Human P14arf-Mediated Cell Cycle Arrest Strictly Depends on Intact P53 Signaling Pathways

Total Page:16

File Type:pdf, Size:1020Kb

Human P14arf-Mediated Cell Cycle Arrest Strictly Depends on Intact P53 Signaling Pathways Oncogene (2002) 21, 3207 ± 3212 ã 2002 Nature Publishing Group All rights reserved 0950 ± 9232/02 $25.00 www.nature.com/onc Human p14ARF-mediated cell cycle arrest strictly depends on intact p53 signaling pathways H Oliver Weber1,2, Temesgen Samuel1,3, Pia Rauch1 and Jens Oliver Funk*,1 1Laboratory of Molecular Tumor Biology, Department of Dermatology, University of Erlangen-Nuremberg, 91052 Erlangen, Germany; 2Regulation of Cell Growth Laboratory, National Cancer Institute, Frederick, Maryland, MD 21702-1201, USA The tumor suppressor ARF is transcribed from the INK4a/ 4 and 6 activities, thus leading to decreased phosphor- ARF locus in partly overlapping reading frames with the ylation of RB and to G1 arrest. Cells that are de®cient CDK inhibitor p16Ink4a. ARF is able to antagonize the for RB are resistant to p16Ink4a-mediated cell cycle MDM2-mediated ubiquitination and degradation of p53, arrest (Sherr and Roberts, 1995; Weinberg, 1995). leading to either cell cycle arrest or apoptosis, depending on ARF is also a cell cyle inhibitor. It does not directly the cellular context. However, recent data point to inhibit CDKs but interferes with the function of additional p53-independent functions of mouse p19ARF. MDM2 to destabilize p53. ARF may be activated by Little is known about the dependency of human p14ARF aberrant activation of oncoproteins such as Ras function on p53 and its downstream genes. Therefore, we (Palmero et al., 1998), c-myc (Zindy et al., 1998), analysed the mechanism of p14ARF-induced cell cycle arrest E1A (de Stanchina et al., 1998), Abl (Radfar et al., in several human cell types. Wild-type HCT116 colon 1998) and E2F-1 (Bates et al., 1998). In these scenarios, carcinoma cells (p53+/+p21CIP1+/+ 14-3-3s+/+), but not ARF is believed to counteract the oncogenic hyper- 7/7 p53 counterparts, underwent G1 and G2 cell cycle arrest proliferative eect, predominantly by induction of both ARF CIP17/7 following infection with a p14 -adenovirus. In p21 G1 and G2 arrest (Quelle et al., 1995). ARF 7/ ARF cells, p14 did not induce G1 or G2 arrest, while 14-3-3s Human p14 is only 49% homologous to murine 7 ARF counterparts were mainly arrested in G1, pointing to p19 and 5 kDa smaller. Despite such high size and CIP1 ARF ARF essential roles of p21 in G1 and G2 arrest and cooperative sequence divergence, p19 and p14 share similar ARF ARF roles of p21 and 14-3-3s in ARF-mediated G2 arrest. Our properties. Both p19 and p14 can directly data demonstrate a strict p53 and p21CIP1 dependency of interact with MDM2 (Pomerantz et al., 1998; Zhang p14ARF-induced cell cycle arrest in human cells. et al., 1998). MDM2 binds to p53 leading to the Oncogene (2002) 21, 3207 ± 3212. DOI: 10.1038/sj/ ubiquitin-mediated degradation of p53. Since p53 onc/1205429 transactivates MDM2, this constitutes a negative feedback loop between MDM2 and p53 (Sherr, Keywords: INK4a/ARF; p53; p21; 14-3-3s; DNA 1998). The interaction of ARF with MDM2 prevents tumor virus the MDM2-mediated p53 degradation and subse- quently leads to the stabilization and activation of p53, which then induces either cell cycle arrest or Introduction apoptosis, depending on the cellular context. The INK4a/ARF gene locus is one of the most The INK4a/ARF gene locus encodes for two cell cycle frequently targeted genes in human carcinogenesis. regulatory proteins, p16Ink4a and ARF (alternative p16Ink4a is a bona ®de tumor suppressor, showing reading frame; human p14ARF, murine p19ARF), in frequent deletions, point mutations and hypermethyla- dierent, overlapping reading frames. The two tran- tions exclusively targeting p16Ink4a in many human scripts have separate ®rst exons but share exons 2 and cancers (Chin et al., 1998a; Sharpless and DePinho, 3. Exon 2 is transcribed