The Bright Void Galaxy Population in the Optical and Mid-IR

Total Page:16

File Type:pdf, Size:1020Kb

The Bright Void Galaxy Population in the Optical and Mid-IR University of Louisville ThinkIR: The University of Louisville's Institutional Repository Faculty Scholarship 11-2015 Galaxy And Mass Assembly (GAMA) : the bright void galaxy population in the optical and mid-IR. S. J. Penny University of Portsmouth M. J. I. Brown Monash University K. A. Pimbblet University of Hull M. E. Cluver The University of Western Cape D. J. Croton Swinburne University of Technology See next page for additional authors Follow this and additional works at: https://ir.library.louisville.edu/faculty Part of the Astrophysics and Astronomy Commons Original Publication Information Penny, S. J., et al. "Galaxy And Mass Assembly (GAMA): The Bright Void Galaxy Population in the Optical and Mid-IR." 2015. Monthly Notices of the Royal Astronomical Society 453(4): 3519-3539. This Article is brought to you for free and open access by ThinkIR: The University of Louisville's Institutional Repository. It has been accepted for inclusion in Faculty Scholarship by an authorized administrator of ThinkIR: The University of Louisville's Institutional Repository. For more information, please contact [email protected]. Authors S. J. Penny, M. J. I. Brown, K. A. Pimbblet, M. E. Cluver, D. J. Croton, M. S. Owers, R. Lange, M. Alpaslan, I. K. Baldry, J. Bland-Hawthorn, S. Brough, S. P. Driver, Benne W. Holwerda, A. M. Hopkins, T. H. Jarrett, D. Heath Jones, L. S. Kelvin, M. A. Lara-Lopez, J. Liske, Angel R. Lopez-Sanchez, J. Loveday, M. Meyer, P. Norberg, A. S. G. Robotham, and M. Rodrigues This article is available at ThinkIR: The University of Louisville's Institutional Repository: https://ir.library.louisville.edu/ faculty/187 MNRAS 453, 3519–3539 (2015) doi:10.1093/mnras/stv1926 Galaxy And Mass Assembly (GAMA): the bright void galaxy population in the optical and mid-IR S. J. Penny,1,2,3‹ M. J. I. Brown,1,2 K. A. Pimbblet,1,2,4 M. E. Cluver,5 D. J. Croton,6 M. S. Owers,7,8 R. Lange,9 M. Alpaslan,10 I. Baldry,11 J. Bland-Hawthorn,12 S. Brough,7 S. P. Driver,9,13 B. W. Holwerda,14 A. M. Hopkins,7 T. H. Jarrett,15 D. Heath Jones,8 L. S. Kelvin,16 M. A. Lara-Lopez,´ 17 J. Liske,18 A. R. Lopez-S´ anchez,´ 7,8 J. Loveday,19 M. Meyer,9 P. Norberg,20 A. S. G. Robotham9 and M. Rodrigues21 Affiliations are listed at the end of the paper Accepted 2015 August 18. Received 2015 August 4; in original form 2015 June 4 ABSTRACT We examine the properties of galaxies in the Galaxies and Mass Assembly (GAMA) survey located in voids with radii >10 h−1 Mpc. Utilizing the GAMA equatorial survey, 592 void galaxies are identified out to z ≈ 0.1 brighter than Mr =−18.4, our magnitude completeness limit. Using the WHα versus [N II]/Hα (WHAN) line strength diagnostic diagram, we classify their spectra as star forming, AGN, or dominated by old stellar populations. For objects more massive than 5 × 109 M, we identify a sample of 26 void galaxies with old stellar populations classed as passive and retired galaxies in the WHAN diagnostic diagram, else they lack any emission lines in their spectra. When matched to Wide-field Infrared Survey Explorer mid-IR photometry, these passive and retired galaxies exhibit a range of mid-IR colour, with a number of void galaxies exhibiting [4.6] − [12] colours inconsistent with completely quenched stellar populations, with a similar spread in colour seen for a randomly drawn non-void comparison sample. We hypothesize that a number of these galaxies host obscured star formation, else they are star forming outside of their central regions targeted for single-fibre spectroscopy. When matched to a randomly drawn sample of non-void galaxies, the void and non-void galaxies exhibit similar properties in terms of optical and mid-IR colour, morphology, and star formation activity, suggesting comparable mass assembly and quenching histories. A