kip1 and p57Kip2 in polyphenols’ cellular effects will be discussed with the aim of identifying novel therapeutic strategies for the treatment of important human diseases, such as cancers, characterized by an altered control of growth.
    [Show full text]
  • Datasheet for CDK1-Cyclin B
    of T161 is required for activation of the CDK1- Supplied in: 100 mM NaCl, 50 mM HEPES Specific Activity: ~1,000,000 units/mg cyclin B complex and is mediated by the CDK (pH 7.5 @ 25°C), 0.1 mM EDTA, 1 mM DTT, 0.01% CDK1-cyclin B activating kinase (CAK). During G2 phase, Brij 35 and 50% glycerol. Molecular Weight: CDK1 (34 kDa), cyclin B CDK1-cyclin B complex is held in an inactive state (48 kDa). The apparent molecular weight of cyclin by phosphorylation of CDK1 at the two negative Reagents Supplied with Enzyme: B on SDS-PAGE is about 60 kDa. 1-800-632-7799 regulatory sites, T14 and Y15 by CDK1 inhibitory 10X NEBuffer for Protein Kinases (PK). [email protected] protein kinases, Myt1 and Wee1 respectively. Quality Control Assays www.neb.com Dephosphorylation of T14 and Y15 by cell division Reaction Conditions: 1X NEBuffer for PK (NEB Protease Activity: After incubation of 100 units #B6022), supplemented with 200 µM ATP (NEB P6020S 032120413041 cycle 25 (CDC25) protein phosphatase in late G2 of CDK1-cyclin B with a standard mixture phase activates the CDK1-cyclin B complex and #P0756) and gamma-labeled ATP to a final specific of proteins for 2 hours at 30°C, no proteolytic activity of 100–500 µCi/µmol. Incubate at 30°C. triggers the initiation of mitosis. During expression activity could be detected by SDS-PAGE analysis. P6020S in insect cells, the recombiniant CDK1-cyclin B is 1X NEBuffer for PK: Phosphatase Activity: After incubation of 200 units 20,000 U/ml Lot: 0321204 activated in vivo by endogenous kinase (1–4).
    [Show full text]
  • Cyclin E Provides a Link Between Cell Cycle, Dna
    CYCLIN E PROVIDES A LINK BETWEEN CELL CYCLE, DNA REPAIR AND APOPTOSIS A dissertation submitted to Kent State University in collaboration with the Lerner Research Institute, Cleveland Clinic in partial fulfillment of the requirements for the degree of Doctor of Philosophy by Dragos Costin Plesca May, 2008 Dissertation written by Dragos Costin Plesca Pharm.D., University of Medicine and Pharmacy “Carol Davila”, Romania, 2002 Ph.D., Kent State University, 2008 Approved by ____________________, Chair, Doctoral Dissertation Committee Alexandru Almasan, Ph.D ____________________, Member, Doctoral Dissertation Committee James Blank, Ph.D ____________________, Member, Doctoral Dissertation Committee Gail Fraizer, Ph.D ____________________, Member, Doctoral Dissertation Committee Olena Piontkivska, Ph.D ____________________, Graduate Faculty Representative Jennifer Marcinkiewicz, Ph.D Accepted by ____________________, Director, School of Biomedical Sciences Robert V. Dorman, Ph.D ____________________, Dean, College of Arts and Sciences John R. D. Stalvey, Ph.D ii TABLE OF CONTENTS List of Figures.................................................................................................................vi List of Tables ..................................................................................................................ix Acknowledgments ............................................................................................................x Chapter I. Introduction ................................................................................................1
    [Show full text]
  • Regulation of the Cell Cycle and DNA Damage-Induced Checkpoint Activation
    RnDSy-lu-2945 Regulation of the Cell Cycle and DNA Damage-Induced Checkpoint Activation IR UV IR Stalled Replication Forks/ BRCA1 Rad50 Long Stretches of ss-DNA Rad50 Mre11 BRCA1 Nbs1 Rad9-Rad1-Hus1 Mre11 RPA MDC1 γ-H2AX DNA Pol α/Primase RFC2-5 MDC1 Nbs1 53BP1 MCM2-7 53BP1 γ-H2AX Rad17 Claspin MCM10 Rad9-Rad1-Hus1 TopBP1 CDC45 G1/S Checkpoint Intra-S-Phase RFC2-5 ATM ATR TopBP1 Rad17 ATRIP ATM Checkpoint Claspin Chk2 Chk1 Chk2 Chk1 ATR Rad50 ATRIP Mre11 FANCD2 Ubiquitin MDM2 MDM2 Nbs1 CDC25A Rad50 Mre11 BRCA1 Ub-mediated Phosphatase p53 CDC25A Ubiquitin p53 FANCD2 Phosphatase Degradation Nbs1 p53 p53 CDK2 p21 p21 BRCA1 Ub-mediated SMC1 Degradation Cyclin E/A SMC1 CDK2 Slow S Phase CDC45 Progression p21 DNA Pol α/Primase Slow S Phase p21 Cyclin E Progression Maintenance of Inhibition of New CDC6 