Proceedings of the International Symposium CEMC 2014

Total Page:16

File Type:pdf, Size:1020Kb

Proceedings of the International Symposium CEMC 2014 I V E R SI TA N S U M S I A S S A N R E Y N K U IA B R Czech Geological Society PROCEEDINGS NA OF THE INTERNATIONAL SYMPOSIUM CEMC 2014 Skalský Dvůr, Czech Republic 23–26 April, 2014 4th CENTRAL EUROPEAN MINERALOGICAL CONFERENCE (CEMC) Skalský Dvůr, Czech Republic, 23–26 April 2014 Proceedings of the international symposium CEMC 2014 Masaryk University Czech Geological Society Edited and revised by Ivo Macek Masaryk University, Brno, Czech Republic Cover by Petr Gadas Masaryk University, Brno, Czech Republic The authors are fully responsible for scientific content, language and copyright of all chapters including published figures and data. Organizers Milan Novák Petr Gadas Zbyněk Buřival Radek Škoda Renata Čopjaková Zdeněk Losos Ivo Macek ------------------------------ Masaryk University Brno David Buriánek František Veselovský --------------------------- Czech Geological Survey Stanislav Houzar Vladimír Hrazdil ----------------------------- Moravian Museum Brno Jakub Plášil ----------------------------- Czech Academy of Science Czech Republic Table of contents Bačík P., Dikej J., Fridrichová J.: Disorder among octahedral sites in tourmalines of schorl-dravite series ................................. 10 Bartz W., Chorowska M., Gasior M., Kosciuk J.: Petrographic study of early medieval mortars from the castle in Ostrów Tumski (wroclaw, SW Poland) .............................................................................................................................. 12 Bolohuščin V., Uher P., Ružička P.: Vesuvianite from the Dubová and Modra-Harmónia skarns (Malé Karpaty Mts., Slovakia): Composition and alteration products ........................................................................................ 14 Brčeková J., Jánošík M., Koděra P., Uhlík P., Lexa J., Biroň A.: 3D visualization of ore mineralization, K-silicate alteration and Ca-Na alteration at the porphyry gold deposit Biely Vrch (Slovakia) .......................................................................... 16 Broska I., Janák M., Bačík P.: Schorlitic tourmaline from eclogite- hosting gneisses in the Tso Morari UHP metamorphic terrane (Ladakh Himalaya, India) ............................................................................................ 18 Bukala M., Wojtulek P., Puziewicz J., Ntaflos T.: Minerological diversity of sulfides from chromite ore from the Czernica and Grochowiec Hill, Central-Sudetic Ophiolite (SW Poland) ................................................................................... 20 Buriánek D., Dolníček Z., Novák M.: Textural and compositional evidences for a polyphase saturation of tourmaline from peraluminous granites and pegmatites enclosed in the Třebíč Pluton (Bohemian Massif) ..... 22 Buřival Z., Novák M.: Hydrothermal replacement of garnet by tourmaline – an example from LCT pegmatites in the Sahatany Valley, Madagascar .................................................................................................. 24 Ciesilczuk J., Kruszewski L., Fabianska M. J., Misz-Kennan M., Kowalski A., Mysza B.: Efflorescences and gas composition emitted from the burning coal – waste dump in Słupiec, Lower Silesian Coal Basin, Poland .......................................................................................... 26 Čopjaková R., Škoda R., Vašinová Galiová M., Novák M.: Behavior of B and Li during the evolution of the Kracovice pegmatite related to the formation and stability of tourmaline and garnet ...................................................................................... 28 Dvořáková Š.: Uranium distribution of southern part of Boskovice furrow .................................................... 30 Faryad S. W., Kachlík V.: Magmatic and metamorphic crystallization history of a coronitic gabbro from the Moldanubian Zone (Bohemian Massif) and its geotectonic implication ................................. 32 Ferenc Š., Koděra P., Demko R.: Epithermal precious metals mineralization at Nová Baňa – Gupňa occurrence (Pohronský Inovec Mts., Slovak Republic) ................................................................................................. 