trend in mid-IR [4.6] − [12] colour is seen, such that both void and non-void galaxies with quenched/passive colours <1.5 typically have masses higher than 1010 M, where internally driven processes play an increasingly important role in galaxy evolution. Key words: galaxies: evolution – galaxies: general – infrared: galaxies. voids are not empty, and contain a sizeable galaxy population (e.g. 1 INTRODUCTION Rojas et al. 2004; Croton & Farrar 2008; Kreckel et al. 2012;Pan Redshift surveys reveal a remarkable amount of structure, with et al. 2012). Nevertheless, cold dark matter cosmology predicts the majority of galaxies located in groups, clusters, and along the more dark matter haloes in voids than we currently observe galaxies filaments linking these massive structures (e.g. Huchra et al. 1983; (Peebles 2001; Tikhonov & Klypin 2009; Peebles & Nusser 2010), York et al. 2000; Colless et al. 2001). However, it is the voids that and a better understanding the evolution of these galaxies will help represent most of the volume of the Universe. Spanning tens of us better understand this discrepancy. Void galaxies of all masses megaparsecs, these void regions are extremely underdense, with a are therefore ideal objects in which to examine intrinsic versus galaxy density less than 20 per cent of the cosmic mean. These extrinsic effects on galaxy evolution, having formed far from the nearest cluster mass dark matter halo. Galaxies can be broadly divided into two categories based on their E-mail: [email protected] optical colours: blue cloud galaxies with ongoing star formation, C 2015 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society 3520 S. J. Penny et al. and red sequence galaxies with colours consistent with a non-star- de Weygaert 2004;Zitrin&Brosch2008;Alpaslanetal.2014), forming stellar population, though there is colour overlap between continually supplying them with the fuel for star formation, and these two populations (e.g. Taylor et al. 2015). Clearly, at some point increasing the chance of minor mergers. in their histories all galaxies were star forming – it is how and where Examining the void galaxy population is impossible without the quenching of star formation takes place that is one of the most deep, wide-field redshift surveys. Such surveys are vital not only to active areas of research today. These quenching mechanisms fall provide a statistically significant sample of void galaxies, but also to into two classes: intrinsic (driven by galaxy mass) versus extrinsic identify the void regions themselves via accurate positional and dis- (environmentally driven) evolution. tance measurements. In this paper, we examine void galaxies in the Galaxies follow a strong morphology–density relation, such that Galaxy and Mass Assembly (GAMA) survey (Driver et al. 2009), early-type galaxies with little or no star formation are primarily utilizing optical and infrared data. In addition to data at optical found in high-density regions of the Universe such as groups and wavelengths provided by GAMA and the Sloan Digital Sky Sur- clusters, while late-type galaxies dominate in low-density environ- vey (SDSS), we furthermore use mid-IR data to search the GAMA ments such as the field (Dressler 1980; Smith et al. 2005;Park void galaxy population for obscured star formation. Sensitive to et al. 2007). Similar environmental trends are seen for colour and the emission from dust-reprocessed star formation, data from the star formation, such that red galaxies with no star formation favour mid-IR is crucial in establishing if a population of truly passive void high-density environments (Lewis et al. 2002; Kauffmann et al. galaxies exists (intrinsic versus extrinsic evolution). 