in distinct readings frames 1999). In contrast, the role of ARF in human such that there is no amino acid homology between the carcinogenesis is less clear. Many deletions target not two proteins (Chin et al., 1998b; Sharpless and only p16Ink4a, but also p14ARF. However, there are few DePinho, 1999). point mutations or deletions known so far to p16Ink4a belongs to the INK4 family of cyclin- exclusively target p14ARF (Chin et al., 1998b), and dependent kinase (CDK) inhibitors and inhibits CDK most point mutations in exon 2 render p16INK4A and not p14ARF unfunctional in in vitro assays (Quelle et al., 1997). On the other hand, the role of ARF as a tumor suppressor has been supported by a mouse *Correspondence; JO Funk; model in which exon 1b has exclusively been disrupted E-mail: [email protected] (Kamijo et al., 1997). The resulting p19ARF null mice 3Current address: The Burnham Institute, La Jolla, CA 92037, USA Received 11 December 2001; revised 23 January 2002; accepted 19 developed lymphomas and sarcomas at an early age, a February 2002 phenotype very similar to that of INK4a/ARF exon 2 ARF-mediated cell cycle arrest HO Weber et al 3208 knockout mice, which lack both p19ARF and p16Ink4a (Serrano et al., 1996). It is believed that the function of murine and human ARF to induce arrest mainly depends on the stabilization and activation of p53. However, the analysis of p19ARF in mouse embryo ®broblasts (MEFs) has pointed to additional p53-independent mechanisms of p19ARF function (Carnero et al., 2000; Weber et al., 2000). Furthermore, little is known about the downstream eectors once p53 is activated by ARF. In general, it is believed that the p53 function to arrest the cell cycle, i.e. following DNA damage, depends primarily on the transactivation of speci®c p53-responsive genes, such as p21CIP1, 14-3-3s,and others. (Levine, 1997; Vogelstein et al., 2000; Vousden, 2000). However, mouse p19ARF may inhibit the cell cycle through both p21CIP1-dependent and p21CIP1 - independent pathways (Modestou et al., 2001). Results We set out to analyse the dependency of p14ARF- induced cell cycle arrest on p53 and the p53 target CIP1 ARF genes, p21 and 14-3-3s, in the human colorectal Figure 1 p14 -induced G1 and G2 arrest depends on p53. An +/+ adenovirus encoding for p14ARF (ad-ARF) was used to express cancer cell line, HCT116. This cell line (p53 ARF 7/7 CIP1+/+ +/+ p14 in wild-type and p53 HCT116 cells. As a negative p21 14-3-3s ) and various isogenic knockout control an adenovirus encoding for GFP (ad-GFP) was used. cell lines, derived from the parental HCT116 cells by Treatment with adriamycin (ADR) to induce DNA damage homologous recombination (Waldman et al., 1995), served as a control for the activation of p53. At 24 h post- have been successfully used in a number of cell cycle treatment either BrdU-labeled cells were harvested for ¯ow cytometry analysis and whole-cell extracts were made for analysis studies (Bunz et al., 1998; Chan et al., 1999; McShea et of the relevant cell cycle regulators by immunoblotting or al., 2000; Samuel et al., 2001; Waldman et al., 1996, determination of CDK activities 1997). Their phenotype, mostly in the context of a DNA damage response, has been extensively docu- mented. In HCT cells, the endogenous p14ARF gene is silenced by mutation of one and methylation of the of CDK2 activity and the subsequent hypophosphor- other allele, respectively (Burri et al., 2001). Therefore, ylation of RB, indicative of G1 arrest. The CDK2 the introduction of p14ARF into these cells substitutes inhibition was mediated by p21CIP1, since p21CIP1 was missing p14ARF expression instead of increasing already detected in anti-CDK2 immunoprecipitates both in the existing p14ARF expression. ad-ARF-infected and ADR-treated cells (data not The adenoviral pAdEasy system (He et al., 1998) shown). Consequently, the percentage of S phase cells, was used to express p14ARF in the cells. The newly as evaluated by BrdU incorporation