Evolutionary Constraints on Plasticity in the Anti-Herbivore Defenses of Solanum Carolinense David William Mcnutt

Total Page:16

File Type:pdf, Size:1020Kb

Evolutionary Constraints on Plasticity in the Anti-Herbivore Defenses of Solanum Carolinense David William Mcnutt Florida State University Libraries Electronic Theses, Treatises and Dissertations The Graduate School 2013 Evolutionary Constraints on Plasticity in the Anti-Herbivore Defenses of Solanum Carolinense David William McNutt Follow this and additional works at the FSU Digital Library. For more information, please contact [email protected] FLORIDA STATE UNIVERSITY COLLEGE OF ARTS AND SCIENCES EVOLUTIONARY CONSTRAINTS ON PLASTICITY IN THE ANTI-HERBIVORE DEFENSES OF SOLANUM CAROLINENSE By DAVID WILLIAM MCNUTT A Dissertation submitted to the Department of Biological Science in partial fulfillment of the requirements for the degree of Doctor of Philosophy Degree Awarded: Fall Semester, 2013 David W. McNutt defended this dissertation on October 15, 2013. The members of the supervisory committee were: Nora Underwood Professor Directing Dissertation Frederick Davis University Representative Brian Inouye Committee Member Joseph Travis Committee Member Alice Winn Committee Member The Graduate School has verified and approved the above-named committee members, and certifies that the dissertation has been approved in accordance with university requirements. ii ACKNOWLEDGMENTS Many thanks to my doctoral committee for their helpful comments and advice during my graduate career and the preparation of this dissertation. I thank Nora Underwood for being a great advisor in every sense of the word. She has provided invaluable advice regarding my research and professional development, and served as an excellent faculty role model. I thank Brian Inouye for putting up with my unending statistics questions and Alice Winn for cultivating my teaching abilities and the many conversations that helped me wrap my head around phenotypic plasticity. I also thank Joe Travis for all the enjoyable Friday afternoons; his paper discussion groups were stimulating and exposed me to many new ideas. This work would have not been possible without the assistance of countless volunteers and field assistants. I am particularly indebted to Amanda Buchanan for her field/greenhouse help and the many intellectual discussions that strengthened my dissertation. I also thank the FSU greenhouse staff (Karen Graffius and Theresa Jepsen) and the NFREC field crew (Tom Bolton) for logistical help with experiments, Stacey Halpern for providing me with Solanum clonal lines, and Tania Kim for being so generous when dividing roots among our various projects. I thank Megan Mayo, Ian Padykula, Kylie Rafferty, Ryan Coker, and Brittany Forer not only for the many hours they spent surveying and processing plants, but for entertaining me in the lab and field. And of course, I thank all of the past and current members of the Inouye- Underwood labs and Muffins for Mom for keeping me sane. Parts of this dissertation were funded by a Robert K. Godfrey Endowment in Botany, an FSU Planning Grant, an NSF Doctoral Dissertation Improvement grant, and two grants to Nora Underwood: NSF DEB-0717221 and USDA grant #2005-35302-16311. iii TABLE OF CONTENTS List of Tables ................................................................................................................................. vi List of Figures ............................................................................................................................... vii Abstract ........................................................................................................................................ viii 1. INTRODUCTION ...................................................................................................................1 2. RESISTANCE TRADE-OFFS ACROSS PLANT GENOTYPES STRUCTURE INDIRECT INTERACTIONS AMONG HERBIVORES......................................................4 2.1 Introduction ....................................................................................................................4 2.2 Methods..........................................................................................................................7 2.1.1 Study Species .....................................................................................................7 2.2.2 Experimental Methods .......................................................................................8 2.2.3 Statistical Analyses ............................................................................................9 2.3 Results ..........................................................................................................................12 2.4 Discussion ....................................................................................................................17 3. GENETIC CONSTRAINTS ON THE EVOLUTION OF