Cyclin E2, a Novel Human G1 Cyclin and Activating Partner of CDK2 and CDK3, Is Induced by Viral Oncoproteins

Total Page:16

File Type:pdf, Size:1020Kb

Cyclin E2, a Novel Human G1 Cyclin and Activating Partner of CDK2 and CDK3, Is Induced by Viral Oncoproteins Oncogene (1998) 17, 2787 ± 2798 ã 1998 Stockton Press All rights reserved 0950 ± 9232/98 $12.00 http://www.stockton-press.co.uk/onc Cyclin E2, a novel human G1 cyclin and activating partner of CDK2 and CDK3, is induced by viral oncoproteins Maimoona Zariwala1, Jidong Liu2 and Yue Xiong*,1,2,3 1Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3280; 2Department of Biochemistry and Biophysics; University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599- 3280; 3Program in Molecular Biology and Biotechnology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3280, USA G1 cyclin E controls the initiation of DNA synthesis by complexes with CDK4 or CDK6 to prevent the CDKs activating CDK2, and abnormally high levels of cyclin E from binding with and becoming activated by D-type expression have frequently been observed in human cyclins. The main function of CDK inhibitors is cancers. We have isolated a novel human cyclin, cyclin believed to couple diversi®ed growth inhibitory signals E2, that contains signi®cant homology to cyclin E. to the cell cycle clock. Cyclin E2 speci®cally interacts with CDK inhibitors of The decision to enter the replicative DNA synthesis the CIP/KIP family and activates both CDK2 and (S) phase or arrest in G1 is linked to diverse cellular CDK3. The expression of cyclin E2 mRNA oscillates processes such as signal transduction, cell differentia- periodically throughout the cell cycle, peaking at the tion, senescence, and oncogenic transformation G1/S transition, and exhibits a pattern of tissue (Hunter and Pines, 1994). In the budding yeast speci®city distinct from that of cyclin E1. Cyclin E2 Saccharomyces cerevisiae, the G1 cyclins Cln1 and encodes a short lived protein whose turnover is most Cln2 play the key role in determining the rate and fate likely governed by the proteasome pathway and is of G1 phase progression. Accumulation of CLN1 and regulated by phosphorylation on a conserved Thr-392 CLN2 proteins in G1 results in activation of Cdc28 residue. Expression of the viral E6 oncoprotein in normal kinase activity, thereby driving cells to passage through human ®broblasts increases the steady state level of a G1 restriction point known as START and to cyclin E2, but not cyclin E1, while expression of the E7 committing cells to initiate DNA synthesis (Reed, oncoprotein upregulates both. These data suggest that 1992). In mammalian cells, two CDK enzymes, CDK4 the expression of these two G1 E-type cyclins may be or CDK6 in combination with three D-type cyclins similarly regulated by the pRb function, but distinctly by (D1, D2 and D3) and CDK2 in association with cyclin the p53 activity. E, play the principle roles in regulating G1 progression (reviewed in Sherr, 1993, 1994). Although overexpres- Keywords: cyclin E2; CDK; G1 cell cycle control; cell sion of both D- and E-type cyclins similarly shorten transformation the G1 interval and reduce mitogen dependency (Ohtsubo and Roberts, 1993; Ohtsubo et al., 1995; Resnitzky et al., 1994), the function of these two cyclins are distinctly dierent in regulating G1 Introduction progression. While the function of cyclin D-associated kinase is largely dependent on the wild type pRB Progression through eukaryotic cell division cycle is (Guan et al., 1994; Lukas et al., 1995a, b; Koh et al., controlled by a family of protein serine/threonine 1995; Serrano et al., 1995; Medema et al., 1996), the kinases known as cyclin-dependent kinases (CDKs) function of cyclin E remains essential in Rb-negative which consist of an activating subunit, a cyclin, and a cells. The expression of cyclin D genes and the pRb catalytic subunit, a CDK. Sequential activation and kinase activity of the cyclin D-CDK4/6 enzymes are