34 Fridrichová J., Bačík P., Štubňa J., Antal P.: Gemmological and spectroscopic study of gem tourmalines ................................................... 36 5 Fridrichová J., Bačík P., Rusinová P., Miglierini M., Bizovská V., Antal P.: Crystal – chemical effects of heat treatment on aquamarines and yellow beryl from Thanh Hoa province, Vietnam ............................................................................................................ 38 Gasior M., Bartz W., Kierczak J.: Archaeometric study of baroque stuccoes from the lubiąż abbey (SW Poland) – preliminary results ....................................................................................................................................... 40 Giblová S., Doláková N.: Study of the Trilobites from the locality Horní Benešov ......................................................... 42 Golebiowska B., Rzepa G., Pieczka A.: Tl-rich Mn oxides from Zalas (Cracow area, Poland) ............................................................. 44 Haifler J., Kotková J.: P-T evolution of diamond-bearing intermediate granulites from North Bohemia: first results46 Haifler J., Škoda R.: Characterization of the alteration processes of the metamict zirconolite ................................. 48 Hrvanovic S., Putiš M., Bačík P.: Prograde and retrogade mineral association in metaultramafics in the Sieggraben and Schwarzenbach area, Eastern Alps ........................................................................................... 50 Ionescu C., Hoeck V.: Applications of geosciences in the study of archaeoceramics: Archaeometric studies in Romania ................................................................................................................................... 52 Jakubcová M., Leichmann J.: Uranium and sulphide mineralization from the 21st level of the Rožná mine .......................... 53 Jakubová P., Kotková J., Leichmann J.: Morphology of microdiamonds from the North Bohemian granulites .................................... 55 Jedlička R., Faryad S. W., Hauzenberger Ch.: Evidence of two different metamorphic garnets in felsic granulite from the Kutná Hora crystalline complex (Bohemian Massif) by zoning of Rare Earth Elements ........................... 57 Kallistová A., Skála R., Malíková R., Horáček I.: An influence of sample preparation on microstructure of dental hydroxylapatite ................... 59 Kierczak J., Stolarczyk T.: Historical copper slags from the vicinity of Leszczyna (Lower Silesia) – mineralogy and chemical composition ............................................................................................................... 61 Kis A., Weiszburg T. G., Gadas P., Váczi T., Buda G.: Geochronology aimed pre-examination of zircon from two Variscan ultrapotassic plutonic complexes ................................................................................................................................. 63 Kozák J., Koděra P., Lexa J., Chovan M., Brčeková J.: Gold mineralogy of Porphyry gold deposit Biely Vrch (Slovakia) ......................................... 65 Krajčová J.: Mineralogical and chemical characteristic of the mineral coatings developed on the steel well from gas reservoir ..................................................................................................................... 67 Králová V., Dosbaba M.: Assessing the gold association of Hodruša mine ore concentrate and tailings by the means of automated mineralogical analysis ............................................................................................ 69 6 Kristály F., Orbán S., Kovács A.: Clinoptilolite tuff at Racoş and Mateiaş (Perşani Mts, central Romania) ................................ 71 Krmíček L., Romer R. L., Kroner U., Novák M., Škoda R.: The Kojetice coticules: An important geological and age marker within the Moldanubian Zone? ........................................................................................................................................ 73 Krmíček L., Halavínová M., Tupý M.: Trace-element partitioning in a calc – alkaline lamprophyric system ..................................... 