CDT1 CDC45 G1/S Arrest Origin Firing ORC MCM2-7 MCM2-7 Recovery of Stalled Replication Forks Inhibition of MCM10 MCM10 Replication Origin Firing DNA Pol α/Primase ORI CDC6 CDT1 MCM2-7 ORC S Phase Delay MCM2-7 MCM10 MCM10 ORI Geminin EGF EGF R GAB-1 CDC6 CDT1 ORC MCM2-7 PI 3-Kinase p70 S6K MCM2-7 S6 Protein Translation Pre-RC (G1) GAB-2 MCM10 GSK-3 TSC1/2 MCM10 ORI PIP2 TOR Promotes Replication CAK EGF Origin Firing Origin PIP3 Activation CDK2 EGF R Akt CDC25A PDK-1 Phosphatase Cyclin E/A SHIP CIP/KIP (p21, p27, p57) (Active) PLCγ PP2A (Active) PTEN CDC45 PIP2 CAK Unwinding RPA CDC7 CDK2 IP3 DAG (Active) Positive DBF4 α Feedback CDC25A DNA Pol /Primase Cyclin E Loop Phosphatase PKC ORC RAS CDK4/6 CDK2 (Active) Cyclin E MCM10 CDC45 RPA IP Receptor
    [Show full text]
  • Human P14arf-Mediated Cell Cycle Arrest Strictly Depends on Intact P53 Signaling Pathways
    Oncogene (2002) 21, 3207 ± 3212 ã 2002 Nature Publishing Group All rights reserved 0950 ± 9232/02 $25.00 www.nature.com/onc Human p14ARF-mediated cell cycle arrest strictly depends on intact p53 signaling pathways H Oliver Weber1,2, Temesgen Samuel1,3, Pia Rauch1 and Jens Oliver Funk*,1 1Laboratory of Molecular Tumor Biology, Department of Dermatology, University of Erlangen-Nuremberg, 91052 Erlangen, Germany; 2Regulation of Cell Growth Laboratory, National Cancer Institute, Frederick, Maryland, MD 21702-1201, USA The tumor suppressor ARF is transcribed from the INK4a/ 4 and 6 activities, thus leading to decreased phosphor- ARF locus in partly overlapping reading frames with the ylation of RB and to G1 arrest. Cells that are de®cient CDK inhibitor p16Ink4a. ARF is able to antagonize the for RB are resistant to p16Ink4a-mediated cell cycle MDM2-mediated ubiquitination and degradation of p53, arrest (Sherr and Roberts, 1995; Weinberg, 1995). leading to either cell cycle arrest or apoptosis, depending on ARF is also a cell cyle inhibitor. It does not directly the cellular context. However, recent data point to inhibit CDKs but interferes with the function of additional p53-independent functions of mouse p19ARF. MDM2 to destabilize p53. ARF may be activated by Little is known about the dependency of human p14ARF aberrant activation of oncoproteins such as Ras function on p53 and its downstream genes. Therefore, we (Palmero et al., 1998), c-myc (Zindy et al., 1998), analysed the mechanism of p14ARF-induced cell cycle arrest E1A (de Stanchina et al., 1998), Abl (Radfar et al., in several human cell types.
    [Show full text]
  • Cyclin D1 Degradation Is Sufficient to Induce G1 Cell Cycle Arrest Despite Constitutive Expression of Cyclin E2 in Ovarian Cancer Cells
    Published OnlineFirst July 28, 2009; DOI: 10.1158/0008-5472.CAN-09-0913 Experimental Therapeutics, Molecular Targets, and Chemical Biology Cyclin D1 Degradation Is Sufficient to Induce G1 Cell Cycle Arrest despite Constitutive Expression of Cyclin E2 in Ovarian Cancer Cells Chioniso Patience Masamha1 and Doris Mangiaracina Benbrook1,2 Departments of 1Biochemistry and Molecular Biology and 2Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma Abstract All cancers are characterized by abnormalities in apoptosis and differentiation and altered cell proliferation (4). Cancer cells often D- and E-type cyclins mediate G1-S phase cell cycle progres- sion through activation of specific cyclin-dependent kinases have a selective growth advantage due to deregulation of cell cycle (cdk) that phosphorylate the retinoblastoma protein (pRb), proteins, causing aberrant growth signaling that drives tumor thereby alleviating repression of E2F-DP transactivation of development (1, 5). Exit of cells from quiescence and cell cycle S-phase genes. Cyclin D1 is often overexpressed in a variety of progression is induced by sequential activation of cyclin-dependent cancers and is associated with tumorigenesis and metastasis. kinases (cdk) by cyclins. Once the cell progresses through late G1 into the Sphase, it is irrevocably committed to DNA replication Loss of cyclin D can cause G1 arrest in some cells, but in other cellular contexts, the downstream cyclin E protein can and cell division (6). Deregulation of G1 to S-phase transition is implicated in the pathogenesis of most human cancers, including substitute for cyclin D and facilitate G1-S progression. The objective of this study was to determine if a flexible ovarian cancer (7).
    [Show full text]