inactivation of CDK enzymatic function constitutes the induced during the delayed early response to mitogenic molecular basis for orderly progression through the cell stimulation, prior to the accumulation and kinase cycle. The primary positive and negative regulation of activity of cyclin E (Matsushime et al., 1991, 1994; CDK activity is mediated by the binding of a cyclin Meyerson and Harlow, 1994). The level of D cyclins and of a CDK inhibitor, respectively (Hunter and ¯uctuate little during the rest of the cell cycle. On the Pines, 1994). In mammals, two families of seven CDK other hand, the expression of cyclin E, but not CDK2, inhibitors have been identi®ed that dier in both is periodic during the cell cycle, peaking during G1 and structure and mechanism of action. Members of the declining during S phase (Lew et al., 1991; Dulic et al., CIP/KIP family contains three genes, p21CIP1/WAF1, 1992; Ko et al., 1992) and is necessary for S phase p27KIP1 and p57KIP2, that inhibit CDK activity by entry (Sherr, 1993; Duronio et al., 1996; Ohtsubo and forming a ternary p21-cyclin D-CDK4 complex. The Roberts, 1993; Ohtsubo et al., 1995; Pagano et al., INK4 family inhibitors which include four closely 1992; Resnitzky et al., 1994). These features suggest related ankyrin repeat containing genes, p16INK4a, that CDK4/6-cyclin D and CDK2-cyclin E enzymes p15INK4b, p18INK4c and p19INK4d, selectively form binary have distinct functions in regulating G1 progression, with cyclin D coupling extracellular growth signals to the cell cycle machinery while cyclin E controlling the initiation of DNA replication. *Correspondence: Y Xiong; E-mail: [email protected] Received date 11 September 1998; revised 22 October 1998; accepted The regulation of periodic accumulation and 22 October 1998 diminish of cyclin E is achieved largely through Novel human G1 cyclin E2 M Zariwala et al 2788 transcriptional activation of E2F during G1 (Duronio proteins, cyclin H has not been previously reported to and O'Farrell, 1995; Ohtani et al., 1995; Degregori et interact with CDK2. Whether in vivo CDK2 associates al., 1995; Botz et al., 1996; Geng et al., 1996), and with cyclin H and whether cyclin H can activate CDK2 subsequent degradation of cyclin E by the ubiquitin- kinase activity remains to be determined. In addition, a mediated proteolysis during S phase (Clurman et al., novel protein, encoded by clone HT376, was identi®ed 1996; Won and Reed, 1996). Deregulated cyclin E and con®rmed to strongly interact with CDK2K33M after expression could contribute to and may even be re-transformation of the rescued plasmid into yeast necessary for entering into S phase in cells which cells with CDK2K33M as bait (Figure 1a). This clone, would otherwise arrest in G1. Indeed, altered which codes for a novel human cyclin most closely expression of cyclin E has been frequently observed related to cyclin E (termed as cyclin E2), was chosen in human cancers. While genetic alteration of cyclin E for further study. gene rarely occurred in human cancer, abnormally high Cyclin E2 was cloned from the screen with mutant levels of cyclin E protein, resulted from either gene CDK2 suggesting that interaction between CDK2 and ampli®cation or deregulated degradation by the cyclin E2 may be facilitated by the mutation in CDK2. ubiquitin-mediated proteolysis pathway, have fre- To test this directly, cyclin E2 expressing HF7c yeast quently been observed in both primary tumors and cells were sequentially transformed with either mutant cancer-derived cell lines (reviewed in Hunter and Pines, or wild type CDK2. As shown in Figure 1, catalytic 1994; Sherr, 1996; Dou et al., 1996; Hall and Peters, inactive CDK2K33M, but not wild type CDK2, is 1996). Such frequent quantitative and qualitative capable of interacting with cyclin E2 as determined alteration of cyclin E expression and its correlation by growth on a selective media. These observations with increasing stage and grade of the tumor has led suggest that CDK2 