2004; Ball, Loveday & Brunner 2008; Bamford et al. 2009). This Uncovering the nature of mass quenching first requires obtaining is reflected in the colour–magnitude relation, such that a strong red a population of well-isolated galaxies with no ongoing star for- sequence is observed for cluster members, with the fraction of red mation, spanning the stellar mass range at which the fraction of galaxies decreasing out to the field. The red cluster galaxies typi- quenched galaxies increases (≈3 × 1010 M; Kauffmann et al. cally have reduced star formation rates relative to galaxies in the 2003). The most basic way to do this is via the colour–mass re- field (e.g. Balogh et al. 1997, 1998), along with little to no gas (e.g. lation, selecting galaxies that are passive in terms of their optical di Serego Alighieri et al. 2007). colours (they lie on the red sequence), and that do not exhibit spec- At a naive first glance, it appears that environment is the clear tral features consistent with ongoing star formation, via emission driver in galaxy evolution: when a galaxy enters a high-density line diagnostics such as the Baldwin, Phillips & Terlevich (BPT; region of the Universe (e.g. a cluster), it is stripped of star-forming Baldwin, Phillips & Terlevich 1981; Kewley et al. 2006)orWHα material, and it ceases star formation. Processes such as galaxy versus [N II]/Hα (WHAN, Cid Fernandes et al. 2011)diagrams. harassment (Moore et al. 1996), viscous stripping (e.g. Rasmussen Examining the stellar populations of these optically passive et al. 2008;Cluveretal.2013), strangulation (Larson, Tinsley & galaxies in other wavelengths can reveal a different picture to the Caldwell 1980), tidal stripping, and ram-pressure stripping (Gunn optical. For example, galaxies residing on the optical red sequence &Gott1972), can all disrupt galaxies and remove their fuel for star may exhibit a UV excess consistent with star formation in the past formation (e.g. Wetzel, Tinker & Conroy 2012). However, it has 1Gyr(Yietal.2005;Schawinskietal.2007; Crossett et al. 2014). been observed that the current level of star formation (or colour) The mid-IR provides further evidence that not all early-type galax- in a galaxy is more strongly correlated to galaxy mass than local ies or optically red galaxies are passively evolving.
Recommended publications
  • And Ecclesiastical Cosmology
    GSJ: VOLUME 6, ISSUE 3, MARCH 2018 101 GSJ: Volume 6, Issue 3, March 2018, Online: ISSN 2320-9186 www.globalscientificjournal.com DEMOLITION HUBBLE'S LAW, BIG BANG THE BASIS OF "MODERN" AND ECCLESIASTICAL COSMOLOGY Author: Weitter Duckss (Slavko Sedic) Zadar Croatia Pусскй Croatian „If two objects are represented by ball bearings and space-time by the stretching of a rubber sheet, the Doppler effect is caused by the rolling of ball bearings over the rubber sheet in order to achieve a particular motion. A cosmological red shift occurs when ball bearings get stuck on the sheet, which is stretched.“ Wikipedia OK, let's check that on our local group of galaxies (the table from my article „Where did the blue spectral shift inside the universe come from?“) galaxies, local groups Redshift km/s Blueshift km/s Sextans B (4.44 ± 0.23 Mly) 300 ± 0 Sextans A 324 ± 2 NGC 3109 403 ± 1 Tucana Dwarf 130 ± ? Leo I 285 ± 2 NGC 6822 -57 ± 2 Andromeda Galaxy -301 ± 1 Leo II (about 690,000 ly) 79 ± 1 Phoenix Dwarf 60 ± 30 SagDIG -79 ± 1 Aquarius Dwarf -141 ± 2 Wolf–Lundmark–Melotte -122 ± 2 Pisces Dwarf -287 ± 0 Antlia Dwarf 362 ± 0 Leo A 0.000067 (z) Pegasus Dwarf Spheroidal -354 ± 3 IC 10 -348 ± 1 NGC 185 -202 ± 3 Canes Venatici I ~ 31 GSJ© 2018 www.globalscientificjournal.com GSJ: VOLUME 6, ISSUE 3, MARCH 2018 102 Andromeda III -351 ± 9 Andromeda II -188 ± 3 Triangulum Galaxy -179 ± 3 Messier 110 -241 ± 3 NGC 147 (2.53 ± 0.11 Mly) -193 ± 3 Small Magellanic Cloud 0.000527 Large Magellanic Cloud - - M32 -200 ± 6 NGC 205 -241 ± 3 IC 1613 -234 ± 1 Carina Dwarf 230 ± 60 Sextans Dwarf 224 ± 2 Ursa Minor Dwarf (200 ± 30 kly) -247 ± 1 Draco Dwarf -292 ± 21 Cassiopeia Dwarf -307 ± 2 Ursa Major II Dwarf - 116 Leo IV 130 Leo V ( 585 kly) 173 Leo T -60 Bootes II -120 Pegasus Dwarf -183 ± 0 Sculptor Dwarf 110 ± 1 Etc.
