https://doi.org/10.5194/gi-2019-22 Preprint. Discussion started: 1 August 2019 c Author(s) 2019. CC BY 4.0 License. A soil moisture monitoring network to characterize karstic recharge and evapotranspiration at five representative sites across the globe Romane Berthelin 1, Michael Rinderer 2, Bartolomé Andreo 3, Andy Baker 4, Daniela Kilian 5, Gabriele Leonhardt 5, Annette Lotz 5, Kurt Lichtenwoehrer 5, Matías Mudarra 3, Ingrid Y. Padilla 6, Fernando Pantoja 5 Agreda 6, Rafael Rosolem 7, Abel Vale 8, Andreas Hartmann 1,7 1Chair of Hydrological Modeling and Water Resources, Freiburg University, Freiburg, 79098, Germany 2Chair of Hydrology, Freiburg University, Freiburg, 79098, Germany 3Department of Geology and Centre of Hydrogeology. University of Malaga, Málaga, 29071, Spain 10 4Connected Waters Initiative Research Centre, UNSW, Sydney, NSW 2052, Australia 5Nationalpark Berchtesgaden, Berchtesgaden, 83471, Germany 6Department of Civil Engineering and Surveying, University of Puerto Rico, Mayagüez, 00682, Puerto Rico 7Department of Civil Engineering, University of Bristol, Bristol, BS8 1TR, United Kingdom 8Ciudadanos del Karso, 267 Sierra Morena PMB 230, San Juan, Puerto Rico 009264 15 Correspondence to : Romane Berthelin (
[email protected]) Abstract Karst systems that are characterized by a high subsurface heterogeneity are posing a challenge to study their complex recharge processes. Experimental methods to study karst processes mostly focus on characterizing the entire aquifer. Despite their 20 important role for recharge processes, the limited focus has been given on studies of the soil and epikarst and most available research has been performed at sites of similar latitudes. In our study, we describe a new monitoring concept that allows the improvement of soil and epikarst processes understanding by covering different karst systems with different land cover at different climate regions.