Cyclin E Provides a Link Between Cell Cycle, Dna

Total Page:16

File Type:pdf, Size:1020Kb

Cyclin E Provides a Link Between Cell Cycle, Dna CYCLIN E PROVIDES A LINK BETWEEN CELL CYCLE, DNA REPAIR AND APOPTOSIS A dissertation submitted to Kent State University in collaboration with the Lerner Research Institute, Cleveland Clinic in partial fulfillment of the requirements for the degree of Doctor of Philosophy by Dragos Costin Plesca May, 2008 Dissertation written by Dragos Costin Plesca Pharm.D., University of Medicine and Pharmacy “Carol Davila”, Romania, 2002 Ph.D., Kent State University, 2008 Approved by ____________________, Chair, Doctoral Dissertation Committee Alexandru Almasan, Ph.D ____________________, Member, Doctoral Dissertation Committee James Blank, Ph.D ____________________, Member, Doctoral Dissertation Committee Gail Fraizer, Ph.D ____________________, Member, Doctoral Dissertation Committee Olena Piontkivska, Ph.D ____________________, Graduate Faculty Representative Jennifer Marcinkiewicz, Ph.D Accepted by ____________________, Director, School of Biomedical Sciences Robert V. Dorman, Ph.D ____________________, Dean, College of Arts and Sciences John R. D. Stalvey, Ph.D ii TABLE OF CONTENTS List of Figures.................................................................................................................vi List of Tables ..................................................................................................................ix Acknowledgments ............................................................................................................x Chapter I. Introduction ................................................................................................1 The Cell Cycle .....................................................................................3 Cyclin E and cell cycle regulation ...........................................8 Transcriptional regulation of Cyclin E ..................................14 Post-translational regulation of Cyclin E...............................20 Deregulated expression of Cyclin E in cancer.......................27 Therapeutic approaches involving cell cycle inhibitors.........32 Apoptosis ...........................................................................................38 TRAIL, APO2L .....................................................................40 Adaptor proteins.....................................................................41 Cytochrome c.........................................................................42 Bcl-2 family members............................................................42 Caspases.................................................................................43 Other apoptosis-regulatory proteins.......................................45 Apoptotic pathways ...............................................................46 iii DNA damage and repair mechanisms................................................51 Homologous recombination...................................................55 Ku70/Ku80 heterodimer ........................................................56 DNA-PKcs .............................................................................60 Artemis...................................................................................62 XRCC4...................................................................................62 Ligase IV................................................................................63 XLF........................................................................................64 Non-Homologous End Joining ..............................................66 Other DNA double-strand break repair pathways .................66 Generation of p18-Cyclin E and its role in modulating cellular response to genotoxic stress...............................................................70 Chapter II. p18-Cyclin E regulates Non-Homologous End Joining by preventing the recruitment of the XLF/XRCC4/Ligase IV heterocomplex to the DNA repair complex ................................................................................73 Abstract..............................................................................................73 Introduction........................................................................................74 Materials and Methods.......................................................................78 Results................................................................................................82 Discussion..........................................................................................95 iv Chapter III. Two new mechanisms for proteasome-mediated Cyclin E degradation uncovered in hematopoietic tumor cells undergoing apoptosis .........102 Abstract............................................................................................102 Introduction......................................................................................103 Materials and Methods.....................................................................106 Results..............................................................................................110 Discussion........................................................................................137 Chapter IV. Summary and future directions ............................................................145 Summary..........................................................................................145 Future directions ..............................................................................148 References.....................................................................................................................157 Appendix. Abbreviations..........................................................................................193 