Recent Positive Selection in Genes of the Mammalian Epidermal Differentiation Complex Locus Zane A
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Molecular and Physiological Basis for Hair Loss in Near Naked Hairless and Oak Ridge Rhino-Like Mouse Models: Tracking the Role of the Hairless Gene
University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 5-2006 Molecular and Physiological Basis for Hair Loss in Near Naked Hairless and Oak Ridge Rhino-like Mouse Models: Tracking the Role of the Hairless Gene Yutao Liu University of Tennessee - Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Life Sciences Commons Recommended Citation Liu, Yutao, "Molecular and Physiological Basis for Hair Loss in Near Naked Hairless and Oak Ridge Rhino- like Mouse Models: Tracking the Role of the Hairless Gene. " PhD diss., University of Tennessee, 2006. https://trace.tennessee.edu/utk_graddiss/1824 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Yutao Liu entitled "Molecular and Physiological Basis for Hair Loss in Near Naked Hairless and Oak Ridge Rhino-like Mouse Models: Tracking the Role of the Hairless Gene." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Life Sciences. Brynn H. Voy, Major Professor We have read this dissertation and recommend its acceptance: Naima Moustaid-Moussa, Yisong Wang, Rogert Hettich Accepted for the Council: Carolyn R. -
Fine Mapping Studies of Quantitative Trait Loci for Baseline Platelet Count in Mice and Humans
Fine mapping studies of quantitative trait loci for baseline platelet count in mice and humans A thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy Melody C Caramins December 2010 University of New South Wales ORIGINALITY STATEMENT ‘I hereby declare that this submission is my own work and to the best of my knowledge it contains no materials previously published or written by another person, or substantial proportions of material which have been accepted for the award of any other degree or diploma at UNSW or any other educational institution, except where due acknowledgement is made in the thesis. Any contribution made to the research by others, with whom I have worked at UNSW or elsewhere, is explicitly acknowledged in the thesis. I also declare that the intellectual content of this thesis is the product of my own work, except to the extent that assistance from others in the project's design and conception or in style, presentation and linguistic expression is acknowledged.’ Signed …………………………………………….............. Date …………………………………………….............. This thesis is dedicated to my father. Dad, thanks for the genes – and the environment! ACKNOWLEDGEMENTS “Nothing can come out of nothing, any more than a thing can go back to nothing.” - Marcus Aurelius Antoninus A PhD thesis is never the work of one person in isolation from the world at large. I would like to thank the following people, without whom this work would not have existed. Thank you firstly, to all my teachers, of which there have been many. Undoubtedly, the greatest debt is owed to my supervisor, Dr Michael Buckley. -
Jiang Et Al., 2015. Molecular [Profiling of Activated Olfactory Neurons
ART ic LE s Molecular profiling of activated olfactory neurons identifies odorant receptors for odors in vivo Yue Jiang1–3, Naihua Natalie Gong1, Xiaoyang Serene Hu1, Mengjue Jessica Ni1, Radhika Pasi1 & Hiroaki Matsunami1,4 The mammalian olfactory system uses a large family of odorant receptors (ORs) to detect and discriminate amongst a myriad of volatile odor molecules. Understanding odor coding requires comprehensive mapping between ORs and corresponding odors. We developed a means of high-throughput in vivo identification of OR repertoires responding to odorants using phosphorylated ribosome immunoprecipitation of mRNA from olfactory epithelium of odor-stimulated mice followed by RNA-Seq. This approach screened the endogenously expressed ORs against an odor in one set of experiments using awake and freely behaving mice. In combination with validations in a heterologous system, we identified sets of ORs for two odorants, acetophenone and 