S100 Calcium Binding Protein Family Members Associate with Poor Patient Outcome and Response to Proteasome Inhibition in Multiple Myeloma
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Annexin A2 Flop-Out Mediates the Non-Vesicular Release of Damps/Alarmins from C6 Glioma Cells Induced by Serum-Free Conditions
cells Article Annexin A2 Flop-Out Mediates the Non-Vesicular Release of DAMPs/Alarmins from C6 Glioma Cells Induced by Serum-Free Conditions Hayato Matsunaga 1,2,† , Sebok Kumar Halder 1,3,† and Hiroshi Ueda 1,4,* 1 Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521, Japan; [email protected] (H.M.); [email protected] (S.K.H.) 2 Department of Medical Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan 3 San Diego Biomedical Research Institute, San Diego, CA 92121, USA 4 Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan * Correspondence: [email protected]; Tel.: +81-75-753-4536 † These authors contributed equally to this work. Abstract: Prothymosin alpha (ProTα) and S100A13 are released from C6 glioma cells under serum- free conditions via membrane tethering mediated by Ca2+-dependent interactions between S100A13 and p40 synaptotagmin-1 (Syt-1), which is further associated with plasma membrane syntaxin-1 (Stx-1). The present study revealed that S100A13 interacted with annexin A2 (ANXA2) and this interaction was enhanced by Ca2+ and p40 Syt-1. Amlexanox (Amx) inhibited the association between S100A13 and ANXA2 in C6 glioma cells cultured under serum-free conditions in the in situ proximity ligation assay. In the absence of Amx, however, the serum-free stress results in a flop-out of ANXA2 Citation: Matsunaga, H.; Halder, through the membrane, without the extracellular release. The intracellular delivery of anti-ANXA2 S.K.; Ueda, H. Annexin A2 Flop-Out antibody blocked the serum-free stress-induced cellular loss of ProTα, S100A13, and Syt-1. -
Effect of Human S100A13 Gene Silencing on FGF-1 Transportation in Human Endothelial Cells Renxian Cao,1* Bin Yan,2 Huiling Yang,2 Xuyu Zu,2 Gebo Wen,1* Jing Zhong2
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector J Formos Med Assoc 2010;109(9):632–640 Contents lists available at ScienceDirect Volume 109 Number 9 September 2010 ISSN 0929 6646 Journal of the Journal of the Formosan Medical Association Formosan Medical Association Knockdown of miR-21 as a novel approach for leukemia therapy Fluoroquinolone prophylaxis—an Asian perspective Downregulation of S100A13 blocks FGF-1 release Application of head-up tilt table testing in children Formosan Medical Association Journal homepage: http://www.jfma-online.com Taipei, Taiwan Original Article Effect of Human S100A13 Gene Silencing on FGF-1 Transportation in Human Endothelial Cells Renxian Cao,1* Bin Yan,2 Huiling Yang,2 Xuyu Zu,2 Gebo Wen,1* Jing Zhong2 Background/Purpose: The S100 protein is part of a Ca2+ binding protein superfamily that contains an EF- hand domain, which is involved in the onset and progression of many human diseases, especially the pro- liferation and metastasis of tumors. S100A13, a new member of the S100 protein family, is a requisite component of the fibroblast growth factor-1 (FGF-1) protein release complex, and is involved in human tumorigenesis by interacting with FGF-1 and interleukin-1. In this study, experiments were designed to determine the direct role of S100A13 in FGF-1 protein release and transportation. Methods: We successfully constructed the lentiviral vectors containing shRNA targeting the human S100A13 gene. Human umbilical vein endothelial cells (HUVECs) were transfected with lentiviral RNAi vectors for S100A13. Then immunofluorescence staining, real-time quantitative polymerase chain reac- tion and Western blotting were used to detect the inhibition efficiency of the vectors and to monitor the release and transportation of FGF-1 protein. -
Ectopic Expression of Peripheral-Tissue Antigens in the Thymic Epithelium: Probabilistic, Monoallelic, Misinitiated