INDUCED ANTI-HERBIVORE DEFENSES AND TOLERANCE ........................................................................................22 3.1 Introduction ..................................................................................................................22 3.2 Methods........................................................................................................................26 3.2.1 Study System ...................................................................................................26 3.2.2 Experimental Methods .....................................................................................27 3.2.3 Trait Measurements .........................................................................................28 3.2.4 Vegetative Community Metrics .......................................................................31 3.2.5 Statistical Analyses ..........................................................................................31 3.3 Results ..........................................................................................................................34 3.4 Discussion ....................................................................................................................37 4. THE ADAPTIVE VALUE AND COSTS OF PLASTICITY IN PLANT INDUCED DEFENSES AND TOLERANCE OF HERBIVORY ..........................................................43 4.1 Introduction ..................................................................................................................43 4.2 Methods........................................................................................................................47 4.2.1 Study System and Field site .............................................................................47 4.2.2 Experimental Methods .....................................................................................48 4.2.3 Trait Measurements .........................................................................................49 4.2.4 Statistical Analyses ..........................................................................................53 iv 4.3 Results ..........................................................................................................................58 4.4 Discussion ....................................................................................................................65 5. CONCLUSIONS ...................................................................................................................73 APPENDICES ...............................................................................................................................77 A. SUPPLEMENTARY MATERIALS FOR CHAPTER TWO ...............................................77 B. SUPPLEMENTARY MATERIALS FOR CHAPTER THREE ...........................................79 C. SUPPLEMENTARY MATERIALS FOR CHAPTER FOUR .............................................84 REFERENCES ..............................................................................................................................89 BIOGRAPHICAL SKETCH .......................................................................................................104 v LIST OF TABLES 3.1 Defense traits measured in this study and evidence for their defensive value and damaged-induced plasticity ...............................................................................................26 4.1 Adaptive value of plasticity analysis .................................................................................60 4.2 Costs of tolerance ...............................................................................................................65 A.1 Results of three-way, fixed factor ANOVAs testing for effects of block, genotype, and damage treatment on RGR of L. juncta larvae after 48hrs of feeding ...............................77 A.2 Results of three-way, fixed factor ANOVAs testing for effects of block, genotype, and damage treatment on RGR of M. sexta larvae after 48hrs of feeding ................................78 A.3 Pearson correlation coefficients between genotypic measures of induced and constitutive resistance to L. juncta (LJ) and M. sexta (MS). .................................................................78 B.1 Genetic variation in the mean expression of defense traits ................................................80 B.2 Genetic variation in the plasticity of defense traits ............................................................81 B.3 Genetic variation in tolerance ability. ................................................................................81 B.4 Genetic correlations among the constitutive expression of five defense traits and three measures of tolerance. ........................................................................................................82
Recommended publications