    [Show full text]
  • Zerohack Zer0pwn Youranonnews Yevgeniy Anikin Yes Men
    Zerohack Zer0Pwn YourAnonNews Yevgeniy Anikin Yes Men YamaTough Xtreme x-Leader xenu xen0nymous www.oem.com.mx www.nytimes.com/pages/world/asia/index.html www.informador.com.mx www.futuregov.asia www.cronica.com.mx www.asiapacificsecuritymagazine.com Worm Wolfy Withdrawal* WillyFoReal Wikileaks IRC 88.80.16.13/9999 IRC Channel WikiLeaks WiiSpellWhy whitekidney Wells Fargo weed WallRoad w0rmware Vulnerability Vladislav Khorokhorin Visa Inc. Virus Virgin Islands "Viewpointe Archive Services, LLC" Versability Verizon Venezuela Vegas Vatican City USB US Trust US Bankcorp Uruguay Uran0n unusedcrayon United Kingdom UnicormCr3w unfittoprint unelected.org UndisclosedAnon Ukraine UGNazi ua_musti_1905 U.S. Bankcorp TYLER Turkey trosec113 Trojan Horse Trojan Trivette TriCk Tribalzer0 Transnistria transaction Traitor traffic court Tradecraft Trade Secrets "Total System Services, Inc." Topiary Top Secret Tom Stracener TibitXimer Thumb Drive Thomson Reuters TheWikiBoat thepeoplescause the_infecti0n The Unknowns The UnderTaker The Syrian electronic army The Jokerhack Thailand ThaCosmo th3j35t3r testeux1 TEST Telecomix TehWongZ Teddy Bigglesworth TeaMp0isoN TeamHav0k Team Ghost Shell Team Digi7al tdl4 taxes TARP tango down Tampa Tammy Shapiro Taiwan Tabu T0x1c t0wN T.A.R.P. Syrian Electronic Army syndiv Symantec Corporation Switzerland Swingers Club SWIFT Sweden Swan SwaggSec Swagg Security "SunGard Data Systems, Inc." Stuxnet Stringer Streamroller Stole* Sterlok SteelAnne st0rm SQLi Spyware Spying Spydevilz Spy Camera Sposed Spook Spoofing Splendide
    [Show full text]
  • Galaxy and Mass Assembly (GAMA): the Bright Void Galaxy Population
    MNRAS 000, 1–22 (2015) Preprint 10 March 2021 Compiled using MNRAS LATEX style file v3.0 Galaxy And Mass Assembly (GAMA): The Bright Void Galaxy Population in the Optical and Mid-IR S. J. Penny,1,2,3⋆ M. J. I. Brown,1,2 K. A. Pimbblet,4,1,2 M. E. Cluver,5 D. J. Croton,6 M. S. Owers,7,8 R. Lange,9 M. Alpaslan,10 I. Baldry,11 J. Bland-Hawthorn,12 S. Brough,7 S. P. Driver,9,13 B. W. Holwerda,14 A. M. Hopkins,7 T. H. Jarrett,15 D. Heath Jones,8 L. S. Kelvin16 M. A. Lara-López,17 J. Liske,18 A. R. López-Sánchez,7,8 J. Loveday,19 M. Meyer,9 P. Norberg,20 A. S. G. Robotham,9 and M. Rodrigues21 1School of Physics, Monash University, Clayton, Victoria 3800, Australia 2Monash Centre for Astrophysics, Monash University, Clayton, Victoria 3800, Australia 3Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Burnaby Road, Portsmouth, PO1 3FX, UK 4 Department of Physics and Mathematics, University of Hull, Cottingham Road, Kingston-upon-Hull HU6 7RX, UK 5 University of the Western Cape, Robert Sobukwe Road, Bellville, 7535, South Africa 6 Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia 7 Australian Astronomical Observatory, PO Box 915, North Ryde, NSW 1670, Australia 8 Department of Physics and Astronomy, Macquarie University, NSW 2109, Australia 9 ICRAR, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia 10 NASA Ames Research Centre, N232, Moffett Field, Mountain View, CA 94035, United States 11 Astrophysics Research
    [Show full text]
  • The W. M. Keck Observatory Scientific Strategic Plan