75 Kruszewski L., Ciesielczuk J., Misz-Kennan M.: Mineralogy of some metacarbonate rocks from burned coal-mining dump in Przygórze (Lower Silesian Coal Basin) and its analogy to “olive” rocks from the Hatrurim Formation . 77 Kubač A., Chovan M., Koděra P., Lexa J., Žitňan P.: Gold in the Rozália mine Au deposit (Hodruša – Hámre, Slovakia) ....................................... 79 Laufek F., Vymazalová A., Grokhovskaya T. L., Drábek M., Drahokoupil J.: Synthesis and crystal structure study of sopcheite (Ag4Pd3Te4) and lukkulaisvaaraite (Pd14Ag2Te9) ............................................................................................................................. 81 Leskó M. Zs., Topa B. A., Weiszburg T. G., Vigh T., Váczi T., Bendö Z.: Microscale mineralogical and textural study of the bottom manganese-oxide layers at the Úrkút deposit (Hungary) .......................................................................................................... 83 Losertová L, Losos Z.: W-mineralization from greisen at Cetoraz near Pacov, Czech Republic ................................. 85 Loun J., Novák M., Škoda R., Čopjaková R., Vašinová Galiová M.: Nb-Ta oxide minerals in alluvial placers from Kamakwie, NW Sierra Leone:
Recommended publications
  • The Structure of the Alps: an Overview 1 Institut Fiir Geologie Und Paläontologie, Hellbrunnerstr. 34, A-5020 Salzburg, Austria
    Carpathian-Balkan Geological pp. 7-24 Salzburg Association, XVI Con ress Wien, 1998 The structure of the Alps: an overview F. Neubauer Genser Handler and W. Kurz \ J. 1, R. 1 2 1 Institut fiir Geologie und Paläontologie, Hellbrunnerstr. 34, A-5020 Salzburg, Austria. 2 Institut fiir Geologie und Paläontologie, Heinrichstr. 26, A-80 10 Graz, Austria Abstract New data on the present structure and the Late Paleozoic to Recent geological evolution ofthe Eastem Alps are reviewed mainly in respect to the distribution of Alpidic, Cretaceous and Tertiary, metamorphic overprints and the corresponding structure. Following these data, the Alps as a whole, and the Eastem Alps in particular, are the result of two independent Alpidic collisional orogens: The Cretaceous orogeny fo rmed the present Austroalpine units sensu lato (including from fo otwall to hangingwall the Austroalpine s. str. unit, the Meliata-Hallstatt units, and the Upper Juvavic units), the Eocene-Oligocene orogeny resulted from continent­ continent collision and overriding of the stable European continental lithosphere by the Austroalpine continental microplate. Consequently, a fundamental difference in present-day structure of the Eastem and Centrai/Westem Alps resulted. Exhumation of metamorphic crust fo rmed during Cretaceous and Tertiary orogenies resulted from several processes including subvertical extrusion due to lithospheric indentation, tectonic unroofing and erosional denudation. Original paleogeographic relationships were destroyed and veiled by late Cretaceous sinistral shear, and Oligocene-Miocene sinistral wrenching within Austroalpine units, and subsequent eastward lateral escape of units exposed within the centrat axis of the Alps along the Periadriatic fault system due to the indentation ofthe rigid Southalpine indenter.
    [Show full text]
  • The Iron Oxides Structure, Properties, Reactions, Occurrence and Uses
    R.M.Cornell U. Schwertmann The Iron Oxides Structure, Properties, Reactions, Occurrence and Uses Weinheim • New York VCH Basel • Cambridge • Tokyo Contents 1 Introduction to the iron oxides 1 2 Crystal structure 7 2.1 General 7 2.2 Iron oxide structures 7 2.2.1 Close packing of anion layers 10 2.2.2 Linkages of octahedra or tetrahedra 12 2.3 Structures of the individual iron oxides 14 2.3.1 The oxide hydroxides 14 2.3.1.1 Goethite a-FeOOH 14 2.3.1.2 Lepidocrocite y-FeO(OH) 16 2.3.1.3 Akaganeite ß-FeO(OH) and schwertmannite Fe16016(OH)y(S04)z • n H20 18 2.3.1.4 5-FeOOH and 8'-FeOOH (feroxyhyte) 20 2.3.1.5 High pressure FeOOH 21 2.3.1.6 Ferrihydrite 22 2.3.2 The hydroxides 24 2.3.2.1 Bernalite Fe(OH)3 • nH20 24 2.3.2.2 Fe(OH)2 25 2.3.2.3 Green rusts 25 2.3.3 The oxides 26 2.3.3.1 Haematite a-Fe203 26 2.3.3.2 Magnetite Fe304 28 2.3.3.3 Maghemite y-Fe203 30 2.3.3.4 Wüstite Fe^O 31 2.4 The Fe-Ti oxide System 33 3 Cation Substitution 35 3.1 General 35 3.2 Goethite 38 3.2.1 AI Substitution 38 3.2.1.1 Synthetic goethites 38 3.2.1.2 Natural goethites 43 3.2.2 Other substituting cations 43 3.3 Haematite 48 3.4 Other Fe oxides 50 VIII Contents 4 Crystal morphology and size 53 4.1 General 53 4.1.1 Crystal growth 53 4.1.2 Crystal morphology 55 4.1.3 Crystal size 57 4.2 The iron oxides 58 4.2.1 Goethite 59 4.2.1.1 General 59 4.2.1.2 Domainic character 64 4.2.1.3 Twinning 66 4.2.1.4 Effect of additives on goethite morphology 68 4.2.2 Lepidocrocite 70 4.2.3 Akaganeite and schwertmannite 71 4.2.4 Ferrihydrite 73 4.2.5 Haematite 74 4.2.6 Magnetite 82 4.2.7