  • Insects of Western North America 4. Survey of Selected Insect Taxa of Fort Sill, Comanche County, Oklahoma 2
    Insects of Western North America 4. Survey of Selected Insect Taxa of Fort Sill, Comanche County, Oklahoma 2. Dragonflies (Odonata), Stoneflies (Plecoptera) and selected Moths (Lepidoptera) Contributions of the C.P. Gillette Museum of Arthropod Diversity Colorado State University Survey of Selected Insect Taxa of Fort Sill, Comanche County, Oklahoma 2. Dragonflies (Odonata), Stoneflies (Plecoptera) and selected Moths (Lepidoptera) by Boris C. Kondratieff, Paul A. Opler, Matthew C. Garhart, and Jason P. Schmidt C.P. Gillette Museum of Arthropod Diversity Department of Bioagricultural Sciences and Pest Management Colorado State University, Fort Collins, Colorado 80523 March 15, 2004 Contributions of the C.P. Gillette Museum of Arthropod Diversity Colorado State University Cover illustration (top to bottom): Widow Skimmer (Libellula luctuosa) [photo ©Robert Behrstock], Stonefly (Perlesta species) [photo © David H. Funk, White- lined Sphinx (Hyles lineata) [photo © Matthew C. Garhart] ISBN 1084-8819 This publication and others in the series may be ordered from the C.P. Gillette Museum of Arthropod Diversity, Department of Bioagricultural Sciences, Colorado State University, Fort Collins, Colorado 80523 Copyrighted 2004 Table of Contents EXECUTIVE SUMMARY……………………………………………………………………………….…1 INTRODUCTION…………………………………………..…………………………………………….…3 OBJECTIVE………………………………………………………………………………………….………5 Site Descriptions………………………………………….. METHODS AND MATERIALS…………………………………………………………………………….5 RESULTS AND DISCUSSION………………………………………………………………………..…...11 Dragonflies………………………………………………………………………………….……..11
    [Show full text]
  • ECO-Ssls for Pahs
    Ecological Soil Screening Levels for Polycyclic Aromatic Hydrocarbons (PAHs) Interim Final OSWER Directive 9285.7-78 U.S. Environmental Protection Agency Office of Solid Waste and Emergency Response 1200 Pennsylvania Avenue, N.W. Washington, DC 20460 June 2007 This page intentionally left blank TABLE OF CONTENTS 1.0 INTRODUCTION .......................................................1 2.0 SUMMARY OF ECO-SSLs FOR PAHs......................................1 3.0 ECO-SSL FOR TERRESTRIAL PLANTS....................................4 5.0 ECO-SSL FOR AVIAN WILDLIFE.........................................8 6.0 ECO-SSL FOR MAMMALIAN WILDLIFE..................................8 6.1 Mammalian TRV ...................................................8 6.2 Estimation of Dose and Calculation of the Eco-SSL ........................9 7.0 REFERENCES .........................................................16 7.1 General PAH References ............................................16 7.2 References Used for Derivation of Plant and Soil Invertebrate Eco-SSLs ......17 7.3 References Rejected for Use in Derivation of Plant and Soil Invertebrate Eco-SSLs ...............................................................18 7.4 References Used in Derivation of Wildlife TRVs .........................25 7.5 References Rejected for Use in Derivation of Wildlife TRV ................28 i LIST OF TABLES Table 2.1 PAH Eco-SSLs (mg/kg dry weight in soil) ..............................4 Table 3.1 Plant Toxicity Data - PAHs ..........................................5 Table 4.1
    [Show full text]
  • Occurrence of Horse Nettle (Solanum Carolinense L.) in North Rhine
    25th German Conference on Weed Biology and Weed Control, March 13-15, 2012, Braunschweig, Germany Occurrence of horse nettle (Solanum carolinense L.) in North Rhine-Westphalia Auftreten der Carolinschen Pferdenessel (Solanum carolinense L.) in Nordrhein-Westfalen Günter Klingenhagen1*, Martin Wirth2, Bernd Wiesmann2 & Hermann Ahaus2 1Chamber of Agriculture, North Rhine-Westphalia, Plant Protection Service, Nevinghoff 40, 48147 Münster, Germany 2Chamber of Agriculture, North Rhine-Westphalia, district station Coesfeld, Borkener Straße 25, 48653 Coesfeld, Germany *Corresponding author, [email protected] DOI: 10.5073/jka.2012.434.077 Summary In autumn 2008 during corn harvest (Zea mays L.), the driver of the combine harvester spotted an unfamiliar plant species in the field. It turned out that Solanum carolinense L. was the unknown weed species. The species had overgrown 40 % of the corn field which had a size of 10.2 ha. The farmer who usually effectively controls all weeds on his field had so far not noticed the dominance of the solanaceous herb species. From his point of view, the weed must have germinated after the corn had covered the crop rows. On the affected field, corn is grown in monoculture since 1973. When the horse nettle was first spotted in October 2008, the plants had reached a height of about 120 cm, rhizomes had grown 80 cm deep and a horizontal root growth of 150 cm could be determined. In the following season (2008/2009), winter wheat was grown instead of corn on the respective field. This was followed by two years of winter rye (2009/2010 and 2010/2011).