v LIST OF FIGURES Chapter I Fig 1.1 Cellular response to DNA damage ....................................................................2 Fig 1.2 Schematic representation of the cell cycle.........................................................4 Fig 1.3 Periodic oscillation in the expression levels of cyclins ...................................10 Fig 1.4 Schematic representation of the progression through the different cell cycle phases...............................................................................................................19 Fig 1.5 Schematic representation of the Cyclin E turnover mechanisms.....................23 Fig 1.6 Schematic representation of the cell cycle and the different therapeutic approaches undertaken.....................................................................................37 Fig 1.7 Schematic representation of the extrinsic and intrinsic apoptotic pathways ...49 Fig 1.8 Three-dimensional structure of the Ku70/Ku80 heterodimer..........................59 Fig 1.9 Schematic representation of the XLF/XRCC4/Ligase IV heterocomplex.......65 Fig 1.10 Schematic representation of the NHEJ pathway..............................................69 Fig 1.11 Schematic representation of Cyclin E domains and cleavage sites .................71 vi Chapter II Fig 2.1 Non-toxic levels of p18-Cyclin E sensitize cells to VP-16 and IR treatment..85 Fig 2.2 p18-Cyclin E inhibits in vitro DNA ligation and plasmid reactivation ...........88 Fig 2.3 p18-Cyclin E prevents efficient repair of the DNA damage induced by IR and CPT-11.............................................................................................................91 Fig 2.4 p18-Cyclin E impairs the recruitment of XLF, XRCC4, and Ligase IV to the DNA repair complex........................................................................................94 Fig 2.5 Schematic representation of the NHEJ DNA repair pathway and the way in which p18-Cyclin E affects the assembly of repair factors ...........................101 Chapter III Fig 3.1 p18-Cyclin E is a short-lived protein that is stabilized by proteasome inhibition........................................................................................................112 Fig 3.2 p18-Cyclin E is effectively ubiquitinated ......................................................115 Fig 3.3 Fbw7 interacts with p18-Cyclin E independently of phosphorylation at the C- terminal phosphodegron ................................................................................120 Fig 3.4 p18-Cyclin E is regulated by the SCFFbw7 complex and independently of Cdk2 binding ...........................................................................................................125 Fig 3.5 Ku70 but not Cdk2 binding regulates p18-Cyclin E stability........................130 Fig 3.6 p18-cyclin E sensitizes cells to Bortezomib treatment through enhanced association with Ku70 and release of Bax from Ku70 ..................................135 Fig. 3.7 Chemical structure of the proteasome inhibitor, Bortezomib........................141 vii Chapter IV Fig 4.1 Dual regulation of apoptosis and DNA repair by p18-Cyclin E....................147 Fig 4.2 Localization of p18-Cyclin E-GFP, Cyclin E-GFP, and Cyclin ER130A-GFP 151 Fig 4.3 Cyclin E sequence alignment across human, mouse, rat, rabbit, chicken, and frog.................................................................................................................153 viii LIST OF TABLES Table 1. Critical protein substrates of Caspase-3...........................................................45 ix ACKNOWLEDGMENTS None of the scientific results or achievements that I have had during my last five years would have been possible without the sustained professional and moral support that my adviser, Dr. Alex Almasan
Recommended publications
  • Downloaded from Bioscientifica.Com at 09/26/2021 02:04:00PM Via Free Access
    26 1 Endocrine-Related N Portman et al. CDK4/6 inhibitor resistance in 26:1 R15–R30 Cancer breast cancer REVIEW Overcoming CDK4/6 inhibitor resistance in ER-positive breast cancer Neil Portman1,2, Sarah Alexandrou1,2, Emma Carson1,2, Shudong Wang3, Elgene Lim1,2 and C Elizabeth Caldon1,2 1The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales, Australia 2St. Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, New South Wales, Australia 3Centre for Drug Discovery and Development, Cancer Research Institute, University of South Australia, Adelaide, South Australia, Australia Correspondence should be addressed to C E Caldon: [email protected] Abstract Three inhibitors of CDK4/6 kinases were recently FDA approved for use in combination Key Words with endocrine therapy, and they significantly increase the progression-free survival of f CDK4/6 inhibitors patients with advanced estrogen receptor-positive (ER+) breast cancer in the first-line f estrogen receptor treatment setting. As the new standard of care in some countries, there is the clinical f breast cancer emergence of patients with breast cancer that is both CDK4/6 inhibitor and endocrine f endocrine therapy therapy resistant. The strategies to combat these cancers with resistance to multiple treatments are not yet defined and represent the next major clinical challenge in ER+ breast cancer. In this review, we discuss how the molecular landscape of endocrine therapy resistance may affect the response to CDK4/6 inhibitors, and how this intersects with biomarkers of intrinsic insensitivity. We identify the handful of pre-clinical models of acquired resistance to CDK4/6 inhibitors and discuss whether the molecular changes in these models are likely to be relevant or modified in the context of endocrine therapy resistance.