    [Show full text]
  • Properties of Synthetic Goethites and Their Effect on Sulfate Adsorption Munoz, Miguel A., Ph.D
    Order Number 8824578 Properties of synthetic goethites and their effect on sulfate adsorption Munoz, Miguel A., Ph.D. The Ohio State University, 1988 Copyright ©1988by Munoz, Miguel A. All rights reserved. UMI 300 N. Zeeb Rd. Ann Arbor, MI 48106 PLEASE NOTE: In all cases this material has been filmed in the best possible way from the available copy. Problems encountered with this document have been identified here with a check mark •/ . 1. Glossy photographs or pages. 2. Colored illustrations, paper or print • 3. Photographs with dark background _____ 4. Illustrations are poor copy ____ 5. Pages with black marks, not original copy ^ 6. Print shows through as there is text on both sides of page ______ 7. Indistinct, broken or small print on several pages _______ 8. Print exceeds margin requirements______ 9. Tightly bound copy with print lost in spine _______ 10. Computer printout pages with indistinct print ______ 11. Page(s)___________ lacking when material received, and not available from school or author. 12. Page(s) seem to be missing in numbering only as text follows. 13. Two pages numbered . Text follows. 14. Curling and wrinkled pages S 15. Dissertation contains pages with print at a slant, filmed as received 16. Other PROPERTIES OF SYNTHETIC GOETHITES AND THEIR EFFECT ON SULFATE ADSORPTION DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of the Ohio State University By Miguel A. Munoz, B.S., M.S. The Ohio State University 1988 Dissertation Committee: Approved by Dr. J .M . Bigham Dr. S.J.
    [Show full text]
  • Sorptive Interaction of Oxyanions with Iron Oxides: a Review
    Pol. J. Environ. Stud. Vol. 22, No. 1 (2013), 7-24 Review Sorptive Interaction of Oxyanions with Iron Oxides: A Review Haleemat Iyabode Adegoke1*, Folahan Amoo Adekola1, Olalekan Siyanbola Fatoki2, Bhekumusa Jabulani Ximba2 1Department of Chemistry, University of Ilorin P.M.B. 1515, Ilorin, Nigeria 2Department of Chemistry, Faculty of Applied Sciences, Cape Peninsula University of Technology, P.O. Box 652, Cape Town, South Africa Received: 5 December 2011 Accepted: 24 July 2012 Abstract Iron oxides are a group of minerals composed of Fe together with O and/or OH. They have high points of zero charge, making them positively charged over most soil pH ranges. Iron oxides also have relatively high surface areas and a high density of surface functional groups for ligand exchange reactions. In recent time, many studies have been undertaken on the use of iron oxides to remove harmful oxyanions such as chromate, arsenate, phosphate, and vanadate, etc., from aqueous solutions and contaminated waters via surface adsorp- tion on the iron oxide surface structure. This review article provides an overview of synthesis methods, char- acterization, and sorption behaviours of different iron oxides with various oxyanions. The influence of ther- modynamic and kinetic parameters on the adsorption process is appraised. Keywords: oxyanions, iron oxides, adsorption, isotherm, points of zero charge Introduction Iron oxides have been used as catalysts in the chemical industry [9, 10], and a potential photoanode for possible Iron oxides are a group of minerals composed of iron electrochemical cells [11, 12]. In medical applications, and oxygen and/or hydroxide. They are widespread in nanoparticle magnetic and superparamagnetic iron oxides nature and are found in soils and rocks, lakes and rivers, on have been used for drug delivery in the treatment of cancer the seafloor, in air, and in organisms.