and ¯ow generated adenovirus (ad-ARF) encoded for p14ARF cytometry analysis, was decreased (Figure 1). In and the GFP gene under the control of two separated comparison, ADR-treated HCT cells showed a pro- cytomegalovirus promotors. Therefore, the infected found p53 induction and subsequent induction of CIP1 cells could be traced throughout the experiment. As a p21 and 14-3-3s with concomitant G1 and G2 cell control, an adenovirus encoding for GFP only (ad- cycle arrest. GFP) was used. GFP ¯uorescence indicated that 100% CDK1/Cyclin B activity, the key regulatory CDK of the target cells were infected (data not shown). To complex governing G2/M, was also markedly reduced compare the activation of p53 in response to ARF with both in ad-ARF- and ADR-treated wild-type cells, its activation by DNA damage, all cells were treated indicative of G2 arrest. CDK1 activity is primarily with adriamycin (ADR). We analysed the onset of regulated by activating and inhibitory phosphoryla- ARF-mediated eects in a time frame of up to 48 h tions. Therefore, the phosphorylation status of CDK1 following infection. was analysed by immunoblotting. Interestingly, CDK1 Following infection with ad-ARF, the HCT cells showed a hyperphosphorylated pattern, indicative of showed a high level of ARF expression as early as 12 h inhibitory tyrosine 14/threonine 15 phosphorylation post-infection, which was stable for at least another (Herzinger et al., 1995), only in ADR-treated cells but 36 h (data not shown). In the wild-type HCT cells, ad- not in ad-ARF-infected cells (Figure 1). ARF infection led to the stabilization of p53 and The current model of ARF function involves the induction of the p53 targets MDM2, p21CIP1 and 14-3- direct association of ARF and MDM2 leading to the 3s (Figure 1). This coincided with the downregulation inhibition of MDM2-mediated ubiquitination of p53 Oncogene ARF-mediated cell cycle arrest HO Weber et al 3209 (Kamijo et al., 1998; Pomerantz et al., 1998; Sherr, associated kinase activity was only marginally altered, 1998; Stott et al., 1998; Zhang et al., 1998); however, suggesting that 14-3-3s is dispensable for p14ARF- the precise requirement of MDM2 relocation for p53 induced G1 but important for G2 arrest.
Recommended publications
  • DNA Damage Checkpoint Dynamics Drive Cell Cycle Phase Transitions
    bioRxiv preprint doi: https://doi.org/10.1101/137307; this version posted August 4, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. DNA damage checkpoint dynamics drive cell cycle phase transitions Hui Xiao Chao1,2, Cere E. Poovey1, Ashley A. Privette1, Gavin D. Grant3,4, Hui Yan Chao1, Jeanette G. Cook3,4, and Jeremy E. Purvis1,2,4,† 1Department of Genetics 2Curriculum for Bioinformatics and Computational Biology 3Department of Biochemistry and Biophysics 4Lineberger Comprehensive Cancer Center University of North Carolina, Chapel Hill 120 Mason Farm Road Chapel Hill, NC 27599-7264 †Corresponding Author: Jeremy Purvis Genetic Medicine Building 5061, CB#7264 120 Mason Farm Road Chapel Hill, NC 27599-7264 [email protected] ABSTRACT DNA damage checkpoints are cellular mechanisms that protect the integrity of the genome during cell cycle progression. In response to genotoxic stress, these checkpoints halt cell cycle progression until the damage is repaired, allowing cells enough time to recover from damage before resuming normal proliferation. Here, we investigate the temporal dynamics of DNA damage checkpoints in individual proliferating cells by observing cell cycle phase transitions following acute DNA damage. We find that in gap phases (G1 and G2), DNA damage triggers an abrupt halt to cell cycle progression in which the duration of arrest correlates with the severity of damage. However, cells that have already progressed beyond a proposed “commitment point” within a given cell cycle phase readily transition to the next phase, revealing a relaxation of checkpoint stringency during later stages of certain cell cycle phases.