    [Show full text]
  • Cyclin-Dependent Kinase 5 Decreases in Gastric Cancer and Its
    Published OnlineFirst January 21, 2015; DOI: 10.1158/1078-0432.CCR-14-1950 Biology of Human Tumors Clinical Cancer Research Cyclin-Dependent Kinase 5 Decreases in Gastric Cancer and Its Nuclear Accumulation Suppresses Gastric Tumorigenesis Longlong Cao1,2, Jiechao Zhou2, Junrong Zhang1,2, Sijin Wu3, Xintao Yang1,2, Xin Zhao2, Huifang Li2, Ming Luo1, Qian Yu1, Guangtan Lin1, Huizhong Lin1, Jianwei Xie1, Ping Li1, Xiaoqing Hu3, Chaohui Zheng1, Guojun Bu2, Yun-wu Zhang2,4, Huaxi Xu2,4,5, Yongliang Yang3, Changming Huang1, and Jie Zhang2,4 Abstract Purpose: As a cyclin-independent atypical CDK, the role of correlated with the severity of gastric cancer based on tumor CDK5 in regulating cell proliferation in gastric cancer remains and lymph node metastasis and patient 5-year fatality rate. unknown. Nuclear localization of CDK5 was found to be significantly Experimental Design: Expression of CDK5 in gastric tumor decreased in tumor tissues and gastric cancer cell lines, and paired adjacent noncancerous tissues from 437 patients was whereas exogenously expression of nucleus-targeted CDK5 measured by Western blotting, immunohistochemistry, and real- inhibited the proliferation and xenograft implantation of time PCR. The subcellular translocation of CDK5 was monitored gastric cancer cells. Treatment with the small molecule during gastric cancer cell proliferation. The role of nuclear CDK5 NS-0011, which increases CDK5 accumulation in the nucleus, in gastric cancer tumorigenic proliferation and ex vivo xenografts suppressed both cancer cell proliferation and xenograft was explored. Furthermore, by screening for compounds in the tumorigenesis. PubChem database that disrupt CDK5 association with its nu- Conclusions: Our results suggest that low CDK5 expression is clear export facilitator, we identified a small molecular (NS-0011) associated with poor overall survival in patients with gastric that inhibits gastric cancer cell growth.
    [Show full text]
  • The Involvement of Ubiquitination Machinery in Cell Cycle Regulation and Cancer Progression
    International Journal of Molecular Sciences Review The Involvement of Ubiquitination Machinery in Cell Cycle Regulation and Cancer Progression Tingting Zou and Zhenghong Lin * School of Life Sciences, Chongqing University, Chongqing 401331, China; [email protected] * Correspondence: [email protected] Abstract: The cell cycle is a collection of events by which cellular components such as genetic materials and cytoplasmic components are accurately divided into two daughter cells. The cell cycle transition is primarily driven by the activation of cyclin-dependent kinases (CDKs), which activities are regulated by the ubiquitin-mediated proteolysis of key regulators such as cyclins, CDK inhibitors (CKIs), other kinases and phosphatases. Thus, the ubiquitin-proteasome system (UPS) plays a pivotal role in the regulation of the cell cycle progression via recognition, interaction, and ubiquitination or deubiquitination of key proteins. The illegitimate degradation of tumor suppressor or abnormally high accumulation of oncoproteins often results in deregulation of cell proliferation, genomic instability, and cancer occurrence. In this review, we demonstrate the diversity and complexity of the regulation of UPS machinery of the cell cycle. A profound understanding of the ubiquitination machinery will provide new insights into the regulation of the cell cycle transition, cancer treatment, and the development of anti-cancer drugs. Keywords: cell cycle regulation; CDKs; cyclins; CKIs; UPS; E3 ubiquitin ligases; Deubiquitinases (DUBs) Citation: Zou, T.; Lin, Z. The Involvement of Ubiquitination Machinery in Cell Cycle Regulation and Cancer Progression. 1. Introduction Int. J. Mol. Sci. 2021, 22, 5754. https://doi.org/10.3390/ijms22115754 The cell cycle is a ubiquitous, complex, and highly regulated process that is involved in the sequential events during which a cell duplicates its genetic materials, grows, and di- Academic Editors: Kwang-Hyun Bae vides into two daughter cells.