    [Show full text]
  • The Formation of Green Rust Induced by Tropical River Biofilm Components Frederic Jorand, Asfaw Zegeye, Jaafar Ghanbaja, Mustapha Abdelmoula
    The formation of green rust induced by tropical river biofilm components Frederic Jorand, Asfaw Zegeye, Jaafar Ghanbaja, Mustapha Abdelmoula To cite this version: Frederic Jorand, Asfaw Zegeye, Jaafar Ghanbaja, Mustapha Abdelmoula. The formation of green rust induced by tropical river biofilm components. Science of the Total Environment, Elsevier, 2011, 409 (13), pp.2586-2596. 10.1016/j.scitotenv.2011.03.030. hal-00721559 HAL Id: hal-00721559 https://hal.archives-ouvertes.fr/hal-00721559 Submitted on 27 Jul 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The formation of green rust induced by tropical river biofilm components Running title: Green rust from ferruginous biofilms 5 Frédéric Jorand, Asfaw Zegeye, Jaafar Ghanbaja, Mustapha Abdelmoula Accepted in Science of the Total Environment 10 IF JCR 2009 (ISI Web) = 2.905 Abstract 15 In the Sinnamary Estuary (French Guiana), a dense red biofilm grows on flooded surfaces. In order to characterize the iron oxides in this biofilm and to establish the nature of secondary minerals formed after anaerobic incubation, we conducted solid analysis and performed batch incubations. Elemental analysis indicated a major amount of iron as inorganic compartment along with organic matter.
    [Show full text]
  • A Density Functional Theory and Cluster Expansion Study
    Rethinking the Magnetic Properties of Lepidocrocite: A Density Functional Theory and Cluster Expansion Study Daniel J. Pope and Aurora E. Clark Department of Chemistry, Washington State University, Pullman, Washington 99164, USA Micah P. Prange and Kevin M. Rosso Pacific Northwest National Laboratory, Richland, Washington 99532, USA (Dated: February 23, 2020) The iron oxyhydroxide lepidocrocite (g-FeOOH) is an abundant mineral critical to a number of chemical and technological applications. Of particular interest is the ground state and finite tem- perature magnetic order, and the subsequent impact this has upon crystal properties. The magnetic properties, investigated in this work are governed primarily through superexchange interactions, and have been calculated using density functional theory and cluster expansion methods. Quantification of these exchange terms has facilitated the determination of the ground state magneto-crystalline structure and subsequent calculation of its lattice constants, elastic moduli, cohesive enthalpy, and electronic density of states. Further, using a collinear magnetic configuration model, the magnetic heat capacity versus temperature has been studied and the N´eeltemperature obtained. I. INTRODUCTION: In contrast to a-FeOOH (goethite) and b-FeOOH (aka- ganeite), whose structures consist of double chains of iron octahedra connected by corner-sharing,[1] the bulk struc- Iron oxides are a common class of minerals whose appli- ture of lepidocrocite is comprised of two-dimensionally cations span an array of disciplines, from biotechnology, periodic edge-sharing (Fe-O-Fe-O)- bonding interactions to environmental science, to electronics. Lepidocrocite, along both its a and c axes. Given this, it is reasonable g-Fe(III)OOH is a naturally occurring iron oxy-hydroxide to predict that magnetic order to be maintained at higher that is most common in rocks, soils, and rusts.[1] While temperatures than its polymorphic counterparts.