Ectopic expression of peripheral-tissue antigens in the thymic epithelium: Probabilistic, monoallelic, misinitiated Jennifer Villasen˜ or, Whitney Besse, Christophe Benoist, and Diane Mathis* Section on Immunology and Immunogenetics, Joslin Diabetes Center, Department of Medicine, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA 02215 Contributed by Diane Mathis, August 14, 2008 (sent for review July 18, 2008) Thymic medullary epithelial cells (MECs) express a broad repertoire operate by opening large, contiguous regions to the influence of of peripheral-tissue antigens (PTAs), many of which depend on the other positive and negative regulators. transcriptional regulatory factor Aire. Although Aire is known to The precise role of PTAs in the maturation and function of be critically important for shaping a self-tolerant T cell repertoire, MECs remains controversial. Currently, two models vie for its role in MEC maturation and function remains poorly under- acceptance. The ‘‘terminal differentiation’’ model proposes a stood. Using a highly sensitive and reproducible single-cell PCR hierarchy of PTA transcript expression based on the state of assay, we demonstrate that individual Aire-expressing MECs tran- MEC differentiation: as these cells mature from an scribe a subset of PTA genes in a probabilistic fashion, with no signs AireϪCD80loMHC-IIlo (MEClo) stage to the end-stage of preferential coexpression of genes characteristic of particular AireϩCD80hiMHC-IIhi (MEChi), they would transcribe more extrathymic epithelial cell lineages. In addition, Aire-dependent and more PTA genes, each MEChi expressing a large and diverse PTA genes in MECs are transcribed monoallelically or biallelically in subset of the full repertoire, in a more or less random fashion (3). -
Human S100A4 (P9ka) Induces the Metastatic Phenotype Upon Benign Tumour Cells
Oncogene (1998) 17, 465 ± 473 1998 Stockton Press All rights reserved 0950 ± 9232/98 $12.00 http://www.stockton-press.co.uk/onc Human S100A4 (p9Ka) induces the metastatic phenotype upon benign tumour cells Bryony H Lloyd, Angela Platt-Higgins, Philip S Rudland and Roger Barraclough School of Biological Sciences, University of Liverpool, PO Box 147, Liverpool, L69 7ZB, UK The rodent S100-related calcium-binding protein, strengthened by the observation that transgenic mice, S100A4 induces metastasis in non-metastatic rat and expressing elevated levels of S100A4 (p9Ka) from 17 mouse benign mammary cells and co-operates with additional, position-independent rat S100A4 trans- benign-tumour-inducing changes in two transgenic mouse genes, fail to show any detectable phenotype (Davies, models, to yield metastatic mammary tumours. Co- 1993). When these mice are mated with transgenic mice transfection of the human gene for S100A4 with containing additional copies of the activated rodent c- pSV2neo into the benign rat mammary cell line, Rama erbB-2 oncogene, neu, under the control of the MMTV 37, yielded cells which expressed a low level of the LTR (Bouchard et al., 1989), ospring inheriting the endogenous S100A4 mRNA, and either high or neu oncogene suer sporadic mammary tumours after undetectable levels of human S100A4 mRNA. The cells 12 ± 14 months of repeated mating. In contrast which expressed a high level of human S100A4 mRNA ospring inheriting both neu and S100A4 transgenes induced metastasis in the benign rat mammary cell line show an elevated incidence of primary tumours, and, in Rama 37 in an in vivo assay, whereas the cells which addition, metastases in the lungs which account for up expressed an undetectable level of human S100A4 did to 24% of the total lung area (Davies et al., 1996). -
Fine Mapping Studies of Quantitative Trait Loci for Baseline Platelet Count in Mice and Humans
Fine mapping studies of quantitative trait loci for baseline platelet count in mice and humans A thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy Melody C Caramins December 2010 University of New South Wales ORIGINALITY STATEMENT ‘I hereby declare that this submission is my own work and to the best of my knowledge it contains no materials previously published or written by another person, or substantial proportions of material which have been accepted for the award of any other degree or diploma at UNSW or any other educational institution, except where due acknowledgement is made in the thesis. Any contribution made to the research by others, with whom I have worked at UNSW or elsewhere, is explicitly acknowledged in the thesis. I also declare that the intellectual content of this thesis is the product of my own work, except to the extent that assistance from others in the project's design and conception or in style, presentation and linguistic expression is acknowledged.’ Signed …………………………………………….............. Date …………………………………………….............. This thesis is dedicated to my father. Dad, thanks for the genes – and the environment! ACKNOWLEDGEMENTS “Nothing can come out of nothing, any more than a thing can go back to nothing.” - Marcus Aurelius Antoninus A PhD thesis is never the work of one person in isolation from the world at large. I would like to thank the following people, without whom this work would not have existed. Thank you firstly, to all my teachers, of which there have been many. Undoubtedly, the greatest debt is owed to my supervisor, Dr Michael Buckley. -