    [Show full text]
  • The P16 Status of Tumor Cell Lines Identifies Small Molecule Inhibitors Specific for Cyclin-Dependent Kinase 41
    Vol. 5, 4279–4286, December 1999 Clinical Cancer Research 4279 The p16 Status of Tumor Cell Lines Identifies Small Molecule Inhibitors Specific for Cyclin-dependent Kinase 41 Akihito Kubo,2 Kazuhiko Nakagawa,2, 3 CDK4 kinase inhibitors that may selectively induce growth Ravi K. Varma, Nicholas K. Conrad, inhibition of p16-altered tumors. Jin Quan Cheng, Wen-Ching Lee, INTRODUCTION Joseph R. Testa, Bruce E. Johnson, INK4A 4 The p16 gene (also known as CDKN2A) encodes p16 , Frederic J. Kaye, and Michael J. Kelley which inhibits the CDK45:cyclin D and CDK6:cyclin D com- Medicine Branch [A. K., K. N., N. K. C., F. J. K., B. E. J.] and plexes (1). These complexes mediate phosphorylation of the Rb Developmental Therapeutics Program [R. K. V.], National Cancer Institute, Bethesda, Maryland 20889; Department of Medical protein and allow cell cycle progression beyond the G1-S-phase Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania checkpoint (2). Alterations of p16 have been described in a wide 19111 [J. Q. C., W-C. L., J. R. T.]; and Department of Medicine, variety of histological types of human cancers including astro- Duke University Medical Center, Durham, North Carolina 27710 cytoma, melanoma, leukemia, breast cancer, head and neck [M. J. K.] squamous cell carcinoma, malignant mesothelioma, and lung cancer. Alterations of p16 can occur through homozygous de- ABSTRACT letion, point mutation, and transcriptional suppression associ- ated with hypermethylation in cancer cell lines and primary Loss of p16 functional activity leading to disruption of tumors (reviewed in Refs. 3–5). the p16/cyclin-dependent kinase (CDK) 4:cyclin D/retino- Whereas the Rb gene is inactivated in a narrow range of blastoma pathway is the most common event in human tumor cells, the pattern of mutational inactivation of Rb is tumorigenesis, suggesting that compounds with CDK4 ki- inversely correlated with p16 alterations (6–8), suggesting that nase inhibitory activity may be useful to regulate cancer cell a single defect in the p16/CDK4:cyclin D/Rb pathway is suffi- growth.
    [Show full text]
  • Cyclin E-CDK2 Is a Regulator of P27 Kip1
    Downloaded from genesdev.cshlp.org on October 4, 2021 - Published by Cold Spring Harbor Laboratory Press Cyclin E-CDK2 is a regulator of p27 Kip1 Robert J. Sheaff, 1 Mark Groudine, 1'4 Matthew Gordon, 1 James M. Roberts, 1's and Bruce E. Clurman 1-3,5 Divisions of 1Basic Sciences and 2Clinical Research, Fred Hutchinson Cancer Research Center (FHCRC), Seattle, Washington 98104; Departments of 3Medicine and 4Radiation Oncology, University of Washington, Seattle, Washington 98104 CDK inhibitors are thought to prevent cell proliferation by negatively regulating cyclin-CDK complexes. We propose that the opposite is also true, that cyclin-CDK complexes in mammmalian cells can promote cell cycle progression by directly down-regulating CDK inhibitors. We show that expression of cyclin E-CDK2 in murine fibroblasts causes phosphorylation of the CDK inhibitor p27 Kip1 on T187, and that cyclin E-CDK2 can directly phosphorylate p27 T187 in vitro. We further show that cyclin E-CDK2-dependent phosphorylation of p27 results in elimination of p27 from the cell, allowing cells to transit from G1 to S phase. Moreover, mutation of T187 in p27 to alanine creates a p27 protein that causes a G1 block resistant to cyclin E and whose level of expression is not modulated by cyclin E. A kinetic analysis of the interaction between p27 and cyclin E-CDK2 explains how p27 can be regulated by the same enzyme it targets for inhibition. We show that p27 interacts with cyclin E-CDK2 in at least two distinct ways: one resulting in p27 phosphorylation and release, the other in tight binding and cyclin E-CDK2 inhibition.