2,5-dihydro-2,4,5-trimethylthiazoline (TMT), encompassing 69 OR-odorant pairs. We also identified shared amino acid residues specific to the acetophenone or TMT receptors and developed models to predict receptor activation by acetophenone. Our results provide a method for understanding the combinatorial coding of odors in vivo. In mammals, olfactory sensation starts with the detection of odor lig- early gene expression, such as c-Fos and Egr-1, which is widely used ands predominantly by ORs, a large family of seven transmembrane G to mark active neurons15,18,19. However, unlike immediate early gene protein–coupled receptors (GPCRs)1,2. ORs are individually expressed expression, phosphorylated S6 has the advantage of being physically in olfactory sensory neurons (OSNs) located in the olfactory epithe- associated with mRNA species expressed in the activated neurons. -
Definition of the Landscape of Promoter DNA Hypomethylation in Liver Cancer
Published OnlineFirst July 11, 2011; DOI: 10.1158/0008-5472.CAN-10-3823 Cancer Therapeutics, Targets, and Chemical Biology Research Definition of the Landscape of Promoter DNA Hypomethylation in Liver Cancer Barbara Stefanska1, Jian Huang4, Bishnu Bhattacharyya1, Matthew Suderman1,2, Michael Hallett3, Ze-Guang Han4, and Moshe Szyf1,2 Abstract We use hepatic cellular carcinoma (HCC), one of the most common human cancers, as a model to delineate the landscape of promoter hypomethylation in cancer. Using a combination of methylated DNA immunopre- cipitation and hybridization with comprehensive promoter arrays, we have identified approximately 3,700 promoters that are hypomethylated in tumor samples. The hypomethylated promoters appeared in clusters across the genome suggesting that a high-level organization underlies the epigenomic changes in cancer. In normal liver, most hypomethylated promoters showed an intermediate level of methylation and expression, however, high-CpG dense promoters showed the most profound increase in gene expression. The demethylated genes are mainly involved in cell growth, cell adhesion and communication, signal transduction, mobility, and invasion; functions that are essential for cancer progression and metastasis. The DNA methylation inhibitor, 5- aza-20-deoxycytidine, activated several of the genes that are demethylated and induced in tumors, supporting a causal role for demethylation in activation of these genes. Previous studies suggested that MBD2 was involved in demethylation of specific human breast and prostate cancer genes. Whereas MBD2 depletion in normal liver cells had little or no effect, we found that its depletion in human HCC and adenocarcinoma cells resulted in suppression of cell growth, anchorage-independent growth and invasiveness as well as an increase in promoter methylation and silencing of several of the genes that are hypomethylated in tumors. -
Human S100A5 Circulex Product Data Sheet for Research Use Only, Not for Use in Diagnostic Procedures
TM Human S100A5 CircuLex Product Data Sheet For Research Use Only, Not for use in diagnostic procedures Human S100A5 Human, recombinant protein expressed in E. coli. Cat# CY-R2255 Amount: 100 µg (1.0 µg/µl) Lot: Introduction: The protein S100A5, formerly called S100D, was recognized for the first time as the product of one of the tightest gene clusters discovered in the human genome located on chromosome 1q21. S100A5 is a member of the EF-hand superfamily of calcium-binding proteins that is poorly characterized at the protein level. Immunohistochemical analysis demonstrates that it is expressed in very restricted regions of the adult brain and Henle portion of kidney. The homodimeric S100A5 binds four Ca2+ ions with strong positive cooperativity and an affinity 20-100-fold higher than the other S100 proteins studied under identical conditions. S100A5 also binds two Zn2+ ions and four Cu2+ ions per dimer. Cu2+ binding strongly impairs the binding of Ca2+. Product Description: Full length of human S100A5, containing an N-terminal GST tag, expressed in E. coil. and purified by GSH agarose chromatography. Gene Information: The gene accession number is NM_002962. Gene Aliases: S100D Formulation: Recombinant human S100A5 is supplied frozen in 2X PBS (2X phosphate buffered saline) containing 50 % glycerol. Cat#: CY-R2255 1 Version#: 120420 For Reference Purpose Only! TM Human S100A5 CircuLex Product Data Sheet For Research Use Only, Not for use in diagnostic procedures Molecular Weight: 36 kDa Recombinant human S100A5 demonstrates approximately 36 kDa band by Mw (kDa) SDS-PAGE analysis. 97 Purity is over 90 % estimated by SDS-PAGE analysis. -