    [Show full text]
  • Dietary Neurotransmitters: a Narrative Review on Current Knowledge
    nutrients Review Dietary Neurotransmitters: A Narrative Review on Current Knowledge Matteo Briguglio 1,* ID , Bernardo Dell’Osso 2,3, Giancarlo Panzica 4 ID , Antonio Malgaroli 5, Giuseppe Banfi 6, Carlotta Zanaboni Dina 1, Roberta Galentino 1 and Mauro Porta 1 1 Tourette’s Syndrome and Movement Disorders Centre, I.R.C.C.S. Galeazzi Hospital, 20161 Milan, Italy; [email protected] (C.Z.D.); [email protected] (R.G.); [email protected] (M.P.) 2 Department of Pathophysiology and Transplantation, I.R.C.C.S. Ca’ Granda Foundation, Ospedale Maggiore Policlinico, 20122 Milan, Italy; [email protected] 3 Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, CA 94305, USA 4 Department of Neuroscience, Rita Levi Montalcini, University of Turin, 10126 Turin, Italy; [email protected] 5 Neurobiology of Learning Unit, Division of Neuroscience, Vita-Salute San Raffaele University, 20132 Milan, Italy; [email protected] 6 Scientific Direction, I.R.C.C.S. Galeazzi Hospital, 20161 Milan, Italy; banfi[email protected] * Correspondence: [email protected]; Tel.: +39-338-608-7042 Received: 13 April 2018; Accepted: 8 May 2018; Published: 13 May 2018 Abstract: Foods are natural sources of substances that may exert crucial effects on the nervous system in humans. Some of these substances are the neurotransmitters (NTs) acetylcholine (ACh), the modified amino acids glutamate and γ-aminobutyric acid (GABA), and the biogenic amines dopamine, serotonin (5-HT), and histamine. In neuropsychiatry, progressive integration of dietary approaches in clinical routine made it necessary to discern the more about some of these dietary NTs.
    [Show full text]
  • Alien Plant Species in the Agricultural Habitats of Ukraine: Diversity and Risk Assessment
    Ekológia (Bratislava) Vol. 37, No. 1, p. 24–31, 2018 DOI:10.2478/eko-2018-0003 ALIEN PLANT SPECIES IN THE AGRICULTURAL HABITATS OF UKRAINE: DIVERSITY AND RISK ASSESSMENT RAISA BURDA Institute for Evolutionary Ecology, NAS of Ukraine, 37, Lebedeva Str., 03143 Kyiv, Ukraine; e-mail: [email protected] Abstract Burda R.: Alien plant species in the agricultural habitats of Ukraine: diversity and risk assessment. Ekológia (Bratislava), Vol. 37, No. 1, p. 24–31, 2018. This paper is the first critical review of the diversity of the Ukrainian adventive flora, which has spread in agricultural habitats in the 21st century. The author’s annotated checklist con- tains the data on 740 species, subspecies and hybrids from 362 genera and 79 families of non-native weeds. The floristic comparative method was used, and the information was gen- eralised into some categories of five characteristic features: climamorphotype (life form), time and method of introduction, level of naturalisation, and distribution into 22 classes of three habitat types according to European Nature Information System (EUNIS). Two assess- ments of the ecological risk of alien plants were first conducted in Ukraine according to the European methods: the risk of overcoming natural migration barriers and the risk of their impact on the environment. The exposed impact of invasive alien plants on ecosystems has a convertible character; the obtained information confirms a high level of phytobiotic contami- nation of agricultural habitats in Ukraine. It is necessary to implement European and national documents regarding the legislative and regulative policy on invasive alien species as one of the threats to biotic diversity.