    [Show full text]
  • TEAD4 Ensures Postimplantation Development by Promoting Trophoblast Self-Renewal: an Implication in Early Human Pregnancy Loss
    TEAD4 ensures postimplantation development by promoting trophoblast self-renewal: An implication in early human pregnancy loss Biswarup Sahaa,1,2, Avishek Gangulya,1, Pratik Homea,b, Bhaswati Bhattacharyaa, Soma Raya, Ananya Ghosha, M. A. Karim Rumia,b, Courtney Marshb,c, Valerie A. Frenchc, Sumedha Gunewardenad, and Soumen Paula,b,c,3 aDepartment of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160; bInstitute for Reproduction and Perinatal Research, University of Kansas Medical Center, Kansas City, KS 66160; cDepartment of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS 66160; and dDepartment of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160 Edited by R. Michael Roberts, University of Missouri, Columbia, MO, and approved June 22, 2020 (received for review February 12, 2020) Early pregnancy loss affects ∼15% of all implantation-confirmed Studies in mutant mouse models showed that failure in pla- human conceptions. However, evolutionarily conserved molecular centation often leads to in utero embryonic death (6, 7). Therefore, mechanisms that regulate self-renewal of trophoblast progenitors impaired placentation due to defective development or function of and their association with early pregnancy loss are poorly under- trophoblast cell lineages is considered one of the major underlying stood. Here, we provide evidence that transcription factor TEAD4 causes of early pregnancy loss. Disruptions of trophoblast pro- ensures survival of postimplantation mouse and human embryos genitor differentiation and defective placentation have also been by controlling self-renewal and stemness of trophoblast progeni- implicated as probable causes of pregnancy-associated compli- tors within the placenta primordium.
    [Show full text]
  • Cyclin E2, a Novel Human G1 Cyclin and Activating Partner of CDK2 and CDK3, Is Induced by Viral Oncoproteins
    Oncogene (1998) 17, 2787 ± 2798 ã 1998 Stockton Press All rights reserved 0950 ± 9232/98 $12.00 http://www.stockton-press.co.uk/onc Cyclin E2, a novel human G1 cyclin and activating partner of CDK2 and CDK3, is induced by viral oncoproteins Maimoona Zariwala1, Jidong Liu2 and Yue Xiong*,1,2,3 1Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3280; 2Department of Biochemistry and Biophysics; University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599- 3280; 3Program in Molecular Biology and Biotechnology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3280, USA G1 cyclin E controls the initiation of DNA synthesis by complexes with CDK4 or CDK6 to prevent the CDKs activating CDK2, and abnormally high levels of cyclin E from binding with and becoming activated by D-type expression have frequently been observed in human cyclins. The main function of CDK inhibitors is cancers. We have isolated a novel human cyclin, cyclin believed to couple diversi®ed growth inhibitory signals E2, that contains signi®cant homology to cyclin E. to the cell cycle clock. Cyclin E2 speci®cally interacts with CDK inhibitors of The decision to enter the replicative DNA synthesis the CIP/KIP family and activates both CDK2 and (S) phase or arrest in G1 is linked to diverse cellular CDK3. The expression of cyclin E2 mRNA oscillates processes such as signal transduction, cell differentia- periodically throughout the cell cycle, peaking at the tion, senescence, and oncogenic transformation G1/S transition, and exhibits a pattern of tissue (Hunter and Pines, 1994).
