Pest and Disease Incursions: Risks, Threats and Management in Papua New Guinea

Total Page:16

File Type:pdf, Size:1020Kb

Pest and Disease Incursions: Risks, Threats and Management in Papua New Guinea PNGPlantProt.book Page 1 Wednesday, May 24, 2006 4:03 PM Pest and disease incursions: risks, threats and management in Papua New Guinea Papers presented at the 2nd Papua New Guinea Plant Protection Conference, Kokopo, East New Britain Province, 8–10 November 2004 Editor: T.V. Price Australian Centre for International Agricultural Research Canberra 2006 PNGPlantProt.book Page 2 Wednesday, May 24, 2006 4:03 PM The Australian Centre for International Agricultural Research (ACIAR) was established in June 1982 by an Act of the Australian Parliament. Its mandate is to help identify agricultural problems in developing countries and to commission collaborative research between Australian and developing country researchers in fields where Australia has a special research competence. Where trade names are used this constitutes neither endorsement of nor discrimination against any product by the Centre. ACIAR TECHNICAL REPORT SERIES This series of publications contains technical information resulting from ACIAR-supported programs, projects and workshops (for which proceedings are not published), reports on Centre-supported fact-finding studies, or reports on other topics resulting from ACIAR activities. Publications in the series are distributed internationally to selected individuals and scientific institutions and are also available from ACIAR’s website at <www.aciar.gov.au>. © Australian Centre for International Agricultural Research, GPO Box 1571, Canberra, ACT 2601 Price, T.V., ed., 2006. Pest and disease incursions: risks, threats and management in Papua New Guinea. Papers presented at the 2nd Papua New Guinea Plant Protection Conference, Kokopo, East New Britain Province, 8–10 November 2004. Canberra, ACIAR Technical Reports No. 62, 199p. ISBN 1 86320 464 4 print ISBN 1 86320 465 2 online Cover design: Design One Solutions Technical editing and desktop operations: Clarus Design Pty Ltd Printing: Elect Printing PNGPlantProt.book Page 3 Wednesday, May 24, 2006 4:03 PM Foreword Papua New Guinea is an important partner country for ACIAR, reflecting the long-term relationship between Australia and PNG. Village-based agriculture supports between 70 and 80 per cent of the PNG population with domestic trading of fresh produce a very important source of cash incomes. Crop protection is vital to sustain this sector. The papers in this publication include reports from several projects supported by ACIAR. One project, which is active in PNG, Indonesia and Australia, has mapped sug- arcane pests and diseases. Research has now extended to survey key areas to build up a comprehensive picture of pest and disease distribution. In other projects, pests of horticulture crops, the Oribius weevil and the red-banded mango caterpillar, are being studied. The damage caused by the weevil has been deter- mined, and treatments to exclude adult weevils from some plants have resulted in price premiums of up to 200 per cent. The use of biocontrol agents against the invasive weed Chromolaena continues to gain momentum in PNG. A new control agent — a stem galling fly — has been widely released and is established at many sites. ACIAR is pleased to be able to publish this series of papers, which were presented at the 2nd Papua New Guinea Plant Protection Conference. I congratulate the researchers working on plant protection in Papua New Guinea on forming their association and wish them well in the future. Peter Core Director Australian Centre for International Agricultural Research From: Price, T.V., ed., 2006. Pest and disease incursions: risks, threats and management in 3 Papua New Guinea. Canberra, ACIAR Technical Reports No. 62. PNGPlantProt.book Page 4 Wednesday, May 24, 2006 4:03 PM PNGPlantProt.book Page 5 Wednesday, May 24, 2006 4:03 PM Contents Foreword 3 Preface 