and cyclin E2 may form a catalytic the proposal of using cyclin E as a potential prognostic active complex in yeast cells, causing either cyclin E2 marker for human cancer (Keyomarsi et al., 1997). degradation or interference with yeast CDC28 func- These observations suggest that although it is not a tion. Subsequent sequencing analysis revealed an in- proto-oncogene like cyclin D1, cyclin E overexpression frame stop codon between the GAL4 DNA binding might override certain growth inhibitory signals and domain and cyclin E2. This in-frame stop codon might thus contribute to cell transformation. In this report, reduce, but not completely terminate the synthesis of we describe a novel cyclin that shares signi®cant cyclin E2 so that there is sucient amount to interact sequence homology and many characteristic features with CDK2 bait. Removal of this stop codon with cyclin E, including activation of CDK2 and essentially arrested yeast cell growth (MZ, unpub- periodic oscillation during the cell cycle with a peaking lished observation). The basis for such intolerance of at the G1/S boundary. Expression of the papilloma cyclin E2 expression by yeast cells is not clear, but viral E6 oncoprotein in normal human ®broblasts could be caused by the ability of human cyclin E2 to increases the steady state level of cyclin E2, but not bind to and interfering the function of yeast CDC28. cyclin E1, suggesting distinct regulation mechanisms CDK3 is the closest relative to CDK2 among the for the two G1 E-type cyclins. nine mammalian CDK genes identi®ed thus far and its activating cyclin subunit has yet to be identi®ed. When tested in yeast cells, both the catalytically inactive CDK3K33M mutant and wild type CDK3 interact with Results cyclin E2 (Figure 1a), suggesting that cyclin E2 could potentially function as an activating cyclin subunit of Cloning of cyclin E2 CDK3 and that CDK3-cyclin E2 is functionally We used a catalytically inactive mutant of CDK2, distinct from the CDK2-cyclin E2 complex.
Recommended publications
  • Original Article Expression of Cell-Cycle Regulators Is Associated with Invasive Behavior and Poor Prognosis in Prolactinomas
    Int J Clin Exp Pathol 2016;9(3):3245-3255 www.ijcep.com /ISSN:1936-2625/IJCEP0021009 Original Article Expression of cell-cycle regulators is associated with invasive behavior and poor prognosis in prolactinomas Chunhui Liu1,2*, Weiyan Xie1,2*, Dan Wu3, Zhenye Li2, Chuzhong Li1,2, Yazhuo Zhang1,2 1Beijing Neurosurgical Institute, Capital Medical University, Beijing, China; 2Beijing Tiantan Hospital, Capital Medical University, Beijing, China; 3Department of Neurology, Beijing Renhe Hospital, Beijing, China. *Equal con- tributors. Received December 2, 2015; Accepted February 13, 2016; Epub March 1, 2016; Published March 15, 2016 Abstract: Prolactinomas are the most common pituitary tumors. The mechanisms of cell-cycle regulators underlying their invasive biological behavior and poor prognosis have not yet been fully clarified. We classified 48 human pro- lactinomas as invasive or non-invasive and determined cyclin D1, cyclin E1, p16, p27, Cdk2 and Cdk4 expression by immunohistochemistry analysis of tissue microarray constructs. Then we determined the diagnostic and prognostic value of the cell-cycle regulators expression in human prolactinomas. In this proof of principle study we found that nuclear p16 and p27 expression levels were much lower in invasive prolactinomas compared with non-invasive prolactinomas. Meanwhile, significantly higher cyclin D1 and cyclin E1 expression in invasive prolactinomas com- pared with normal pituitary or non-invasive prolactinomas. No difference was found in Cdk2 or Cdk4 protein levels in invasive or non-invasive prolactinomas. Regarding clinical outcome, the expression ratios of cyclin D1/p16 and cyclin E1/p27 were significantly positively correlated with clinically inferior outcome (P<0.001), while Cdk2 or Cdk4 expression showed no relationship with clinical outcome.