    [Show full text]
  • As an Aqueous Plant-Based Extract Fertilizer in Green Bean (Phaseolus Vulgaris L.) Sustainable Agriculture
    sustainability Article Stinging Nettle (Urtica dioica L.) as an Aqueous Plant-Based Extract Fertilizer in Green Bean (Phaseolus vulgaris L.) Sustainable Agriculture Branka Mariˇci´c 1,*, Sanja Radman 2, Marija Romi´c 2, Josipa Perkovi´c 3 , Nikola Major 3 , Branimir Urli´c 4, Igor Palˇci´c 3,* , Dean Ban 3, Zoran Zori´c 5 and Smiljana Goreta Ban 3 1 Department of Ecology, Agronomy and Aquaculture, University of Zadar, 23000 Zadar, Croatia 2 Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; [email protected] (S.R.); [email protected] (M.R.) 3 Institute of Agriculture and Tourism, Department of Agriculture and Nutrition, 52440 Poreˇc,Croatia; [email protected] (J.P.); [email protected] (N.M.); [email protected] (D.B.); [email protected] (S.G.B.) 4 Institute for Adriatic Crops and Karst Reclamation, Department of Plant Sciences, 21000 Split, Croatia; [email protected] 5 Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; [email protected] * Correspondence: [email protected] (B.M.); [email protected] (I.P.); Tel.: +385-98-981-7375 (B.M.); +385-408-312 (I.P.) Abstract: Plant-based fertilizers, such as liquid plant extracts, contribute to the cultivation of veg- etables, particularly in organic production. The objective of this study was to determine if aqueous nettle extract could be successfully used as a fertilizer, applied on the soil and foliarly, in green bean Citation: Mariˇci´c,B.; Radman, S.; production under field conditions. The hypothesis was that it could successfully replace mineral Romi´c,M.; Perkovi´c,J.; Major, N.; fertilizers and be integrated into sustainable and organic agriculture.
    [Show full text]
  • Medicine Plants of Folk Medicine Used for Treatment of Gastro-Intestinal Problems in Fergana Valley
    국내․외 기술정보 Medicine plants of folk medicine used for treatment of gastro-intestinal problems in Fergana valley Valeriy V. Pak 식품기능연구본부 This article presents a review of indigenous medicinal plants used in folk medicine in Fergana valley (Uzbekistan) for treatment of gastro-intestinal problems. The 29 different plantsbelong to 18 different plant spices are presented. The methods of preparation of remedies and utilized parts of plants are described. Ⅰ. Introduction The purpose of this article is to review the remedies of the folk medicine for treatment of Plant products – as part of foods or botanical gastro-intestinal problems used in Fergana portions and powder – have been used with valley presenting the most densely populated varying success to cure and prevent diseases part of Uzbekistan. throughout history. Several diverse line of evidence indicates that medicinal plants represent the oldest and most widespread form of Ⅱ. Geographic characteristic medication. Until recently, plants were an of Fergana valley important source for the discovery of novel pharmacologically active compounds, with many Fergana valley occupiesa territory about 22.000 blockbuster drugs being derived directly or sq km and divided among Uzbekistan, Tajikistan indirectly from plants [1,2]. As it is estimated and Kyrgystan (Fig. 1). The Fergana Range by World Health Organization (WHO) that 25 % rises in the northeast and the Pamir in the of the active compounds in currently prescribed south. The Gissar and Alay ranges stand across synthetic drugs were first identified in plant the Fergana valley, which lies south of the sources [3]. Thus, to collect information about western Tian-Shan. The Xinjiang region of medicine plant used in folk medicine is valuable China borders the valley in the southeast.