S41467-020-18249-3.Pdf
ARTICLE https://doi.org/10.1038/s41467-020-18249-3 OPEN Pharmacologically reversible zonation-dependent endothelial cell transcriptomic changes with neurodegenerative disease associations in the aged brain Lei Zhao1,2,17, Zhongqi Li 1,2,17, Joaquim S. L. Vong2,3,17, Xinyi Chen1,2, Hei-Ming Lai1,2,4,5,6, Leo Y. C. Yan1,2, Junzhe Huang1,2, Samuel K. H. Sy1,2,7, Xiaoyu Tian 8, Yu Huang 8, Ho Yin Edwin Chan5,9, Hon-Cheong So6,8, ✉ ✉ Wai-Lung Ng 10, Yamei Tang11, Wei-Jye Lin12,13, Vincent C. T. Mok1,5,6,14,15 &HoKo 1,2,4,5,6,8,14,16 1234567890():,; The molecular signatures of cells in the brain have been revealed in unprecedented detail, yet the ageing-associated genome-wide expression changes that may contribute to neurovas- cular dysfunction in neurodegenerative diseases remain elusive. Here, we report zonation- dependent transcriptomic changes in aged mouse brain endothelial cells (ECs), which pro- minently implicate altered immune/cytokine signaling in ECs of all vascular segments, and functional changes impacting the blood–brain barrier (BBB) and glucose/energy metabolism especially in capillary ECs (capECs). An overrepresentation of Alzheimer disease (AD) GWAS genes is evident among the human orthologs of the differentially expressed genes of aged capECs, while comparative analysis revealed a subset of concordantly downregulated, functionally important genes in human AD brains. Treatment with exenatide, a glucagon-like peptide-1 receptor agonist, strongly reverses aged mouse brain EC transcriptomic changes and BBB leakage, with associated attenuation of microglial priming. We thus revealed tran- scriptomic alterations underlying brain EC ageing that are complex yet pharmacologically reversible. -
Human S100A13 Circulex Product Data Sheet for Research Use Only, Not for Use in Diagnostic Procedures
TM Human S100A13 CircuLex Product Data Sheet For Research Use Only, Not for use in diagnostic procedures Human S100A13 Human, recombinant protein expressed in E. coli. Cat# CY-R2263 Amount: 100 µg (1.0 µg/µl) Lot: Introduction: The cDNA of human and murine S100A13 was first identified by screening expressed sequence tag data bases. The human S100A13 was shown to neighbor S100A1 on chromosome 1q21. Expression of S100A13 mRNA has so far been detected in skeletal muscle, heart, kidney, pancreas, ovary, spleen, and small intestine. S100A13 seems to function in exocytosis, since it is one of the targets of two antiallergic drugs, amlexanox and cromolyn, which inhibit degranulation of mast cells. Recently, association of S100A13 with the fibroblast growth factor 1 (FGF-1)/p40 synaptotagmin-1 (p40Syn-1) aggregate was shown, and amlexanox is able to repress this release. These findings suggest that S100A13 might be involved in the regulation of FGF-1 and p40Syn-1 release in response to heat shock. Another possibility might be that S100A13 is secreted together with the FGF-1/p40Syn-1 aggregate. Product Description: Full length of human S100A13, containing an N-terminal GST tag, expressed in E. coil. and purified by GSH agarose chromatography. Gene Information: The gene accession number is NM_001024210. Gene Aliases: CAAF2 Formulation: Recombinant human S100A13 is supplied frozen in 2X PBS (2X phosphate buffered saline) containing 50 % glycerol. Cat#: CY-R2263 1 Version#: 120420 For Reference Purpose Only! TM Human S100A13 CircuLex Product Data Sheet For Research Use Only, Not for use in diagnostic procedures Molecular Weight: 37 kDa Recombinant human S100A13 demonstrates approximately 37 kDa band by Mw (kDa) SDS-PAGE analysis. -
4735Dda84fc346245bcb16dba3