    The W. M. Keck Observatory Scientific Strategic Plan A.Kinney (Keck Chief Scientist), S.Kulkarni (COO Director, Caltech),C.Max (UCO Director, UCSC), H. Lewis, (Keck Observatory Director), J.Cohen (SSC Co-Chair, Caltech), C. L.Martin (SSC Co-Chair, UCSB), C. Beichman (Exo-Planet TG, NExScI/NASA), D.R.Ciardi (TMT TG, NExScI/NASA), E.Kirby (Subaru TG. Caltech), J.Rhodes (WFIRST/Euclid TG, JPL/NASA), A. Shapley (JWST TG, UCLA), C. Steidel (TMT TG, Caltech), S. Wright (AO TG, UCSD), R. Campbell (Keck Observatory, Observing Support and AO Operations Lead) Ethan Tweedie Photography 1. Overview and Summary of Recommendations The W. M. Keck Observatory (Keck Observatory), with its twin 10-m telescopes, has had a glorious history of transformative discoveries, instrumental advances, and education for young scientists since the start of science operations in 1993. This document presents our strategic plan and vision for the next five (5) years to ensure the continuation of this great tradition during a challenging period of fiscal constraints, the imminent launch of powerful new space telescopes, and the rise of Time Domain Astronomy (TDA). Our overarching goal is to maximize the scientific impact of the twin Keck telescopes, and to continue on this great trajectory of discoveries. In pursuit of this goal, we must continue our development of new capabilities, as well as new modes of operation and observing. We must maintain our existing instruments, telescopes, and infrastructure to ensure the most efficient possible use of precious telescope time, all within the larger context of the Keck user community and the enormous scientific opportunities afforded by upcoming space telescopes and large survey programs.
    [Show full text]
  • The 2Df Galaxy Redshift Survey: Wiener Reconstruction of The
    Mon. Not. R. Astron. Soc. 000, 000–000 (0000) Printed 9 November 2018 (MN LATEX style file v2.2) The 2dF Galaxy Redshift Survey: Wiener Reconstruction of the Cosmic Web Pirin Erdogdu˜ 1,2, Ofer Lahav1, Saleem Zaroubi3, George Efstathiou1, Steve Moody, John A. Peacock12, Matthew Colless17, Ivan K. Baldry9, Carlton M. Baugh16, Joss Bland- Hawthorn7, Terry Bridges7, Russell Cannon7, Shaun Cole16, Chris Collins4, Warrick Couch5, Gavin Dalton6,15, Roberto De Propris17, Simon P. Driver17, Richard S. Ellis8, Carlos S. Frenk16, Karl Glazebrook9, Carole Jackson17, Ian Lewis6, Stuart Lumsden10, Steve Maddox11, Darren Madgwick13, Peder Norberg14, Bruce A. Peterson17, Will Sutherland12, Keith Taylor8 (The 2dFGRS Team) 1Institute of Astronomy, Madingley Road, Cambridge CB3 0HA, UK 2Department of Physics, Middle East Technical University, 06531, Ankara, Turkey 3Max Planck Institut f¨ur Astrophysik, Karl-Schwarzschild-Straße 1, 85741 Garching, Germany 4Astrophysics Research Institute, Liverpool John Moores University, Twelve Quays House, Birkenhead, L14 1LD, UK 5Department of Astrophysics, University of New South Wales, Sydney, NSW 2052, Australia 6Department of Physics, University of Oxford, Keble Road, Oxford OX1 3RH, UK 7Anglo-Australian Observatory, P.O. Box 296, Epping, NSW 2111, Australia 8Department of Astronomy, California Institute of Technology, Pasadena, CA 91025, USA 9Department of Physics & Astronomy, Johns Hopkins University, Baltimore, MD 21118-2686, USA 10Department of Physics, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK 11School
    [Show full text]
  • Cover Illustration by JE Mullat the BIG BANG and the BIG CRUNCH