Atlas Journal
Atlas of Genetics and Cytogenetics in Oncology and Haematology Home Genes Leukemias Solid Tumours Cancer-Prone Deep Insight Portal Teaching X Y 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 NA Atlas Journal Atlas Journal versus Atlas Database: the accumulation of the issues of the Journal constitutes the body of the Database/Text-Book. TABLE OF CONTENTS Volume 12, Number 6, Nov-Dec 2008 Previous Issue / Next Issue Genes BCL8 (B-cell CLL/lymphoma 8) (15q11). Silvia Rasi, Gianluca Gaidano. Atlas Genet Cytogenet Oncol Haematol 2008; 12 (6): 781-784. [Full Text] [PDF] URL : http://atlasgeneticsoncology.org/Genes/BCL8ID781ch15q11.html CDC25A (Cell division cycle 25A) (3p21). Dipankar Ray, Hiroaki Kiyokawa. Atlas Genet Cytogenet Oncol Haematol 2008; 12 (6): 785-791. [Full Text] [PDF] URL : http://atlasgeneticsoncology.org/Genes/CDC25AID40004ch3p21.html CDC73 (cell division cycle 73, Paf1/RNA polymerase II complex component, homolog (S. cerevisiae)) (1q31.2). Leslie Farber, Bin Tean Teh. Atlas Genet Cytogenet Oncol Haematol 2008; 12 (6): 792-797. [Full Text] [PDF] URL : http://atlasgeneticsoncology.org/Genes/CDC73D181ch1q31.html EIF3C (eukaryotic translation initiation factor 3, subunit C) (16p11.2). Daniel R Scoles. Atlas Genet Cytogenet Oncol Haematol 2008; 12 (6): 798-802. [Full Text] [PDF] URL : http://atlasgeneticsoncology.org/Genes/EIF3CID44187ch16p11.html ELAC2 (elaC homolog 2 (E. coli)) (17p11.2). Yang Chen, Sean Tavtigian, Donna Shattuck. Atlas Genet Cytogenet Oncol Haematol 2008; 12 (6): 803-806. [Full Text] [PDF] URL : http://atlasgeneticsoncology.org/Genes/ELAC2ID40437ch17p11.html FOXM1 (forkhead box M1) (12p13). Jamila Laoukili, Monica Alvarez Fernandez, René H Medema. -
New Approach for Untangling the Role of Uncommon Calcium-Binding Proteins in the Central Nervous System
brain sciences Review New Approach for Untangling the Role of Uncommon Calcium-Binding Proteins in the Central Nervous System Krisztina Kelemen * and Tibor Szilágyi Department of Physiology, Doctoral School, Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Târgu Mures, , Romania; [email protected] * Correspondence: [email protected]; Tel.: +40-746-248064 Abstract: Although Ca2+ ion plays an essential role in cellular physiology, calcium-binding proteins (CaBPs) were long used for mainly as immunohistochemical markers of specific cell types in different regions of the central nervous system. They are a heterogeneous and wide-ranging group of proteins. Their function was studied intensively in the last two decades and a tremendous amount of informa- tion was gathered about them. Girard et al. compiled a comprehensive list of the gene-expression profiles of the entire EF-hand gene superfamily in the murine brain. We selected from this database those CaBPs which are related to information processing and/or neuronal signalling, have a Ca2+- buffer activity, Ca2+-sensor activity, modulator of Ca2+-channel activity, or a yet unknown function. In this way we created a gene function-based selection of the CaBPs. We cross-referenced these findings with publicly available, high-quality RNA-sequencing and in situ hybridization databases (Human Protein Atlas (HPA), Brain RNA-seq database and Allen Brain Atlas integrated into the HPA) and created gene expression heat maps of the regional and cell type-specific expression levels of the selected CaBPs. This represents a useful tool to predict and investigate different expression patterns and functions of the less-known CaBPs of the central nervous system. -
University of California, San Diego