    [Show full text]
  • Tumour Kinome Re-Wiring Governs Resistance to Palbociclib in Oestrogen Receptor Positive Breast Cancers, Highlighting New Therapeutic Modalities
    Oncogene (2020) 39:4781–4797 https://doi.org/10.1038/s41388-020-1284-6 ARTICLE Tumour kinome re-wiring governs resistance to palbociclib in oestrogen receptor positive breast cancers, highlighting new therapeutic modalities 1 1 1 1 1 Sunil Pancholi ● Ricardo Ribas ● Nikiana Simigdala ● Eugene Schuster ● Joanna Nikitorowicz-Buniak ● 2 3 1 4 5 6 Anna Ressa ● Qiong Gao ● Mariana Ferreira Leal ● Amandeep Bhamra ● Allan Thornhill ● Ludivine Morisset ● 6 6 2 2 7 Elodie Montaudon ● Laura Sourd ● Martin Fitzpatrick ● Maarten Altelaar ● Stephen R. Johnston ● 6 1,8 1 Elisabetta Marangoni ● Mitch Dowsett ● Lesley-Ann Martin Received: 24 May 2019 / Revised: 18 March 2020 / Accepted: 24 March 2020 / Published online: 19 April 2020 © The Author(s) 2020. This article is published with open access Abstract Combination of CDK4/6 inhibitors and endocrine therapy improves clinical outcome in advanced oestrogen receptor (ER)- positive breast cancer, however relapse is inevitable. Here, we show in model systems that other than loss of RB1 few gene- copy number (CN) alterations are associated with irreversible-resistance to endocrine therapy and subsequent secondary 1234567890();,: 1234567890();,: resistance to palbociclib. Resistance to palbociclib occurred as a result of tumour cell re-wiring leading to increased expression of EGFR, MAPK, CDK4, CDK2, CDK7, CCNE1 and CCNE2. Resistance altered the ER genome wide-binding pattern, leading to decreased expression of ‘classical’ oestrogen-regulated genes and was accompanied by reduced sensitivity to fulvestrant and tamoxifen. Persistent CDK4 blockade decreased phosphorylation of tuberous sclerosis complex 2 (TSC2) enhancing EGFR signalling, leading to the re-wiring of ER. Kinome-knockdown confirmed dependency on ERBB- signalling and G2/M–checkpoint proteins such as WEE1, together with the cell cycle master regulator, CDK7.
    [Show full text]
  • Regulation of P27kip1 and P57kip2 Functions by Natural Polyphenols
    biomolecules Review Regulation of p27Kip1 and p57Kip2 Functions by Natural Polyphenols Gian Luigi Russo 1,* , Emanuela Stampone 2 , Carmen Cervellera 1 and Adriana Borriello 2,* 1 National Research Council, Institute of Food Sciences, 83100 Avellino, Italy; [email protected] 2 Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 81031 Napoli, Italy; [email protected] * Correspondence: [email protected] (G.L.R.); [email protected] (A.B.); Tel.: +39-0825-299-331 (G.L.R.) Received: 31 July 2020; Accepted: 9 September 2020; Published: 13 September 2020 Abstract: In numerous instances, the fate of a single cell not only represents its peculiar outcome but also contributes to the overall status of an organism. In turn, the cell division cycle and its control strongly influence cell destiny, playing a critical role in targeting it towards a specific phenotype. Several factors participate in the control of growth, and among them, p27Kip1 and p57Kip2, two proteins modulating various transitions of the cell cycle, appear to play key functions. In this review, the major features of p27 and p57 will be described, focusing, in particular, on their recently identified roles not directly correlated with cell cycle modulation. Then, their possible roles as molecular effectors of polyphenols’ activities will be discussed. Polyphenols represent a large family of natural bioactive molecules that have been demonstrated to exhibit promising protective activities against several human diseases. Their use has also been proposed in association with classical therapies for improving their clinical effects and for diminishing their negative side activities. The importance of p27Kip1 and p57Kip2 in polyphenols’ cellular effects will be discussed with the aim of identifying novel therapeutic strategies for the treatment of important human diseases, such as cancers, characterized by an altered control of growth.