JCBReport The intracellular translocation of the components of the fibroblast growth factor 1 release complex precedes their assembly prior to export Igor Prudovsky, Cinzia Bagala, Francesca Tarantini, Anna Mandinova, Raffaella Soldi, Stephen Bellum, and Thomas Maciag Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME 04074 he release of signal peptideless proteins occurs tern to a locale near the inner surface of the plasma mem- through nonclassical export pathways and the release brane where it colocalized with S100A13 and Syt1. In ad- Tof fibroblast growth factor (FGF)1 in response to dition, coexpression of dominant-negative mutant forms of cellular stress is well documented. Although biochemical S100A13 and Syt1, which both repress the release of FGF1, evidence suggests that the formation of a multiprotein failed to inhibit the stress-induced peripheral redistribution complex containing S100A13 and Synaptotagmin (Syt)1 is of intracellular FGF1. However, amlexanox, a compound important for the release of FGF1, it is unclear where this that is known to attenuate actin stress fiber formation and intracellular complex is assembled. As a result, we employed FGF1 release, was able to repress this process. These data real-time analysis using confocal fluorescence microscopy suggest that the assembly of the intracellular complex to study the spatio-temporal aspects of this nonclassical involved in the release of FGF1 occurs near the inner export pathway and demonstrate that heat shock stimulates surface of the plasma membrane and is dependent on the the redistribution of FGF1 from a diffuse cytosolic pat- F-actin cytoskeleton. Introduction The majority of secreted proteins contain a cleavable NH2- (Kim and Hajjar, 2002), and S100 proteins (Donato, terminal signal peptide sequence which allows their release 2001) are devoid of a signal peptide sequence but are released through the secretory pathway mediated by the ER and into the extracellular compartment. -
Absence of S100A4 in the Mouse Lens Induces an Aberrant Retina-Specific Differentiation Program and Cataract
www.nature.com/scientificreports OPEN Absence of S100A4 in the mouse lens induces an aberrant retina‑specifc diferentiation program and cataract Rupalatha Maddala1*, Junyuan Gao2, Richard T. Mathias2, Tylor R. Lewis1, Vadim Y. Arshavsky1,3, Adriana Levine4, Jonathan M. Backer4,5, Anne R. Bresnick4 & Ponugoti V. Rao1,3* S100A4, a member of the S100 family of multifunctional calcium‑binding proteins, participates in several physiological and pathological processes. In this study, we demonstrate that S100A4 expression is robustly induced in diferentiating fber cells of the ocular lens and that S100A4 (−/−) knockout mice develop late‑onset cortical cataracts. Transcriptome profling of lenses from S100A4 (−/−) mice revealed a robust increase in the expression of multiple photoreceptor‑ and Müller glia‑specifc genes, as well as the olfactory sensory neuron‑specifc gene, S100A5. This aberrant transcriptional profle is characterized by corresponding increases in the levels of proteins encoded by the aberrantly upregulated genes. Ingenuity pathway network and curated pathway analyses of diferentially expressed genes in S100A4 (−/−) lenses identifed Crx and Nrl transcription factors as the most signifcant upstream regulators, and revealed that many of the upregulated genes possess promoters containing a high‑density of CpG islands bearing trimethylation marks at histone H3K27 and/or H3K4, respectively. In support of this fnding, we further documented that S100A4 (−/−) knockout lenses have altered levels of trimethylated H3K27 and H3K4. Taken together, -
Epidermal Wnt Signalling Regulates Transcriptome Heterogeneity and Proliferative Fate in Neighbouring Cells
bioRxiv preprint doi: https://doi.org/10.1101/152637; this version posted June 20, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Title: Epidermal Wnt signalling regulates transcriptome heterogeneity and proliferative fate in neighbouring cells Arsham Ghahramani1,2 , Giacomo Donati2,3 , Nicholas M. Luscombe1,4,5,† and Fiona M. Watt2,† 1The Francis Crick Institute, 1 Midland Road, London NW1 1AT, United Kingdom 2King’s College London, Centre for Stem Cells and Regenerative Medicine, 28th 8 Floor, Tower Wing, Guy’s Hospital, Great Maze Pond, London SE1 9RT, United Kingdom 3Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Torino, Italy 4UCL Genetics Institute, University College London, London WC1E 6BT, United Kingdom 5Okinawa Institute of Science & Technology Graduate University, Okinawa 904-0495, Japan † Correspondence to: [email protected] and [email protected] Abstract: Canonical Wnt/beta-catenin signalling regulates self-renewal and lineage selection within the mouse epidermis. Although the transcriptional response of keratinocytes that receive a Wnt signal is well characterised, little is known about the mechanism by which keratinocytes in proximity to the Wnt- receiving cell are co-opted to undergo a change in cell fate. To address this, we performed single-cell mRNA-Seq on mouse keratinocytes co-cultured with and without the presence of beta-catenin activated neighbouring cells. We identified seven distinct cell states in cultures that had not been exposed to the beta-catenin stimulus and show that the stimulus redistributes wild type subpopulation proportions. -