    [Show full text]
  • Removal of Arsenate and Arsenite in Equimolar Ferrous And
    Article Removal of Arsenate and Arsenite in Equimolar Ferrous and Ferric Sulfate Solutions through Mineral Coprecipitation: Formation of Sulfate Green Rust, Goethite, and Lepidocrocite Chunming Su * and Richard T. Wilkin Groundwater Characterization and Remediation Division, Center for Environmental Solutions and Emergency Response, Office of Research and Development, United States Environmental Protection Agency, 919 Kerr Research Drive, Ada, OK 74820, USA; [email protected] * Correspondence: [email protected] Received: 24 September 2020; Accepted: 14 November 2020; Published: 23 November 2020 Abstract: An improved understanding of in situ mineralization in the presence of dissolved arsenic and both ferrous and ferric iron is necessary because it is an important geochemical process in the fate and transformation of arsenic and iron in groundwater systems. This work aimed at evaluating mineral phases that could form and the related transformation of arsenic species during coprecipitation. We conducted batch tests to precipitate ferrous (133 mM) and ferric (133 mM) ions in sulfate (533 mM) solutions spiked with As (0–100 mM As(V) or As(III)) and titrated with solid NaOH (400 mM). Goethite and lepidocrocite were formed at 0.5–5 mM As(V) or As(III). Only lepidocrocite formed at 10 mM As(III). Only goethite formed in the absence of added As(V) or As(III). Iron (II, III) hydroxysulfate green rust (sulfate green rust or SGR) was formed at 50 mM As(III) at an equilibrium pH of 6.34. X-ray analysis indicated that amorphous solid products were formed at 10–100 mM As(V) or 100 mM As(III).
    [Show full text]
  • A Soil Moisture Monitoring Network to Characterize Karstic Recharge
    https://doi.org/10.5194/gi-2019-22 Preprint. Discussion started: 1 August 2019 c Author(s) 2019. CC BY 4.0 License. A soil moisture monitoring network to characterize karstic recharge and evapotranspiration at five representative sites across the globe Romane Berthelin 1, Michael Rinderer 2, Bartolomé Andreo 3, Andy Baker 4, Daniela Kilian 5, Gabriele Leonhardt 5, Annette Lotz 5, Kurt Lichtenwoehrer 5, Matías Mudarra 3, Ingrid Y. Padilla 6, Fernando Pantoja 5 Agreda 6, Rafael Rosolem 7, Abel Vale 8, Andreas Hartmann 1,7 1Chair of Hydrological Modeling and Water Resources, Freiburg University, Freiburg, 79098, Germany 2Chair of Hydrology, Freiburg University, Freiburg, 79098, Germany 3Department of Geology and Centre of Hydrogeology. University of Malaga, Málaga, 29071, Spain 10 4Connected Waters Initiative Research Centre, UNSW, Sydney, NSW 2052, Australia 5Nationalpark Berchtesgaden, Berchtesgaden, 83471, Germany 6Department of Civil Engineering and Surveying, University of Puerto Rico, Mayagüez, 00682, Puerto Rico 7Department of Civil Engineering, University of Bristol, Bristol, BS8 1TR, United Kingdom 8Ciudadanos del Karso, 267 Sierra Morena PMB 230, San Juan, Puerto Rico 009264 15 Correspondence to : Romane Berthelin ([email protected]) Abstract Karst systems that are characterized by a high subsurface heterogeneity are posing a challenge to study their complex recharge processes. Experimental methods to study karst processes mostly focus on characterizing the entire aquifer. Despite their 20 important role for recharge processes, the limited focus has been given on studies of the soil and epikarst and most available research has been performed at sites of similar latitudes. In our study, we describe a new monitoring concept that allows the improvement of soil and epikarst processes understanding by covering different karst systems with different land cover at different climate regions.