    Cover Illustration by J. E. Mullat THE BIG BANG AND THE BIG CRUNCH From Public Domain: designed by Luke Mastin OBSERVATIONS THAT SEEM TO CONTRADICT THE BIG BANG MODEL WHILE AT THE SAME TIME SUPPORT AN ALTERNATIVE COSMOLOGY Forrest W. Noble, Timothy M. Cooper The Pantheory Research Organization Cerritos, California 90703 USA HUBBLE-INDEPENDENT PROCEDURE CALCULATING DISTANCES TO COSMOLOGICAL OBJECTS Joseph E. Mullat Project and Technical Editor: J. E. Mullat, Copenhagen 2019 ISBN‐13 978‐8740‐40‐411‐1 Private Publishing Platform Byvej 269 2650, Hvidovre, Denmark [email protected] The Postulate COSMOLOGY THAT CONTRADICTS THE BIG BANG THEORY The Standard and The Alternative Cosmological Models, Distances Calculation to Galaxies without Hubble Constant For the alternative cosmological models discussed in the book, distances are calculated for galaxies without using the Hubble constant. This proc‐ ess is mentioned in the second narrative and is described in detail in the third narrative. According to the third narrative, when the energy den‐ sity of space in the universe decreases, and the universe expands, a new space is created by a gravitational transition from dark energy. Although the Universe develops on the basis of this postulate about the appear‐ ance of a new space, it is assumed that matter arises as a result of such a gravitational transition into both new dark space and visible / baryonic matter. It is somewhat unimportant how we describe dark energy, call‐ ing it ether, gravitons, or vice versa, turning ether into dark energy. It should be clear to everyone that this renaming does not change the es‐ sence of this gravitational transition.
    [Show full text]
  • A Robust Public Catalogue of Voids and Superclusters in the SDSS Data Release 7 Galaxy Surveys
    MNRAS (2014) doi:10.1093/mnras/stu349 A robust public catalogue of voids and superclusters in the SDSS Data Release 7 galaxy surveys Seshadri Nadathur1,2‹ and Shaun Hotchkiss2,3 1Fakultat¨ fur¨ Physik, Universitat¨ Bielefeld, Postfach 100131, D-33501 Bielefeld, Germany 2Department of Physics, University of Helsinki and Helsinki Institute of Physics, PO Box 64, FIN-00014, University of Helsinki, Finland 3Department of Physics and Astronomy, University of Sussex, Brighton BN1 9QH, UK Accepted 2014 February 20. Received 2014 February 20; in original form 2013 October 15 ABSTRACT The study of the interesting cosmological properties of voids in the Universe depends on the efficient and robust identification of such voids in galaxy redshift surveys. Recently, Sutter et al. have published a public catalogue of voids in the Sloan Digital Sky Survey Data Release 7 main galaxy and luminous red galaxy samples, using the void-finding algorithm ZOBOV, which is based on the watershed transform. We examine the properties of this catalogue and show that it suffers from several problems and inconsistencies, including the identification of some extremely overdense regions as voids. As a result, cosmological results obtained using this catalogue need to be reconsidered. We provide instead an alternative, self-consistent, public catalogue of voids in the same galaxy data, obtained from using an improved version of the same watershed transform algorithm. We provide a more robust method of dealing with survey boundaries and masks, as well as with a radially varying selection function, which means that our method can be applied to any other survey. We discuss some basic properties of the voids thus discovered, and describe how further information may be obtained from the catalogue.