    [Show full text]
  • Flora Mediterranea 26
    FLORA MEDITERRANEA 26 Published under the auspices of OPTIMA by the Herbarium Mediterraneum Panormitanum Palermo – 2016 FLORA MEDITERRANEA Edited on behalf of the International Foundation pro Herbario Mediterraneo by Francesco M. Raimondo, Werner Greuter & Gianniantonio Domina Editorial board G. Domina (Palermo), F. Garbari (Pisa), W. Greuter (Berlin), S. L. Jury (Reading), G. Kamari (Patras), P. Mazzola (Palermo), S. Pignatti (Roma), F. M. Raimondo (Palermo), C. Salmeri (Palermo), B. Valdés (Sevilla), G. Venturella (Palermo). Advisory Committee P. V. Arrigoni (Firenze) P. Küpfer (Neuchatel) H. M. Burdet (Genève) J. Mathez (Montpellier) A. Carapezza (Palermo) G. Moggi (Firenze) C. D. K. Cook (Zurich) E. Nardi (Firenze) R. Courtecuisse (Lille) P. L. Nimis (Trieste) V. Demoulin (Liège) D. Phitos (Patras) F. Ehrendorfer (Wien) L. Poldini (Trieste) M. Erben (Munchen) R. M. Ros Espín (Murcia) G. Giaccone (Catania) A. Strid (Copenhagen) V. H. Heywood (Reading) B. Zimmer (Berlin) Editorial Office Editorial assistance: A. M. Mannino Editorial secretariat: V. Spadaro & P. Campisi Layout & Tecnical editing: E. Di Gristina & F. La Sorte Design: V. Magro & L. C. Raimondo Redazione di "Flora Mediterranea" Herbarium Mediterraneum Panormitanum, Università di Palermo Via Lincoln, 2 I-90133 Palermo, Italy [email protected] Printed by Luxograph s.r.l., Piazza Bartolomeo da Messina, 2/E - Palermo Registration at Tribunale di Palermo, no. 27 of 12 July 1991 ISSN: 1120-4052 printed, 2240-4538 online DOI: 10.7320/FlMedit26.001 Copyright © by International Foundation pro Herbario Mediterraneo, Palermo Contents V. Hugonnot & L. Chavoutier: A modern record of one of the rarest European mosses, Ptychomitrium incurvum (Ptychomitriaceae), in Eastern Pyrenees, France . 5 P. Chène, M.
    [Show full text]
  • Urtica Urens
    Dwarf Nettle Urtica urens Weed management guide for Australian vegetable production INTEGRATED WEED MANAGEMENT Identification Dwarf nettle (Urtica urens) is an annual herbaceous plant, native to Mediterranean Europe, that grows between 10 and 75 cm in height. Leaves are up to 6 cm in length but often 1-3 cm, oval to elliptical in shape, deeply toothed or serrated on the edges, green to dark green, and covered with scattered stinging hairs. Clusters of small, greenish-white flowers form where 1 the leaves join the stems. Dwarf nettle is also known in Australia as small nettle, lesser nettle, or stinging nettle. Vegetable farmers are likely to be very familiar with it where it is found on their farm, and to be well aware of how to identify it. However depending on its stage of growth, it may be possible to mis-identify it as tall nettle (Urtica dioica), native scrub 2 nettle (Urtica incisa) or potentially deadnettle (Lamium amplexicaule), particularly where the plants are recently germinated. Figure 1 includes a series of photos of dwarf nettle at different life stages in order to facilitate correct identifica- tion on-farm, from a young seedling through to a mature 3 flowering plant. Dwarf nettle may be mis-identified as native scrub nettle (Urtica incisa), a common species native to Australia. 4 Compared to dwarf nettle, native scrub nettle reaches up to 1m in height, has longer lance-shaped leaves (up to 12 cm) that are paler beneath, fewer stinging hairs, and spike-like clusters of flowers that can be longer than the leaf stalks.
    [Show full text]
  • Host Plant Defense Produces Species-Specific Alterations to Flight Muscle Protein Structure and Flight-Related Fitness Traits of Two Armyworms Scott L
    © 2020. Published by The Company of Biologists Ltd | Journal of Experimental Biology (2020) 223, jeb224907. doi:10.1242/jeb.224907 RESEARCH ARTICLE Host plant defense produces species-specific alterations to flight muscle protein structure and flight-related fitness traits of two armyworms Scott L. Portman1,*, Gary W. Felton2, Rupesh R. Kariyat3,4 and James H. Marden5 ABSTRACT expression of genes and how gene expression patterns produce Insects manifest phenotypic plasticity in their development and modifications to organ systems has applications in the fields of behavior in response to plant defenses, via molecular mechanisms ecology, conservation biology, functional genomics, population that produce tissue-specific changes. Phenotypic changes might vary dynamics and pest management, because it provides insight into between species that differ in their preferred hosts and these effects the genes and fitness traits that are being targeted by natural selection. could extend beyond larval stages. To test this, we manipulated the diet Despite the important role phenotypic plasticity plays in species of southern armyworm (SAW; Spodoptera eridania) and fall armyworm survival and evolution (Chippindale et al., 1993; Whitman and (FAW; Spodoptera frugiperda) using a tomato mutant for jasmonic acid Agrawal, 2009; Murren et al., 2015), linking environmentally plant defense pathway (def1), and wild-type plants, and then quantified induced changes to the expression patterns of specific genes (or gene expression of Troponin t (Tnt) and flight muscle metabolism of the gene suites) with distinct phenotypes has been poorly documented. adult insects. Differences in Tnt spliceform ratios in insect flight Herbivorous holometabolous insects make excellent systems to muscles correlate with changes to flight muscle metabolism and flight study phenotypic plasticity on a mechanistic level because variation in muscle output.