    [Show full text]
  • Downloaded from Bioscientifica.Com at 09/26/2021 02:04:00PM Via Free Access
    26 1 Endocrine-Related N Portman et al. CDK4/6 inhibitor resistance in 26:1 R15–R30 Cancer breast cancer REVIEW Overcoming CDK4/6 inhibitor resistance in ER-positive breast cancer Neil Portman1,2, Sarah Alexandrou1,2, Emma Carson1,2, Shudong Wang3, Elgene Lim1,2 and C Elizabeth Caldon1,2 1The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales, Australia 2St. Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, New South Wales, Australia 3Centre for Drug Discovery and Development, Cancer Research Institute, University of South Australia, Adelaide, South Australia, Australia Correspondence should be addressed to C E Caldon: [email protected] Abstract Three inhibitors of CDK4/6 kinases were recently FDA approved for use in combination Key Words with endocrine therapy, and they significantly increase the progression-free survival of f CDK4/6 inhibitors patients with advanced estrogen receptor-positive (ER+) breast cancer in the first-line f estrogen receptor treatment setting. As the new standard of care in some countries, there is the clinical f breast cancer emergence of patients with breast cancer that is both CDK4/6 inhibitor and endocrine f endocrine therapy therapy resistant. The strategies to combat these cancers with resistance to multiple treatments are not yet defined and represent the next major clinical challenge in ER+ breast cancer. In this review, we discuss how the molecular landscape of endocrine therapy resistance may affect the response to CDK4/6 inhibitors, and how this intersects with biomarkers of intrinsic insensitivity. We identify the handful of pre-clinical models of acquired resistance to CDK4/6 inhibitors and discuss whether the molecular changes in these models are likely to be relevant or modified in the context of endocrine therapy resistance.
    [Show full text]
  • Cyclin-Dependent Kinase 5 Decreases in Gastric Cancer and Its
    Published OnlineFirst January 21, 2015; DOI: 10.1158/1078-0432.CCR-14-1950 Biology of Human Tumors Clinical Cancer Research Cyclin-Dependent Kinase 5 Decreases in Gastric Cancer and Its Nuclear Accumulation Suppresses Gastric Tumorigenesis Longlong Cao1,2, Jiechao Zhou2, Junrong Zhang1,2, Sijin Wu3, Xintao Yang1,2, Xin Zhao2, Huifang Li2, Ming Luo1, Qian Yu1, Guangtan Lin1, Huizhong Lin1, Jianwei Xie1, Ping Li1, Xiaoqing Hu3, Chaohui Zheng1, Guojun Bu2, Yun-wu Zhang2,4, Huaxi Xu2,4,5, Yongliang Yang3, Changming Huang1, and Jie Zhang2,4 Abstract Purpose: As a cyclin-independent atypical CDK, the role of correlated with the severity of gastric cancer based on tumor CDK5 in regulating cell proliferation in gastric cancer remains and lymph node metastasis and patient 5-year fatality rate. unknown. Nuclear localization of CDK5 was found to be significantly Experimental Design: Expression of CDK5 in gastric tumor decreased in tumor tissues and gastric cancer cell lines, and paired adjacent noncancerous tissues from 437 patients was whereas exogenously expression of nucleus-targeted CDK5 measured by Western blotting, immunohistochemistry, and real- inhibited the proliferation and xenograft implantation of time PCR. The subcellular translocation of CDK5 was monitored gastric cancer cells. Treatment with the small molecule during gastric cancer cell proliferation. The role of nuclear CDK5 NS-0011, which increases CDK5 accumulation in the nucleus, in gastric cancer tumorigenic proliferation and ex vivo xenografts suppressed both cancer cell proliferation and xenograft was explored. Furthermore, by screening for compounds in the tumorigenesis. PubChem database that disrupt CDK5 association with its nu- Conclusions: Our results suggest that low CDK5 expression is clear export facilitator, we identified a small molecular (NS-0011) associated with poor overall survival in patients with gastric that inhibits gastric cancer cell growth.
    [Show full text]
  • The Involvement of Ubiquitination Machinery in Cell Cycle Regulation and Cancer Progression
    International Journal of Molecular Sciences Review The Involvement of Ubiquitination Machinery in Cell Cycle Regulation and Cancer Progression Tingting Zou and Zhenghong Lin * School of Life Sciences, Chongqing University, Chongqing 401331, China; [email protected] * Correspondence: [email protected] Abstract: The cell cycle is a collection of events by which cellular components such as genetic materials and cytoplasmic components are accurately divided into two daughter cells. The cell cycle transition is primarily driven by the activation of cyclin-dependent kinases (CDKs), which activities are regulated by the ubiquitin-mediated proteolysis of key regulators such as cyclins, CDK inhibitors (CKIs), other kinases and phosphatases. Thus, the ubiquitin-proteasome system (UPS) plays a pivotal role in the regulation of the cell cycle progression via recognition, interaction, and ubiquitination or deubiquitination of key proteins. The illegitimate degradation of tumor suppressor or abnormally high accumulation of oncoproteins often results in deregulation of cell proliferation, genomic instability, and cancer occurrence. In this review, we demonstrate the diversity and complexity of the regulation of UPS machinery of the cell cycle. A profound understanding of the ubiquitination machinery will provide new insights into the regulation of the cell cycle transition, cancer treatment, and the development of anti-cancer drugs. Keywords: cell cycle regulation; CDKs; cyclins; CKIs; UPS; E3 ubiquitin ligases; Deubiquitinases (DUBs) Citation: Zou, T.; Lin, Z. The Involvement of Ubiquitination Machinery in Cell Cycle Regulation and Cancer Progression. 1. Introduction Int. J. Mol. Sci. 2021, 22, 5754. https://doi.org/10.3390/ijms22115754 The cell cycle is a ubiquitous, complex, and highly regulated process that is involved in the sequential events during which a cell duplicates its genetic materials, grows, and di- Academic Editors: Kwang-Hyun Bae vides into two daughter cells.