UC San Diego UC San Diego Electronic Theses and Dissertations Title The post-terminal differentiation fate of RNAs revealed by next-generation sequencing Permalink https://escholarship.org/uc/item/7324r1rj Author Lefkowitz, Gloria Kuo Publication Date 2012 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, SAN DIEGO The post-terminal differentiation fate of RNAs revealed by next-generation sequencing A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Biomedical Sciences by Gloria Kuo Lefkowitz Committee in Charge: Professor Benjamin D. Yu, Chair Professor Richard Gallo Professor Bruce A. Hamilton Professor Miles F. Wilkinson Professor Eugene Yeo 2012 Copyright Gloria Kuo Lefkowitz, 2012 All rights reserved. The Dissertation of Gloria Kuo Lefkowitz is approved, and it is acceptable in quality and form for publication on microfilm and electronically: __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ Chair University of California, San Diego 2012 iii DEDICATION Ma and Ba, for your early indulgence and support. Matt and James, for choosing more practical callings. Roy, my love, for patiently sharing the ups and downs -
Semiochemical Responsive Olfactory Sensory Neurons Are Sexually
RESEARCH ARTICLE Semiochemical responsive olfactory sensory neurons are sexually dimorphic and plastic Aashutosh Vihani1*, Xiaoyang Serene Hu2, Sivaji Gundala3, Sachiko Koyama4, Eric Block3, Hiroaki Matsunami1,2,5* 1Department of Neurobiology, Neurobiology Graduate Program, Duke University Medical Center, Durham, United States; 2Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, United States; 3Department of Chemistry, University at Albany, State University of New York, Albany, United States; 4School of Medicine, Medical Sciences, Indiana University, Bloomington, United States; 5Duke Institute for Brain Sciences, Duke University, Durham, United States Abstract Understanding how genes and experience work in concert to generate phenotypic variability will provide a better understanding of individuality. Here, we considered this in the main olfactory epithelium, a chemosensory structure with over a thousand distinct cell types in mice. We identified a subpopulation of olfactory sensory neurons, defined by receptor expression, whose abundances were sexually dimorphic. This subpopulation of olfactory sensory neurons was over- represented in sex-separated mice and robustly responsive to sex-specific semiochemicals. Sex- combined housing led to an attenuation of the dimorphic representations. Single-cell sequencing analysis revealed an axis of activity-dependent gene expression amongst a subset of the dimorphic OSN populations. Finally, the pro-apoptotic gene Baxwas necessary to generate the dimorphic -
S100 Calcium Binding Protein Family Members Associate with Poor Patient Outcome and Response to Proteasome Inhibition in Multiple Myeloma
fcell-09-723016 August 10, 2021 Time: 12:24 # 1 ORIGINAL RESEARCH published: 16 August 2021 doi: 10.3389/fcell.2021.723016 S100 Calcium Binding Protein Family Members Associate With Poor Patient Outcome and Response to Proteasome Inhibition in Multiple Myeloma Minxia Liu1†, Yinyin Wang2†, Juho J. Miettinen1, Romika Kumari1, Muntasir Mamun Majumder1, Ciara Tierney3,4, Despina Bazou3, Alun Parsons1, Edited by: Minna Suvela1, Juha Lievonen5, Raija Silvennoinen5, Pekka Anttila5, Paul Dowling4, Lawrence H. Boise, Peter O’Gorman3, Jing Tang2 and Caroline A. Heckman1* Emory University, United States Reviewed by: 1 Institute for Molecular Medicine Finland – FIMM, HiLIFE – Helsinki Institute of Life Science, iCAN Digital Cancer Medicine Paola Neri, Flagship, University of Helsinki, Helsinki, Finland, 2 Research Program in Systems Oncology, Faculty of Medicine, University University of Calgary, Canada of Helsinki, Helsinki, Finland, 3 Department of Hematology, Mater Misericordiae University Hospital, Dublin, Ireland, Linda B. Baughn, 4 Department of Biology, National University of Ireland, Maynooth, Ireland, 5 Department of Hematology, Helsinki University Mayo Clinic, United States Hospital Comprehensive Cancer Center, University of Helsinki, Helsinki, Finland *Correspondence: Caroline A. Heckman Despite several new therapeutic options, multiple myeloma (MM) patients experience caroline.heckman@helsinki.fi multiple relapses and inevitably become refractory to treatment. Insights into drug †These authors have contributed equally to this work and share first resistance mechanisms may lead to the development of novel treatment strategies. authorship The S100 family is comprised of 21 calcium binding protein members with 17 S100 genes located in the 1q21 region, which is commonly amplified in MM. Dysregulated Specialty section: This article was submitted to expression of S100 family members is associated with tumor initiation, progression and Cell Death and Survival, inflammation. -
Concentration-Dependent Recruitment of Mammalian Odorant Receptors
Research Article: New Research Sensory and Motor Systems Concentration-Dependent Recruitment of Mammalian Odorant Receptors Xiaoyang Serene Hu,1 Kentaro Ikegami,1,2 Aashutosh Vihani,1,3 Kevin W. Zhu,1 Marcelo Zapata,1 Claire A. de March,1 Matthew Do,1 Natasha Vaidya,1,4 Gary Kucera,5 Cheryl Bock,5 Yue Jiang,1 Masafumi Yohda,2 and Hiroaki Matsunami1,3 https://doi.org/10.1523/ENEURO.0103-19.2019 1Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, 2Tokyo University of Agriculture and Technology, Tokyo 183-8538, Japan, 3Department of Neurobiology, Duke Institute for Brain Sciences, Duke University, Durham, NC 27710, 4North Carolina School of Science and Mathematics, Durham, NC 27705, and 5DCI Rodent Cancer Models Shared Resource, Duke University Medical Center, Durham, NC 27710 Abstract A fundamental challenge in studying principles of organization used by the olfactory system to encode odor concentration information has been identifying comprehensive sets of activated odorant receptors (ORs) across a broad concentration range inside freely behaving animals. In mammals, this has recently become fea- sible with high-throughput sequencing-based methods that identify populations of activated ORs in vivo.In this study, we characterized the mouse OR repertoires activated by the two odorants, acetophenone (ACT) and 2,5-dihydro-2,4,5-trimethylthiazoline (TMT), from 0.01% to 100% (v/v) as starting concentrations using phosphorylated ribosomal protein S6 capture followed by RNA-Seq. We found Olfr923 to be one of the most sensitive ORs that is enriched by ACT. Using a mouse line that genetically labels Olfr923-positive axons, we provided evidence that ACT activates the Olfr923 glomeruli in the olfactory bulb. -
Transdifferentiation of Human Mesenchymal Stem Cells
Transdifferentiation of Human Mesenchymal Stem Cells Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Julius-Maximilians-Universität Würzburg vorgelegt von Tatjana Schilling aus San Miguel de Tucuman, Argentinien Würzburg, 2007 Eingereicht am: Mitglieder der Promotionskommission: Vorsitzender: Prof. Dr. Martin J. Müller Gutachter: PD Dr. Norbert Schütze Gutachter: Prof. Dr. Georg Krohne Tag des Promotionskolloquiums: Doktorurkunde ausgehändigt am: Hiermit erkläre ich ehrenwörtlich, dass ich die vorliegende Dissertation selbstständig angefertigt und keine anderen als die von mir angegebenen Hilfsmittel und Quellen verwendet habe. Des Weiteren erkläre ich, dass diese Arbeit weder in gleicher noch in ähnlicher Form in einem Prüfungsverfahren vorgelegen hat und ich noch keinen Promotionsversuch unternommen habe. Gerbrunn, 4. Mai 2007 Tatjana Schilling Table of contents i Table of contents 1 Summary ........................................................................................................................ 1 1.1 Summary.................................................................................................................... 1 1.2 Zusammenfassung..................................................................................................... 2 2 Introduction.................................................................................................................... 4 2.1 Osteoporosis and the fatty degeneration of the bone marrow..................................... 4 2.2 Adipose and bone