    [Show full text]
  • FSC Nettlecombe Court Nature Review 2014
    FSC Nettlecombe Court Nature Review 2014 Compiled by: Sam Tuddenham Nettlecombe Court- Nature Review 2014 Introduction The purpose of this report is to review and share the number of different species that are present in the grounds of Nettlecombe Court. A significant proportion of this data has been generated by FSC course tutors and course attendees studying at Nettlecombe court on a variety of courses. Some of the data has been collected for the primary purpose of species monitoring for nationwide conservation charities e.g. The Big Butterfly Count and Bee Walk Survey Scheme. Other species have just been noted by members or staff when out in the grounds. These records are as accurate as possible however we accept that there may be species missing. Nettlecombe Court Nettlecombe Court Field Centre of the Field Studies Council sits just inside the eastern border of Exmoor national park, North-West of Taunton (Map 1). The house grid reference is 51o07’52.23”N, 32o05’8.65”W and this report only documents wildlife within the grounds of the house (see Map 2). The estate is around 60 hectares and there is a large variety of environment types: Dry semi- improved neutral grassland, bare ground, woodland (large, small, man –made and natural), bracken dominated hills, ornamental shrubs (lawns/ domestic gardens) and streams. These will all provide different habitats, enabling the rich diversity of wildlife found at Nettlecombe Court. Nettlecombe court has possessed a meteorological station for a number of years and so a summary of “MET” data has been included in this report.
    [Show full text]
  • Toxicity of Mucuna Pruriens Seed Extract on the Kidney of Adult Sprague-Dawley Rats
    Gbotolorun et al, Afr. J. Pharmacol. Ther. 2018. 7(1): 27-33 African Journal of Pharmacology and Therapeutics Vol. 7 No. 1 Pages 27-33, 2018 Open Access to full text available at http://www.uonbi.ac.ke/journals/kesobap/ Research Article Toxicity of Mucuna pruriens seed extract on the kidney of adult Sprague-Dawley rats Stella C. Gbotolorun a,*, Perpetual K. Isah a, and Oluwaseye A. Adebajo a a Department of Anatomy, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Nigeria _____________ * Corresponding author: Department of Anatomy, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, P.M.B. 12003, Lagos, Nigeria; Tel: +234-803-8098631; E-mail: [email protected] Background: The commonly acceptable knowledge that herbal medications have little or no toxicity and are absolutely safe makes people consume them indiscriminately. All parts of Mucuna pruriens have been reported to possess valuable medicinal properties, but its potential toxicity on vital organs remains unexplored. Objective: To determine the deleterious effect of Mucuna pruriens on the Kidney of Adult Sprague-Dawley Rats. Methodology: Twenty Sprague-Dawley rats were used and divided into four groups of five rats per group. Group I served as control and received distilled water and groups II-IV received 50, 100 and 200 mg/kg of the extract respectively for 2 weeks. The animals were sacrificed, blood was collected for kidney function test and the kidneys were excised via ventral laparatomy. The right kidney was fixed for histological studies while the left kidney was analysed for biochemical markers of oxidative stress Results: Lipid peroxidation increased significantly while superoxide dismutase and glutathione recorded a significant decrease in activities when the treated groups were compared to control.
    [Show full text]