    [Show full text]
  • The P16 Status of Tumor Cell Lines Identifies Small Molecule Inhibitors Specific for Cyclin-Dependent Kinase 41
    Vol. 5, 4279–4286, December 1999 Clinical Cancer Research 4279 The p16 Status of Tumor Cell Lines Identifies Small Molecule Inhibitors Specific for Cyclin-dependent Kinase 41 Akihito Kubo,2 Kazuhiko Nakagawa,2, 3 CDK4 kinase inhibitors that may selectively induce growth Ravi K. Varma, Nicholas K. Conrad, inhibition of p16-altered tumors. Jin Quan Cheng, Wen-Ching Lee, INTRODUCTION Joseph R. Testa, Bruce E. Johnson, INK4A 4 The p16 gene (also known as CDKN2A) encodes p16 , Frederic J. Kaye, and Michael J. Kelley which inhibits the CDK45:cyclin D and CDK6:cyclin D com- Medicine Branch [A. K., K. N., N. K. C., F. J. K., B. E. J.] and plexes (1). These complexes mediate phosphorylation of the Rb Developmental Therapeutics Program [R. K. V.], National Cancer Institute, Bethesda, Maryland 20889; Department of Medical protein and allow cell cycle progression beyond the G1-S-phase Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania checkpoint (2). Alterations of p16 have been described in a wide 19111 [J. Q. C., W-C. L., J. R. T.]; and Department of Medicine, variety of histological types of human cancers including astro- Duke University Medical Center, Durham, North Carolina 27710 cytoma, melanoma, leukemia, breast cancer, head and neck [M. J. K.] squamous cell carcinoma, malignant mesothelioma, and lung cancer. Alterations of p16 can occur through homozygous de- ABSTRACT letion, point mutation, and transcriptional suppression associ- ated with hypermethylation in cancer cell lines and primary Loss of p16 functional activity leading to disruption of tumors (reviewed in Refs. 3–5). the p16/cyclin-dependent kinase (CDK) 4:cyclin D/retino- Whereas the Rb gene is inactivated in a narrow range of blastoma pathway is the most common event in human tumor cells, the pattern of mutational inactivation of Rb is tumorigenesis, suggesting that compounds with CDK4 ki- inversely correlated with p16 alterations (6–8), suggesting that nase inhibitory activity may be useful to regulate cancer cell a single defect in the p16/CDK4:cyclin D/Rb pathway is suffi- growth.