    [Show full text]
  • Cyclin-Dependent Kinase 5 Decreases in Gastric Cancer and Its
    Published OnlineFirst January 21, 2015; DOI: 10.1158/1078-0432.CCR-14-1950 Biology of Human Tumors Clinical Cancer Research Cyclin-Dependent Kinase 5 Decreases in Gastric Cancer and Its Nuclear Accumulation Suppresses Gastric Tumorigenesis Longlong Cao1,2, Jiechao Zhou2, Junrong Zhang1,2, Sijin Wu3, Xintao Yang1,2, Xin Zhao2, Huifang Li2, Ming Luo1, Qian Yu1, Guangtan Lin1, Huizhong Lin1, Jianwei Xie1, Ping Li1, Xiaoqing Hu3, Chaohui Zheng1, Guojun Bu2, Yun-wu Zhang2,4, Huaxi Xu2,4,5, Yongliang Yang3, Changming Huang1, and Jie Zhang2,4 Abstract Purpose: As a cyclin-independent atypical CDK, the role of correlated with the severity of gastric cancer based on tumor CDK5 in regulating cell proliferation in gastric cancer remains and lymph node metastasis and patient 5-year fatality rate. unknown. Nuclear localization of CDK5 was found to be significantly Experimental Design: Expression of CDK5 in gastric tumor decreased in tumor tissues and gastric cancer cell lines, and paired adjacent noncancerous tissues from 437 patients was whereas exogenously expression of nucleus-targeted CDK5 measured by Western blotting, immunohistochemistry, and real- inhibited the proliferation and xenograft implantation of time PCR. The subcellular translocation of CDK5 was monitored gastric cancer cells. Treatment with the small molecule during gastric cancer cell proliferation. The role of nuclear CDK5 NS-0011, which increases CDK5 accumulation in the nucleus, in gastric cancer tumorigenic proliferation and ex vivo xenografts suppressed both cancer cell proliferation and xenograft was explored. Furthermore, by screening for compounds in the tumorigenesis. PubChem database that disrupt CDK5 association with its nu- Conclusions: Our results suggest that low CDK5 expression is clear export facilitator, we identified a small molecular (NS-0011) associated with poor overall survival in patients with gastric that inhibits gastric cancer cell growth.
    [Show full text]
  • The Cryoelectron Microscopy Structure of the Human CDK-Activating Kinase
    The cryoelectron microscopy structure of the human CDK-activating kinase Basil J. Grebera,b,1,2, Juan M. Perez-Bertoldic, Kif Limd, Anthony T. Iavaronee, Daniel B. Tosoa, and Eva Nogalesa,b,d,f,2 aCalifornia Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720; bMolecular Biophysics and Integrative Bio-Imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720; cBiophysics Graduate Group, University of California, Berkeley, CA 94720; dDepartment of Molecular and Cell Biology, University of California, Berkeley, CA 94720; eQB3/Chemistry Mass Spectrometry Facility, University of California, Berkeley, CA 94720; and fHoward Hughes Medical Institute, University of California, Berkeley, CA 94720 Edited by Seth A. Darst, Rockefeller University, New York, NY, and approved August 4, 2020 (received for review May 14, 2020) The human CDK-activating kinase (CAK), a complex composed of phosphoryl transfer (11). However, in addition to cyclin binding, cyclin-dependent kinase (CDK) 7, cyclin H, and MAT1, is a critical full activation of cell cycle CDKs requires phosphorylation of the regulator of transcription initiation and the cell cycle. It acts by T-loop (9, 12). In animal cells, these activating phosphorylations phosphorylating the C-terminal heptapeptide repeat domain of are carried out by CDK7 (13, 14), itself a cyclin-dependent ki- the RNA polymerase II (Pol II) subunit RPB1, which is an important nase whose activity depends on cyclin H (14). regulatory event in transcription initiation by Pol II, and it phos- In human and other metazoan cells, regulation of transcription phorylates the regulatory T-loop of CDKs that control cell cycle initiation by phosphorylation of the Pol II-CTD and phosphor- progression.