    [Show full text]
  • A Robust Void-Finding Algorithm Using Computational Geometry and Parallelization Techniques
    UNIVERSIDAD DE CHILE FACULTAD DE CIENCIAS F´ISICAS Y MATEMATICAS´ DEPARTAMENTO DE CIENCIAS DE LA COMPUTACION´ A ROBUST VOID-FINDING ALGORITHM USING COMPUTATIONAL GEOMETRY AND PARALLELIZATION TECHNIQUES TESIS PARA OPTAR AL GRADO DE MAG´ISTER EN CIENCIAS, MENCION COMPUTACION´ DEMIAN ALEY SCHKOLNIK MULLER¨ PROFESOR GU´IA: BENJAM´IN BUSTOS CARDENAS´ NANCY HITSCHFELD KAHLER MIEMBROS DE LA COMISION:´ MAURICIO CERDA VILLABLANCA GONZALO NAVARRO BADINO MAURICIO MAR´IN CAIHUAN SANTIAGO DE CHILE 2018 i Resumen El modelo cosmol´ogicoactual y m´asaceptado del universo se llama Lambda Cold Dark Matter. Este modelo nos presenta el modelo m´assimple que proporciona una explicaci´onrazonablemente buena de la evidencia observada hasta ahora. El modelo sugiere la existencia de estructuras a gran escala presentes en nuestro universo: Nodos, filamentos, paredes y vac´ıos. Los vac´ıosson de gran inter´espara los astrof´ısicosya que su observaci´onsirve como validaci´onpara el modelo. Los vac´ıosson usualmente definidos como regiones de baja densidad en el espacio, con s´olounas pocas galaxias dentro de ellas. En esta tesis, presentamos un estudio del estado actual de los algoritmos de b´usquedade vac´ıos. Mostramos las diferentes t´ecnicasy enfoques, e intentamos deducir la complejidad algor´ıtmica y el uso de memoria de cada void-finder presentado. Luego mostramos nuestro nuevo algoritmo de b´usquedade vac´ıos, llamado ORCA. Fue construido usando triangulaciones de Delaunay para encontrar a los vecinos m´ascercanos de cada punto. Utilizando esto, clasificamos los puntos en tres categor´ıas: Centro, borde y outliers. Los outliers se eliminan como ruido. Clasificamos los tri´angulosde la triangulaci´onen tri´angulosde vac´ıosy centrales.
    [Show full text]
  • Chronology of the Universe - Wikipedia
    7/1/2018 Chronology of the universe - Wikipedia Chronology of the universe The chronology of the universe describes the history and future of the universe according to Big Bang cosmology. The earliest stages of the universe's existence are estimated as taking place 13.8 billion years ago, with an uncertainty of around 21 million years at the 68% confidence level.[1] Contents Outline A more detailed summary Very early universe Diagram of evolution of the (observable part) of the universe from the Big Planck epoch Bang (left) to the present Grand unification epoch Electroweak epoch Inflationary epoch and the metric expansion of space Nature timeline Baryogenesis Supersymmetry breaking view • discuss • (speculative) 0 — Electroweak symmetry breaking Vertebrates ←Earliest mammals – Cambrian explosion Early universe ← ←Earliest plants The quark epoch -1 — Multicellular ←Earliest sexual Hadron epoch – L life reproduction Neutrino decoupling and cosmic neutrino background -2 — i f Possible formation of primordial – ←Atmospheric oxygen black holes e photosynthesis Lepton epoch -3 — Photon epoch – ←Earliest oxygen Nucleosynthesis of light Unicellular life elements -4 —accelerated expansion←Earliest life Matter domination – ←Solar System Recombination, photon decoupling, and the cosmic -5 — microwave background (CMB) – The Dark Ages and large-scale structure emergence -6 — Dark Ages – Habitable epoch -7 — ←Alpha Centauri https://en.wikipedia.org/wiki/Chronology_of_the_universe 1/26 7/1/2018 Chronology of the universe - Wikipedia -7 — p a Ce tau
    [Show full text]
  • The Full Appendices with All References
    Breakthrough Listen Exotica Catalog References 1 APPENDIX A. THE PROTOTYPE SAMPLE A.1. Minor bodies We classify Solar System minor bodies according to both orbital family and composition, with a small number of additional subtypes. Minor bodies of specific compositions might be selected by ETIs for mining (c.f., Papagiannis 1978). From a SETI perspective, orbital families might be targeted by ETI probes to provide a unique vantage point over bodies like the Earth, or because they are dynamically stable for long periods of time and could accumulate a large number of artifacts (e.g., Benford 2019). There is a large overlap in some cases between spectral and orbital groups (as in DeMeo & Carry 2014), as with the E-belt and E-type asteroids, for which we use the same Prototype. For asteroids, our spectral-type system is largely taken from Tholen(1984) (see also Tedesco et al. 1989). We selected those types considered the most significant by Tholen(1984), adding those unique to one or a few members. Some intermediate classes that blend into larger \complexes" in the more recent Bus & Binzel(2002) taxonomy were omitted. In choosing the Prototypes, we were guided by the classifications of Tholen(1984), Tedesco et al.(1989), and Bus & Binzel(2002). The comet orbital classifications were informed by Levison(1996). \Distant minor bodies", adapting the \distant objects" term used by the Minor Planet Center,1 refer to outer Solar System bodies beyond the Jupiter Trojans that are not comets. The spectral type system is that of Barucci et al. (2005) and Fulchignoni et al.(2008), with the latter guiding our Prototype selection.