    [Show full text]
  • Cyclin E-CDK2 Is a Regulator of P27 Kip1
    Downloaded from genesdev.cshlp.org on October 4, 2021 - Published by Cold Spring Harbor Laboratory Press Cyclin E-CDK2 is a regulator of p27 Kip1 Robert J. Sheaff, 1 Mark Groudine, 1'4 Matthew Gordon, 1 James M. Roberts, 1's and Bruce E. Clurman 1-3,5 Divisions of 1Basic Sciences and 2Clinical Research, Fred Hutchinson Cancer Research Center (FHCRC), Seattle, Washington 98104; Departments of 3Medicine and 4Radiation Oncology, University of Washington, Seattle, Washington 98104 CDK inhibitors are thought to prevent cell proliferation by negatively regulating cyclin-CDK complexes. We propose that the opposite is also true, that cyclin-CDK complexes in mammmalian cells can promote cell cycle progression by directly down-regulating CDK inhibitors. We show that expression of cyclin E-CDK2 in murine fibroblasts causes phosphorylation of the CDK inhibitor p27 Kip1 on T187, and that cyclin E-CDK2 can directly phosphorylate p27 T187 in vitro. We further show that cyclin E-CDK2-dependent phosphorylation of p27 results in elimination of p27 from the cell, allowing cells to transit from G1 to S phase. Moreover, mutation of T187 in p27 to alanine creates a p27 protein that causes a G1 block resistant to cyclin E and whose level of expression is not modulated by cyclin E. A kinetic analysis of the interaction between p27 and cyclin E-CDK2 explains how p27 can be regulated by the same enzyme it targets for inhibition. We show that p27 interacts with cyclin E-CDK2 in at least two distinct ways: one resulting in p27 phosphorylation and release, the other in tight binding and cyclin E-CDK2 inhibition.
    [Show full text]
  • TEAD4 Ensures Postimplantation Development by Promoting Trophoblast Self-Renewal: an Implication in Early Human Pregnancy Loss
    TEAD4 ensures postimplantation development by promoting trophoblast self-renewal: An implication in early human pregnancy loss Biswarup Sahaa,1,2, Avishek Gangulya,1, Pratik Homea,b, Bhaswati Bhattacharyaa, Soma Raya, Ananya Ghosha, M. A. Karim Rumia,b, Courtney Marshb,c, Valerie A. Frenchc, Sumedha Gunewardenad, and Soumen Paula,b,c,3 aDepartment of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160; bInstitute for Reproduction and Perinatal Research, University of Kansas Medical Center, Kansas City, KS 66160; cDepartment of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS 66160; and dDepartment of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160 Edited by R. Michael Roberts, University of Missouri, Columbia, MO, and approved June 22, 2020 (received for review February 12, 2020) Early pregnancy loss affects ∼15% of all implantation-confirmed Studies in mutant mouse models showed that failure in pla- human conceptions. However, evolutionarily conserved molecular centation often leads to in utero embryonic death (6, 7). Therefore, mechanisms that regulate self-renewal of trophoblast progenitors impaired placentation due to defective development or function of and their association with early pregnancy loss are poorly under- trophoblast cell lineages is considered one of the major underlying stood. Here, we provide evidence that transcription factor TEAD4 causes of early pregnancy loss. Disruptions of trophoblast pro- ensures survival of postimplantation mouse and human embryos genitor differentiation and defective placentation have also been by controlling self-renewal and stemness of trophoblast progeni- implicated as probable causes of pregnancy-associated compli- tors within the placenta primordium.
    [Show full text]
  • Mir-15 and Mir-16 Are Direct Transcriptional Targets of E2F1 That Limit E2F-Induced Proliferation by Targeting Cyclin E
    Molecular Cancer Cell Cycle, Cell Death, and Senescence Research miR-15 and miR-16 Are Direct Transcriptional Targets of E2F1 that Limit E2F-Induced Proliferation by Targeting Cyclin E Matan Ofir, Dalia Hacohen, and Doron Ginsberg Abstract microRNAs (miR) are small noncoding RNA molecules that have recently emerged as critical regulators of gene expression and are often deregulated in cancer. In particular, miRs encoded by the miR-15a, miR-16-1 cluster seem to act as tumor suppressors. Here, we evidence that the miR-15a, miR-16-1 cluster and related miR-15b, miR-16-2 cluster comprise miRs regulated by E2F1, a pivotal transcription factor that can induce both proliferation and cell death. E2F1 is a critical downstream target of the tumor suppressor retinoblastoma (RB). The RB pathway is often inactivated in human tumors resulting in deregulated E2F activity. We show that expression levels of the 4 mature miRs, miR-15a, miR-16-1 and miR-15b, miR-16-2, as well as their precursor pri- miRNAs, are elevated upon activation of ectopic E2F1. Moreover, activation of endogenous E2Fs upregulates expression of these miRs and endogenous E2F1 binds their respective promoters. Importantly, we corroborate that miR-15a/b inhibits expression of cyclin E, the latter a key direct transcriptional target of E2F pivotal for the G1/S transition, raising the possibility that E2F1, miR-15, and cyclin E constitute a feed-forward loop that modulates E2F activity and cell-cycle progression. In support of this, ectopic expression of miR-15 inhibits the G1/S transition, and, conversely, inhibition of miR-15 expression enhances E2F1-induced upregulation of cyclin E1 levels.