    [Show full text]
  • New Mineral Names*,†
    American Mineralogist, Volume 101, pages 2570–2573, 2016 New Mineral Names*,† DMITRIY I. BELAKOVSKIY1, OLIVIER C. GAGNE2, AND YULIA UVAROVA3 1Fersman Mineralogical Museum, Russian Academy of Sciences, Leninskiy Prospekt 18 korp. 2, Moscow 119071, Russia 2Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada 3CSIRO Mineral Resources, CSIRO, ARRC, 26 Dick Perry Avenue, Kensington, Western Australia 6151, Australia IN THIS ISSUE This New Mineral Names has entries for 9 new mineral species, including dmisokolovite, geschieberite, imayoshiite, palladosilicide, plášilite, raisaite, shchurovskyite, svornostite, and vanackerite. GESCHIEBERITE* AND SVORNOSTITE* 3.681 (18; 311), 3.403 (12; 013), 3.304 (15; 401,113), 3.006 (17; 122). The unit-cell parameters refined from powder-diffraction data are: a = J. Plášil, J. Hloušek, A.V. Kasatkin, R. Škoda, M. Novàk and J. Čejka 13.786(5), b = 7.278(3), c = 11.536(4) Å, V = 1157.4 Å3. Single-crystal (2015) Geschieberite, K (UO )(SO ) (H O) , a new uranyl sulfate 2 2 4 2 2 2 X-ray diffraction data collected on a crystal of size 0.19 × 0.11 × 0.09 mm mineral from Jáchymov. Mineralogical Magazine, 79(1), 205–216. refined to R = 0.028 for 1882 unique reflections with I ≥ 3σ(I) shows J. Plášil, J. Hloušek, A.V. Kasatkin, M. Novák, J. Čejka and L. Lapčák 1 geschieberite is orthorhombic, Pna2 , with a = 13.7778(3), b = 7.2709(4), (2015) Svornostite, K Mg[(UO )(SO ) ] ∙8H O , a new uranyl sulfate 1 2 2 4 2 2 2 c = 11.5488(2) Å, V = 1156.92 Å3, Z = 4.
    [Show full text]
  • 1. Information System of Important Geosites in the Slovak Republic
    LOVAK 18 (2018) • 1 Content SGEOLOGICAL MAGAZINE ISSN 1335-096X IMPORTANT GEOLOGICAL AND MONTANISTIC SITES OF SLOVAKIA Content Preface List of Acronyms 1. Liščák, P. & Antalík, M.: Information System of Important Geosites in the Slovak Republic .....................................5 2. Ozdín, D. & Kúšik, D.: Mineralogical Heritage of Slovakia – A Significant Contribution to Knowledge of Minerals in the World ......................................................................................................................69 3. Sombathy, E., Kúšik, D. & Mižák, J.: Slovak Mining Road ........................................................................................83 COVER: Left-up: Lava flows of pyroxenic andesite with conspicuous columnar jointing in the area of the hill Štangarígeľ (pen-and- ink drawing by Vlastimil Konečný). Right-up: A ceremonial visit to the Glanzenberg Hereditary Adit. Left-down: A qualitatively exceptional sample (10 x 6 cm) of the emerald-green euchroite from the Ľubietová – Svätodušná deposit. The size of the euchroite crystals is up to 2 cm. Finding of 2003 (Photo: T. Bancík). Right-down: Memorial Plaque commemorating a visit of Francis I, Holy Roman Emperor, spouse of Maria Theresa, to the Glanzenberg Hereditary Adit on June 7, 1751. Edited by: RNDr. Pavel Liščák, CSc. Mgr. Dušan Kúšik, PhD. Reviewers: RNDr. Boris Antal, CSc. Assoc. Prof. Štefan Ferenc, PhD. RNDr. Martina Moravcová, PhD. © State Geological Institute of Dionýz Štúr Bratislava 2018, Slovak Republic ISSN 1335-096X Preface Important Geological and Montanistic Sites of Slovakia Since the restoration of the Slovak Geological Magazine issuing in 2013 there has been published wide spectrum of themes covering both basic and applied research in geology. However, the theme of geoheritage and geotourism has not been covered yet, despite the SGIDŠ workers have significantly contributed also to this booming sector of geological science.