    [Show full text]
  • CDK-Independent and PCNA-Dependent Functions of P21 in DNA Replication
    G C A T T A C G G C A T genes Review CDK-Independent and PCNA-Dependent Functions of p21 in DNA Replication Sabrina Florencia Mansilla , María Belén De La Vega y, Nicolás Luis Calzetta y, Sebastián Omar Siri y and Vanesa Gottifredi * Cell Cycle and Genomic Stability Laboratory, Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires 1405, Argentina; [email protected] (S.F.M.); [email protected] (M.B.D.L.V.); [email protected] (N.L.C.); [email protected] (S.O.S.) * Correspondence: [email protected] These authors contributed equally to this work. y Received: 9 April 2020; Accepted: 15 May 2020; Published: 28 May 2020 Abstract: p21Waf/CIP1 is a small unstructured protein that binds and inactivates cyclin-dependent kinases (CDKs). To this end, p21 levels increase following the activation of the p53 tumor suppressor. CDK inhibition by p21 triggers cell-cycle arrest in the G1 and G2 phases of the cell cycle. In the absence of exogenous insults causing replication stress, only residual p21 levels are prevalent that are insufficient to inhibit CDKs. However, research from different laboratories has demonstrated that these residual p21 levels in the S phase control DNA replication speed and origin firing to preserve genomic stability. Such an S-phase function of p21 depends fully on its ability to displace partners from chromatin-bound proliferating cell nuclear antigen (PCNA). Vice versa, PCNA also regulates p21 by preventing its upregulation in the S phase, even in the context of robust p21 induction by γ irradiation.
    [Show full text]
  • Synergistic Tumor Suppression by Combined Inhibition of Telomerase
    Synergistic tumor suppression by combined inhibition PNAS PLUS of telomerase and CDKN1A Romi Guptaa, Yuying Donga, Peter D. Solomona, Hiromi I. Wetterstenb, Christopher J. Chengc,d, JIn-Na Mina,e, Jeremy Hensonf,g, Shaillay Kumar Dograh, Sung H. Hwangi, Bruce D. Hammocki, Lihua J. Zhuj, Roger R. Reddelf,g, W. Mark Saltzmanc, Robert H. Weissb,k, Sandy Changa,e, Michael R. Greenl,1, and Narendra Wajapeyeea,1 Departments of aPathology and eLaboratory Medicine, Yale University School of Medicine, New Haven, CT 06510; iDepartment of Entomology and bDivision of Nephrology, Department of Internal Medicine, University of California, Davis, California 95616; Departments of cBiomedical Engineering and dMolecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511; fSydney Medical School, University of Sydney, NSW 2006, Australia; gCancer Research Unit, Children’s Medical Research Institute, Westmead, NSW 2145, Australia; hSingapore Institute of Clinical Sciences, Agency for Science Technology and Research (A*STAR), Brenner Center for Molecular Medicine, Singapore 117609; lHoward Hughes Medical Institute and jPrograms in Gene Function and Expression and Molecular Medicine, University of Massachusetts Medical School, Massachusetts 01605; and kDepartment of Medicine, Mather VA Medical Center, Sacramento, CA 9565 Contributed by Michael R. Green, June 19, 2014 (sent for review June 8, 2014) Tumor suppressor p53 plays an important role in mediating growth dition to its role in cell cycle regulation, p21 has been shown in inhibition upon telomere dysfunction. Here, we show that loss of a variety of studies to repress apoptosis (9–13). the p53 target gene cyclin-dependent kinase inhibitor 1A (CDKN1A, Here,westudytheroleofp21inthe context of telomerase in- also known as p21WAF1/CIP1) increases apoptosis induction following hibition.