    [Show full text]
  • Tumour Kinome Re-Wiring Governs Resistance to Palbociclib in Oestrogen Receptor Positive Breast Cancers, Highlighting New Therapeutic Modalities
    Oncogene (2020) 39:4781–4797 https://doi.org/10.1038/s41388-020-1284-6 ARTICLE Tumour kinome re-wiring governs resistance to palbociclib in oestrogen receptor positive breast cancers, highlighting new therapeutic modalities 1 1 1 1 1 Sunil Pancholi ● Ricardo Ribas ● Nikiana Simigdala ● Eugene Schuster ● Joanna Nikitorowicz-Buniak ● 2 3 1 4 5 6 Anna Ressa ● Qiong Gao ● Mariana Ferreira Leal ● Amandeep Bhamra ● Allan Thornhill ● Ludivine Morisset ● 6 6 2 2 7 Elodie Montaudon ● Laura Sourd ● Martin Fitzpatrick ● Maarten Altelaar ● Stephen R. Johnston ● 6 1,8 1 Elisabetta Marangoni ● Mitch Dowsett ● Lesley-Ann Martin Received: 24 May 2019 / Revised: 18 March 2020 / Accepted: 24 March 2020 / Published online: 19 April 2020 © The Author(s) 2020. This article is published with open access Abstract Combination of CDK4/6 inhibitors and endocrine therapy improves clinical outcome in advanced oestrogen receptor (ER)- positive breast cancer, however relapse is inevitable. Here, we show in model systems that other than loss of RB1 few gene- copy number (CN) alterations are associated with irreversible-resistance to endocrine therapy and subsequent secondary 1234567890();,: 1234567890();,: resistance to palbociclib. Resistance to palbociclib occurred as a result of tumour cell re-wiring leading to increased expression of EGFR, MAPK, CDK4, CDK2, CDK7, CCNE1 and CCNE2. Resistance altered the ER genome wide-binding pattern, leading to decreased expression of ‘classical’ oestrogen-regulated genes and was accompanied by reduced sensitivity to fulvestrant and tamoxifen. Persistent CDK4 blockade decreased phosphorylation of tuberous sclerosis complex 2 (TSC2) enhancing EGFR signalling, leading to the re-wiring of ER. Kinome-knockdown confirmed dependency on ERBB- signalling and G2/M–checkpoint proteins such as WEE1, together with the cell cycle master regulator, CDK7.
    [Show full text]
  • Cyclin-Dependent Kinases and CDK Inhibitors in Virus-Associated Cancers Shaian Tavakolian, Hossein Goudarzi and Ebrahim Faghihloo*
    Tavakolian et al. Infectious Agents and Cancer (2020) 15:27 https://doi.org/10.1186/s13027-020-00295-7 REVIEW Open Access Cyclin-dependent kinases and CDK inhibitors in virus-associated cancers Shaian Tavakolian, Hossein Goudarzi and Ebrahim Faghihloo* Abstract The role of several risk factors, such as pollution, consumption of alcohol, age, sex and obesity in cancer progression is undeniable. Human malignancies are mainly characterized by deregulation of cyclin-dependent kinases (CDK) and cyclin inhibitor kinases (CIK) activities. Viruses express some onco-proteins which could interfere with CDK and CIKs function, and induce some signals to replicate their genome into host’scells.By reviewing some studies about the function of CDK and CIKs in cells infected with oncoviruses, such as HPV, HTLV, HERV, EBV, KSHV, HBV and HCV, we reviewed the mechanisms of different onco-proteins which could deregulate the cell cycle proteins. Keywords: CDK, CIKs, Cancer, Virus Introduction the key role of the phosphorylation in the entrance of Cell division is controlled by various elements [1–10], the cells to the S phase of the cell cycle [19]. especially serine/ threonine protein kinase complexes, CDK genes are classified in mammalian cells into differ- called cyclin-dependent kinases (CDKs), and cyclins, ent classes of CDKs, especially some important regulatory whose expression is prominently regulated by the bind- ones (The regulatory CDKs play important roles in medi- ing to CDK inhibitors [11, 12]. In all eukaryotic species, ating cell cycle). Each of these CDKs could interact with a these genes are classified into different families. It is specific cyclin and thereby regulating the expression of well-established that the complexes of cyclin and CDK different genes [20, 21].