    [Show full text]
  • The Dark Energy Survey Collaboration , 2015) Using DES Data As Well As Combined Analyses Focusing on Smaller Scales (Park Et Al., 2015) Have Been Presented Elsewhere
    ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús establertes per la següent llicència Creative Commons: http://cat.creativecommons.org/?page_id=184 ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso establecidas por la siguiente licencia Creative Commons: http://es.creativecommons.org/blog/licencias/ WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en Dark Energy properties from the combination of large-scale structure and weak gravitational lensing in the Dark Energy Survey Author: Carles Sánchez Alonso Departament de Física Universitat Autònoma de Barcelona A thesis submitted for the degree of Philosophae Doctor (PhD) Day of defense: 28 September 2017 Director & Tutor: Dr. Ramon Miquel Pascual IFAE & ICREA Edifici Cn, UAB 08193 Bellaterra (Barcelona), Spain [email protected] CONTENTS Introduction 1 I Preliminars 3 1 Cosmological framework 5 1.1 The smooth universe ............................. 6 1.1.1 The field equations ......................... 6 1.1.2 The FLRW metric ........................... 7 1.1.3 The Friedmann equations ..................... 8 1.2 Fundamental observations ......................... 9 1.2.1 The expansion of the universe: Hubble’s law .......... 9 1.2.2 The Cosmic Microwave Background ............... 11 1.2.3 The abundance of primordial elements ............. 14 1.3 Distances in the universe .......................... 16 1.3.1 Comoving distance .......................... 16 1.3.2 Angular diameter distance ..................... 16 1.3.3 Luminosity distance ......................... 17 1.4 The accelerating universe .......................... 18 1.5 The Large-Scale Structure of the Universe ...............
    [Show full text]
  • Defining Cosmological Voids in the Millennium Simulation Using The
    Defining Cosmological Voids in the Millennium Simulation Using the Parameter-free ZOBOV Algorithm Frances Mei Hardin 2009 NSF/REU Program Physics Department, University of Notre Dame Advisor: Dr. Peter Garnavich Professor of Physics, University of Notre Dame Abstract The Zones Bordering On Voidness (ZOBOV) parameter-free void-finding algorithm is applied to data from the 2005 N-body Millennium Simulation. Voids can be used as a distance estimator for cosmic expansion to the first order because they are affected only by dark matter and relatively small quantities of real matter. They are defined by the ZOBOV program as local density minima and their surrounding depressions fixed by Voronoi tessellations. The return from ZOBOV's analysis of the Millennium data depicts the probabilities of voids from Poisson fluctuations instead of assigning parameters to automatically choose a set of voids because there currently is no conventional statistical significance level across void-finding algorithms in astrophysics. Designating a significance level allows for specificity of output voids but overall significance levels vary depending on the goals of the experiment. The voids defined by the ZOBOV program in this paper have a default density threshold of 0.2 so that voids with minimum density greater than 0.2 times the mean density are excluded. Successful results were obtained by running ZOBOV with 58,715 voids found within the full, 9 million particle data set, 6,451 voids found within ~1 million particles, 1,884 voids found within ~300,000 particles, and 483 voids found within ~80,000 particles. Introduction The mass distribution of the Universe describes a “cosmic web” which is dominated by filaments that extend from galaxy clusters, sheets of filaments that form complex walls, and under-dense voids that constitute the overall greatest volume (Bond, Kofman, & Pogosyan, 1996).
    [Show full text]