    [Show full text]
  • Jiří Čejka – Devadesátiny V Plné Síle
    Journal of the National Museum (Prague), Natural History Series Vol. 188 (2019), ISSN 1802-6842 (print), 1802-6850 (electronic) DOI: 10.37520/jnmpnhs-2019-0014 Kronika/ Chronicle Jiří Čejka – devadesátiny v plné síle Jiří Sejkora & Jakub Plášil Národní muzeum, Mineralogicko-petrologické oddělení, Cirkusová 1740, 193 00 Praha 9; [email protected] Sejkora J. & Plášil J., 2019: Jiří Čejka – devadesátiny v plné síle. – Journal of the National Museum (Prague), Natural History Series 188: 193–218. - - Ačkoliv se to zdá neuvěřitelné, náš vzácný kolega a spolupracovník, ing. Jiří Čejka, DrSc., osla vil začátkem září roku 2019 v rodinném kruhu v Roudnici nad Labem a mezi skauty své de vadesáté narozeniny. Nuže popořádku, nejdříve něco- biografických dat. Jiří Čejka se narodil 2. září 1929 v Roudnici nad Labem ve středostavovské- rodině úředníka roudnické radnice a později správce roudnické městské galerie, a mat ky, která byla nejdříve v domácnosti a později praco vala v městské knihovně. Po maturitě na osmiletém gymnáziu v roce 1948 nastoupil ke studiu na Vysoké škole chemicko-technologického inženýrství, patřící tehdy ještě pod ČVUT v Praze. Od mládí se zajímal- o politické dění a již během studia na střední škole se jako člen mládeže Československé stranyModrý národ meč ně socialistické a zejména jako aktivní skaut podílel na vytvoření protikomunistické skupiny -. Ta se zaměřila na vydávání a šíření letáků ukazující pravdu o podstatě tehdy vzniklého nedemokratic- kého komunistického totalitního státního zřízení.- Činnost této skupiny spoluorganizoval i během své ho vysokoškolského studia v Praze; po jejím odhale ní byl v roce 1951 z politických důvodů vyloučen ze studia na všech vysokých škol v tehdejší ČSR.
    [Show full text]
  • Manganese Oxide Minerals: Crystal Structures and Economic and Environmental Significance
    Proc. Natl. Acad. Sci. USA Vol. 96, pp. 3447–3454, March 1999 Colloquium Paper This paper was presented at the National Academy of Sciences colloquium ‘‘Geology, Mineralogy, and Human Welfare,’’ held November 8–9, 1998 at the Arnold and Mabel Beckman Center in Irvine, CA. Manganese oxide minerals: Crystal structures and economic and environmental significance JEFFREY E. POST Department of Mineral Sciences, Smithsonian Institution, Washington, DC 20560-0119 ABSTRACT Manganese oxide minerals have been used ronmentally relevant insights into certain types of interactions for thousands of years—by the ancients for pigments and to between these systems and potentially serve as long-term clarify glass, and today as ores of Mn metal, catalysts, and monitors of changes within a system. battery material. More than 30 Mn oxide minerals occur in a As ores, Mn oxides have been exploited since ancient times. wide variety of geological settings. They are major components In particular, pyrolusite (MnO2) was prized as a pigment and of Mn nodules that pave huge areas of the ocean floor and for its ability to remove the green tint imparted by iron to glass bottoms of many fresh-water lakes. Mn oxide minerals are (3). By the mid-19th century Mn was an essential component ubiquitous in soils and sediments and participate in a variety in steel making, as a deoxidizer and desulfurizer and for of chemical reactions that affect groundwater and bulk soil making hard-steel alloys. Mn oxides are the predominant ore composition. Their typical occurrence as fine-grained mix- minerals in most of today’s commercially important Mn de- tures makes it difficult to study their atomic structures and posits, commonly formed by weathering of Mn-rich carbonates crystal chemistries.
    [Show full text]