S100A4 Purified Maxpab Mouse Polyclonal Antibody (B03P)
S100A4 purified MaxPab mouse polyclonal antibody (B03P) Catalog # : H00006275-B03P 規格 : [ 50 ug ] List All Specification Application Image Product Mouse polyclonal antibody raised against a full-length human S100A4 Western Blot (Transfected lysate) Description: protein. Immunogen: S100A4 (NP_002952.1, 1 a.a. ~ 101 a.a) full-length human protein. Sequence: MACPLEKALDVMVSTFHKYSGKEGDKFKLNKSELKELLTRELPSFLGKR TDEAAFQKLMSNLDSNRDNEVDFQEYCVFLSCIAMMCNEFFEGFPDKQ PRKK enlarge Host: Mouse Reactivity: Human Quality Control Antibody reactive against mammalian transfected lysate. Testing: Storage Buffer: In 1x PBS, pH 7.4 Storage Store at -20°C or lower. Aliquot to avoid repeated freezing and thawing. Instruction: MSDS: Download Datasheet: Download Applications Western Blot (Transfected lysate) Western Blot analysis of S100A4 expression in transfected 293T cell line (H00006275-T05) by S100A4 MaxPab polyclonal antibody. Lane 1: S100A4 transfected lysate(11.70 KDa). Lane 2: Non-transfected lysate. Protocol Download Gene Information Entrez GeneID: 6275 Page 1 of 2 2016/5/21 GeneBank NM_002961.2 Accession#: Protein NP_002952.1 Accession#: Gene Name: S100A4 Gene Alias: 18A2,42A,CAPL,FSP1,MTS1,P9KA,PEL98 Gene S100 calcium binding protein A4 Description: Omim ID: 114210 Gene Ontology: Hyperlink Gene Summary: The protein encoded by this gene is a member of the S100 family of proteins containing 2 EF-hand calcium-binding motifs. S100 proteins are localized in the cytoplasm and/or nucleus of a wide range of cells, and involved in the regulation of a number of cellular processes such as cell cycle progression and differentiation. S100 genes include at least 13 members which are located as a cluster on chromosome 1q21. This protein may function in motility, invasion, and tubulin polymerization. -
Inhibits the Migration of Prostate Cancer Through Reducing S100A4, S100A2, and S100P Expression
5429 Original Article Knockdown of ferritin heavy chain (FTH) inhibits the migration of prostate cancer through reducing S100A4, S100A2, and S100P expression Cuixiu Lu1, Huijun Zhao2, Chenshuo Luo3, Ting Lei4, Man Zhang5,6,7^ 1Clinical Laboratory Medicine, Peking University Ninth School of Clinical Medicine, Beijing, China; 2Clinical Laboratory Medicine, Capital Medical University, Beijing, China; 3Clinical Laboratory Medicine, Peking University Ninth School of Clinical Medicine, Beijing, China; 4Beijing Shijitan Hospital, Capital Medical University, Beijing, China; 5Clinical Laboratory Medicine, Peking University Ninth School of Clinical Medicine, Beijing, China; 6Beijing Shijitan Hospital, Capital Medical University, Beijing, China; 7Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, China Contributions: (I) Conception and design: C Lu, C Luo; (II) Administrative support: M Zhang; (III) Provision of study materials or patients: C Lu, T Lei; (IV) Collection and assembly of data: C Lu, H Zhao; (V) Data analysis and interpretation: All authors; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors. Correspondence to: Man Zhang. Clinical Laboratory Medicine, Peking University Ninth School of Clinical Medicine, Beijing 100038, China. Email: [email protected]. Background: Ferritin plays a key role in the development of prostate cancer (PCa). Our earlier studies showed that the knockdown of ferritin heavy chain (FTH) suppressed the migration and invasion of the prostate cancer cell line (PC3). However, the mechanisms behind FTH in the cell migration regulation of PCa have not been thoroughly investigated. Methods: Isobaric tags for relative and absolute quantitation (iTRAQ) proteomics was used to analyze the protein expression in PC3 cells with FTH knockdown by small interfering RNAs and negative control cells.