    [Show full text]
  • Cyclin D1 Degradation Is Sufficient to Induce G1 Cell Cycle Arrest Despite Constitutive Expression of Cyclin E2 in Ovarian Cancer Cells
    Published OnlineFirst July 28, 2009; DOI: 10.1158/0008-5472.CAN-09-0913 Experimental Therapeutics, Molecular Targets, and Chemical Biology Cyclin D1 Degradation Is Sufficient to Induce G1 Cell Cycle Arrest despite Constitutive Expression of Cyclin E2 in Ovarian Cancer Cells Chioniso Patience Masamha1 and Doris Mangiaracina Benbrook1,2 Departments of 1Biochemistry and Molecular Biology and 2Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma Abstract All cancers are characterized by abnormalities in apoptosis and differentiation and altered cell proliferation (4). Cancer cells often D- and E-type cyclins mediate G1-S phase cell cycle progres- sion through activation of specific cyclin-dependent kinases have a selective growth advantage due to deregulation of cell cycle (cdk) that phosphorylate the retinoblastoma protein (pRb), proteins, causing aberrant growth signaling that drives tumor thereby alleviating repression of E2F-DP transactivation of development (1, 5). Exit of cells from quiescence and cell cycle S-phase genes. Cyclin D1 is often overexpressed in a variety of progression is induced by sequential activation of cyclin-dependent cancers and is associated with tumorigenesis and metastasis. kinases (cdk) by cyclins. Once the cell progresses through late G1 into the Sphase, it is irrevocably committed to DNA replication Loss of cyclin D can cause G1 arrest in some cells, but in other cellular contexts, the downstream cyclin E protein can and cell division (6). Deregulation of G1 to S-phase transition is implicated in the pathogenesis of most human cancers, including substitute for cyclin D and facilitate G1-S progression. The objective of this study was to determine if a flexible ovarian cancer (7).
    [Show full text]
  • Cytometry of Cyclin Proteins
    Reprinted with permission of Cytometry Part A, John Wiley and Sons, Inc. Cytometry of Cyclin Proteins Zbigniew Darzynkiewicz, Jianping Gong, Gloria Juan, Barbara Ardelt, and Frank Traganos The Cancer Research Institute, New York Medical College, Valhalla, New York Received for publication January 22, 1996; accepted March 11, 1996 Cyclins are key components of the cell cycle pro- gests that the partner kinase CDK4 (which upon ac- gression machinery. They activate their partner cy- tivation by D-type cyclins phosphorylates pRB com- clin-dependent kinases (CDKs) and possibly target mitting the cell to enter S) is perpetually active them to respective substrate proteins within the throughout the cell cycle in these tumor lines. Ex- cell. CDK-mediated phosphorylation of specsc sets pression of cyclin D also may serve to discriminate of proteins drives the cell through particular phases Go vs. GI cells and, as an activation marker, to iden- or checkpoints of the cell cycle. During unper- tify the mitogenically stimulated cells entering the turbed growth of normal cells, the timing of expres- cell cycle. Differences in cyclin expression make it sion of several cyclins is discontinuous, occurring possible to discrirmna* te between cells having the at discrete and well-defined periods of the cell cy- same DNA content but residing at different phases cle. Immunocytochemical detection of cyclins in such as in G2vs. M or G,/M of a lower DNA ploidy vs. relation to cell cycle position (DNA content) by GI cells of a higher ploidy. The expression of cyclins multiparameter flow cytometry has provided a new D, E, A and B1 provides new cell cycle landmarks approach to cell cycle studies.
    [Show full text]
  • Cyclin-Dependent Kinase 2 (Cdk2) Controls Phosphatase-Regulated Signaling and Function in Platelets
    bioRxiv preprint doi: https://doi.org/10.1101/2020.05.31.126953; this version posted June 28, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Cyclin-dependent kinase 2 (Cdk2) controls phosphatase-regulated signaling and function in platelets Paul R. Woods, Jr.,1,2 Brian L. Hood5, Sruti Shiva,$4 Thomas P. Conrads5, Sarah Suchko,2 Richard Steinman, 1,2,4# Departments oF Medicine1, Hillman Cancer Center2, Vascular Medicine Institute3, Department oF Molecular Pharmacology and Chemical Biology4, University of Pittsburgh School of Medicine; The Henry M. Jackson Foundation For the Advancement of Military Medicine, Inc., Inova Women’s Service Line, Inova Health System5 #Corresponding author: Richard Steinman, MD, PhD Associate Professor of Medicine and Pharmacology Associate Dean, Director Medical Scientist Training Program Director, Physician Scientist Training Program University of Pittsburgh School of Medicine 2.26f Hillman Cancer Center 5117 Centre Avenue Pittsburgh, PA 15213 USA phone: 412 6233237 fax: 412 6234840 [email protected] bioRxiv preprint doi: https://doi.org/10.1101/2020.05.31.126953; this version posted June 28, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract Cell cycle regulatory molecules including cyclin-dependent kinases can be recruited into non-nuclear pathways to coordinate cell cycling with the energetic state oF the cell or with Functions such as motility.
    [Show full text]