    [Show full text]
  • Reduction of Cdc25a Contributes to Cyclin E1-Cdk2 Inhibition at Senescence in Human Mammary Epithelial Cells
    Oncogene (2000) 19, 5314 ± 5323 ã 2000 Macmillan Publishers Ltd All rights reserved 0950 ± 9232/00 $15.00 www.nature.com/onc Reduction of Cdc25A contributes to cyclin E1-Cdk2 inhibition at senescence in human mammary epithelial cells Charanjit Sandhu1, Jerey Donovan1, Nandita Bhattacharya1, Martha Stampfer2, Peter Worland3 and Joyce Slingerland*,1 1Cancer Research, Sunnybrook and Women's College Health Sciences Centre, Toronto, Ontario, Canada; 2Life Sciences Division, Lawrence Berkeley Laboratory, University of California Berkeley, Berkeley, California, CA 94720, USA; 3Mitotix Incorporated, Cambridge, Massachusetts, MA 02139, USA Replicative senescence may be an important tumor a phenomenon known as cellular senescence (Hay¯ick, suppressive mechanism for human cells. We investigated 1965). Senescence may function as a tumor suppression the mechanism of cell cycle arrest at senescence in mechanism since the proliferative constraint imposed human mammary epithelial cells (HMECs) that have by senescence limits the accumulation of genetic errors undergone a period of `self-selection', and as a in the progeny of a single cell (Vojta and Barrett, consequence exhibit diminished p16INK4A levels. As 1995). The progressive reduction in telomere length HMECs approached senescence, the proportion of cells that occurs with successive cell divisions may govern with a 2N DNA content increased and that in S phase the point at which cells enter replicative senescence decreased progressively. Cyclin D1-cdk4, cyclin E-cdk2 (Bodnar et al., 1998; de Lange, 1998). Cultured human and cyclin A-cdk2 activities were not abruptly inhibited, ®broblasts show a predominantly 2N DNA content at but rather diminished steadily with increasing population senescence, re¯ecting cell cycle arrest in G1 phase age.
    [Show full text]
  • Regulation of P27kip1 and P57kip2 Functions by Natural Polyphenols
    biomolecules Review Regulation of p27Kip1 and p57Kip2 Functions by Natural Polyphenols Gian Luigi Russo 1,* , Emanuela Stampone 2 , Carmen Cervellera 1 and Adriana Borriello 2,* 1 National Research Council, Institute of Food Sciences, 83100 Avellino, Italy; [email protected] 2 Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 81031 Napoli, Italy; [email protected] * Correspondence: [email protected] (G.L.R.); [email protected] (A.B.); Tel.: +39-0825-299-331 (G.L.R.) Received: 31 July 2020; Accepted: 9 September 2020; Published: 13 September 2020 Abstract: In numerous instances, the fate of a single cell not only represents its peculiar outcome but also contributes to the overall status of an organism. In turn, the cell division cycle and its control strongly influence cell destiny, playing a critical role in targeting it towards a specific phenotype. Several factors participate in the control of growth, and among them, p27Kip1 and p57Kip2, two proteins modulating various transitions of the cell cycle, appear to play key functions. In this review, the major features of p27 and p57 will be described, focusing, in particular, on their recently identified roles not directly correlated with cell cycle modulation. Then, their possible roles as molecular effectors of polyphenols’ activities will be discussed. Polyphenols represent a large family of natural bioactive molecules that have been demonstrated to exhibit promising protective activities against several human diseases. Their use has also been proposed in association with classical therapies for improving their clinical effects and for diminishing their negative side activities. The importance of p27Kip1 and p57Kip2 in polyphenols’ cellular effects will be discussed with the aim of identifying novel therapeutic strategies for the treatment of important human diseases, such as cancers, characterized by an altered control of growth.
    [Show full text]