    [Show full text]
  • Full Text (PDF)
    ResearchArticle DNA Damage–Dependent Translocation of B23 and p19ARF Is Regulated by the Jun N-Terminal Kinase Pathway Orli Yogev,1 Keren Saadon,1 Shira Anzi,1 Kazushi Inoue,2 and Eitan Shaulian1 1Department of Experimental Medicine and Cancer Research, Hebrew University Medical School, Jerusalem, Israel and 2Departments of Pathology/Cancer Biology, Wake Forest University Health Sciences, Winston-Salem, North Carolina Abstract arrest or apoptosis. However, increased tumor development in The dynamic behavior of the nucleolus plays a role in the triple knockout mice nullizygous for ARF, p53, and Mdm2 showed detection of and response to DNA damage of cells. Two that ARF acts also in a p53-independent manner (11). Some of the nucleolar proteins, p14ARF/p19ARF and B23, were shown to p53-independent activity is attributed to its ability to reduce rRNA translocate out of the nucleolus after exposure of cells to DNA- processing (12, 13) and inhibit oncogene-induced transcription damaging agents. This translocation affects multiple cellular (14, 15). functions, such as DNA repair, proliferation, and survival. In ARF augments p53 activity mainly in response to oncogenic this study, we identify a pathway and scrutinize the mecha- stress. Its expression is up-regulated in response to deregulated nisms leading to the translocation of these proteins after oncogenic activity due to elevated transcription governed by several transcription factors, such as E2F (16), c-myc (17), AP-1 exposure of cells to DNA-damaging agents. We show that redistribution of B23 and p19ARF after the exposure to (18), or by oncogenic Ras (19). A second mechanism regulating ARF activity involves the control of its subcellular localization (3).
    [Show full text]
  • Mitosis Vs. Meiosis
    Mitosis vs. Meiosis In order for organisms to continue growing and/or replace cells that are dead or beyond repair, cells must replicate, or make identical copies of themselves. In order to do this and maintain the proper number of chromosomes, the cells of eukaryotes must undergo mitosis to divide up their DNA. The dividing of the DNA ensures that both the “old” cell (parent cell) and the “new” cells (daughter cells) have the same genetic makeup and both will be diploid, or containing the same number of chromosomes as the parent cell. For reproduction of an organism to occur, the original parent cell will undergo Meiosis to create 4 new daughter cells with a slightly different genetic makeup in order to ensure genetic diversity when fertilization occurs. The four daughter cells will be haploid, or containing half the number of chromosomes as the parent cell. The difference between the two processes is that mitosis occurs in non-reproductive cells, or somatic cells, and meiosis occurs in the cells that participate in sexual reproduction, or germ cells. The Somatic Cell Cycle (Mitosis) The somatic cell cycle consists of 3 phases: interphase, m phase, and cytokinesis. 1. Interphase: Interphase is considered the non-dividing phase of the cell cycle. It is not a part of the actual process of mitosis, but it readies the cell for mitosis. It is made up of 3 sub-phases: • G1 Phase: In G1, the cell is growing. In most organisms, the majority of the cell’s life span is spent in G1. • S Phase: In each human somatic cell, there are 23 pairs of chromosomes; one chromosome comes from the mother and one comes from the father.
    [Show full text]
  • P14ARF Inhibits Human Glioblastoma–Induced Angiogenesis by Upregulating the Expression of TIMP3
    P14ARF inhibits human glioblastoma–induced angiogenesis by upregulating the expression of TIMP3 Abdessamad Zerrouqi, … , Daniel J. Brat, Erwin G. Van Meir J Clin Invest. 2012;122(4):1283-1295. https://doi.org/10.1172/JCI38596. Research Article Oncology Malignant gliomas are the most common and the most lethal primary brain tumors in adults. Among malignant gliomas, 60%–80% show loss of P14ARF tumor suppressor activity due to somatic alterations of the INK4A/ARF genetic locus. The tumor suppressor activity of P14ARF is in part a result of its ability to prevent the degradation of P53 by binding to and sequestering HDM2. However, the subsequent finding of P14ARF loss in conjunction with TP53 gene loss in some tumors suggests the protein may have other P53-independent tumor suppressor functions. Here, we report what we believe to be a novel tumor suppressor function for P14ARF as an inhibitor of tumor-induced angiogenesis. We found that P14ARF mediates antiangiogenic effects by upregulating expression of tissue inhibitor of metalloproteinase–3 (TIMP3) in a P53-independent fashion. Mechanistically, this regulation occurred at the gene transcription level and was controlled by HDM2-SP1 interplay, where P14ARF relieved a dominant negative interaction of HDM2 with SP1. P14ARF-induced expression of TIMP3 inhibited endothelial cell migration and vessel formation in response to angiogenic stimuli produced by cancer cells. The discovery of this angiogenesis regulatory pathway may provide new insights into P53-independent P14ARF tumor-suppressive mechanisms that have implications for the development of novel therapies directed at tumors and other diseases characterized by vascular pathology. Find the latest version: https://jci.me/38596/pdf Research article P14ARF inhibits human glioblastoma–induced angiogenesis by upregulating the expression of TIMP3 Abdessamad Zerrouqi,1 Beata Pyrzynska,1,2 Maria Febbraio,3 Daniel J.
    [Show full text]
  • Transcriptional Regulation of the P16 Tumor Suppressor Gene
    ANTICANCER RESEARCH 35: 4397-4402 (2015) Review Transcriptional Regulation of the p16 Tumor Suppressor Gene YOJIRO KOTAKE, MADOKA NAEMURA, CHIHIRO MURASAKI, YASUTOSHI INOUE and HARUNA OKAMOTO Department of Biological and Environmental Chemistry, Faculty of Humanity-Oriented Science and Engineering, Kinki University, Fukuoka, Japan Abstract. The p16 tumor suppressor gene encodes a specifically bind to and inhibit the activity of cyclin-CDK specific inhibitor of cyclin-dependent kinase (CDK) 4 and 6 complexes, thus preventing G1-to-S progression (4, 5). and is found altered in a wide range of human cancers. p16 Among these CKIs, p16 plays a pivotal role in the regulation plays a pivotal role in tumor suppressor networks through of cellular senescence through inhibition of CDK4/6 activity inducing cellular senescence that acts as a barrier to (6, 7). Cellular senescence acts as a barrier to oncogenic cellular transformation by oncogenic signals. p16 protein is transformation induced by oncogenic signals, such as relatively stable and its expression is primary regulated by activating RAS mutations, and is achieved by accumulation transcriptional control. Polycomb group (PcG) proteins of p16 (Figure 1) (8-10). The loss of p16 function is, associate with the p16 locus in a long non-coding RNA, therefore, thought to lead to carcinogenesis. Indeed, many ANRIL-dependent manner, leading to repression of p16 studies have shown that the p16 gene is frequently mutated transcription. YB1, a transcription factor, also represses the or silenced in various human cancers (11-14). p16 transcription through direct association with its Although many studies have led to a deeper understanding promoter region.
    [Show full text]
  • Kinetochores, Microtubules, and Spindle Assembly Checkpoint
    Review Joined at the hip: kinetochores, microtubules, and spindle assembly checkpoint signaling 1 1,2,3 Carlos Sacristan and Geert J.P.L. Kops 1 Molecular Cancer Research, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands 2 Center for Molecular Medicine, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands 3 Cancer Genomics Netherlands, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands Error-free chromosome segregation relies on stable and cell division. The messenger is the SAC (also known as connections between kinetochores and spindle microtu- the mitotic checkpoint) (Figure 1). bules. The spindle assembly checkpoint (SAC) monitors The transition to anaphase is triggered by the E3 ubiqui- such connections and relays their absence to the cell tin ligase APC/C, which tags inhibitors of mitotic exit cycle machinery to delay cell division. The molecular (CYCLIN B) and of sister chromatid disjunction (SECURIN) network at kinetochores that is responsible for microtu- for proteasomal degradation [2]. The SAC has a one-track bule binding is integrated with the core components mind, inhibiting APC/C as long as incorrectly attached of the SAC signaling system. Molecular-mechanistic chromosomes persist. It goes about this in the most straight- understanding of how the SAC is coupled to the kineto- forward way possible: it assembles a direct and diffusible chore–microtubule interface has advanced significantly inhibitor of APC/C at kinetochores that are not connected in recent years. The latest insights not only provide a to spindle microtubules. This inhibitor is named the striking view of the dynamics and regulation of SAC mitotic checkpoint complex (MCC) (Figure 1).
    [Show full text]
  • Clusterin-Mediated Apoptosis Is Regulated by Adenomatous Polyposis Coli and Is P21 Dependent but P53 Independent
    [CANCER RESEARCH 64, 7412–7419, October 15, 2004] Clusterin-Mediated Apoptosis Is Regulated by Adenomatous Polyposis Coli and Is p21 Dependent but p53 Independent Tingan Chen,1 Joel Turner,1 Susan McCarthy,1 Maurizio Scaltriti,2 Saverio Bettuzzi,2 and Timothy J. Yeatman1 1Department of Interdisciplinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida; and 2Dipartimento di Medicina Sperimentale, Sezione di Biochimica, Biochimica Clinica e Biochimica dell’Esercizio Fisico, Parma, Italy ABSTRACT ptosis (15). Additional data suggest that a secreted form of clusterin acts as a molecular chaperone, scavenging denatured proteins outside Clusterin is a widely expressed glycoprotein that has been paradoxi- cells following specific stress-induced injury such as heat shock. cally observed to have both pro- and antiapoptotic functions. Recent Other data, show that overexpression of a specific nuclear form of reports suggest this apparent dichotomy of function may be related to two different isoforms, one secreted and cytoplasmic, the other nuclear. To clusterin acts as a prodeath signal (16). Furthermore, studies of human clarify the functional role of clusterin in regulating apoptosis, we exam- colon cancer suggest a conversion from the nuclear form of clusterin ined its expression in human colon cancer tissues and in human colon to the cytoplasmic form, which may promote tumor progression (17). cancer cell lines. We additionally explored its expression and activity using Recently, a link between the accumulation of the nuclear form of models of adenomatous polyposis coli (APC)- and chemotherapy-induced clusterin and anoikis induction in prostate epithelial cells was shown apoptosis. Clusterin RNA and protein levels were decreased in colon (18).
    [Show full text]
  • Targeting Cyclin-Dependent Kinase 9 and Myeloid Cell Leukaemia 1 in MYC-Driven B-Cell Lymphoma
    Targeting cyclin-dependent kinase 9 and myeloid cell leukaemia 1 in MYC-driven B-cell lymphoma Gareth Peter Gregory ORCID ID: 0000-0002-4170-0682 Thesis for Doctor of Philosophy September 2016 Sir Peter MacCallum Department of Oncology The University of Melbourne Doctor of Philosophy Submitted in total fulfilment of the degree of Abstract Aggressive B-cell lymphomas include diffuse large B-cell lymphoma, Burkitt lymphoma and intermediate forms. Despite high response rates to conventional immuno-chemotherapeutic approaches, an unmet need for novel therapeutic by resistance to chemotherapy and radiotherapy. The proto-oncogene MYC is strategies is required in the setting of relapsed and refractory disease, typified frequently dysregulated in the aggressive B-cell lymphomas, however, it has proven an elusive direct therapeutic target. MYC-dysregulated disease maintains a ‘transcriptionally-addicted’ state, whereby perturbation of A significant body of evidence is accumulating to suggest that RNA polymerase II activity may indirectly antagonise MYC activity. Furthermore, very recent studies implicate anti-apoptotic myeloid cell leukaemia 1 (MCL-1) as a critical survival determinant of MYC-driven lymphoma. This thesis utilises pharmacologic and genetic techniques in MYC-driven models of aggressive B-cell lymphoma to demonstrate that cyclin-dependent kinase 9 (CDK9) and MCL-1 are oncogenic dependencies of this subset of disease. The cyclin-dependent kinase inhibitor, dinaciclib, and more selective CDK9 inhibitors downregulation of MCL1 are used
    [Show full text]