9 Opening remarks by the Governor of East New Britain Province 11 Keynote address Plant pest incursions: risks, threats and management G.V. Maynard 14 Crop pests and management Incidence of pathogens naturally associated with taro beetles in sugarcane fields in Papua New Guinea A.N. Simbiken 20 Pest species of Oribius Marshall (Coleoptera: Curculionidae: Otiorhynchinae) and their host plants in PNG [Abstract only] M.M. Ero, T. Clarke, P. Wesis and B. Niangu 24 Incidence and distribution of Bactrocera papayae Drew and Hancock (Diptera: Tephritidae) in coffee plantations in the Eastern Highlands and Madang provinces of Papua New Guinea A.N. Simbiken 25 The use of sticky traps to study seasonal dispersal activity of the sweet potato weevil, Cylas formicarius (Fabricius), in Papua New Guinea S.A. Sar 31 Conservation of sugarcane germplasm: survey of Papua New Guinea, Indonesia and northern Australia L.S. Kuniata, R.C. Magarey and G. Rauka 36 Efficacy of neem extract, Delfin® (Bt) and Orthene® on lepidopterous insect pests in cabbages in the Gazelle Peninsula of Papua New Guinea P. Mwayawa 43 Evaluation of four insecticides as part of an integrated pest management strategy for diamondback moth, Plutella xylostella L., in the highlands of Papua New Guinea J. Wemin and P. Wesis 49 From: Price, T.V., ed., 2006. Pest and disease incursions: risks, threats and management in 5 Papua New Guinea. Canberra, ACIAR Technical Reports No. 62. PNGPlantProt.book Page 6 Wednesday, May 24, 2006 4:03 PM Breeding sites of major coconut beetle pest Scapanes australis Boisd. (Coleoptera: Scarabaeoidea, Dynastinae) in East New Britain, Papua New Guinea P. Gende, T. Kakul, S. Laup and S. Embupa 57 Farmer perceptions of coffee pests in Boana district, Morobe Province, Papua New Guinea A.N. Simbiken 60 Diseases and management Evaluation of fungicides against potato late blight disease (Phytophthora infestans) on susceptible and tolerant potato varieties S. Hariki 66 Preliminary assessment of two inorganic copper-based fungicides against late blight (Phytophthora infestans) in the tropical highlands of Papua New Guinea D. Minemba and P. Sovo 71 Improvement of compost mounding systems [Abstract only] R. Raatsch 75 Development of management strategies for ratoon stunting disease in sugarcane at Ramu Sugar, Papua New Guinea L.S. Kuniata, G. Rauka and R.C. Magarey 76 The role of tissue culture in the revival of the potato industry in Papua New Guinea V. Mero 82 A preliminary study of interrupting the epidemiological cycle of Phytophthora palmivora: integrated disease management of cocoa in relation to cocoa cropping cycle Y. Namaliu, J.T. Vano and J.K. Konam 84 Evaluation of disease on new planting materials developed at the Cocoa and Coconut Institute with potential for release to farmers in Papua New Guinea A.B. Kamuso and J.K. Konam 89 Disease performance of international cocoa clones at the Cocoa and Coconut Institute, Papua New Guinea A.B. Kamuso, R. Wennani, J. Saul and J.K. Konam 94 Diversity of Phytophthora palmivora on cocoa in Papua New Guinea J. Saul 100 Keynote address Plant protection in the 21st century: new developments, trends and training requirements T.V. Price 106 Weeds and management The importance of proper weed control in young hybrid cocoa (Theobroma cacao L.) in Papua New Guinea D.S. Yinil, M.S. Powell and H. Tangbil 110 From: Price, T.V., ed., 2006. Pest and disease incursions: risks, threats and management in 6 Papua New Guinea. Canberra, ACIAR Technical Reports No. 62. PNGPlantProt.book Page 7 Wednesday, May 24, 2006 4:03 PM Status and management of invasive weed Chromolaena odorata in Papua New Guinea [Abstract only] I. Bofeng 118 Control of Monstera species in cocoa: a preliminary investigation using various herbicide mixtures D.S. Yinil 119 Pest incursions and quarantine Invasive weeds: impacts, prevention, detection and responses W. Orapa 124 An overview of pest incursions in Papua New Guinea over the past 20 years R. Masamdu 132 Spread of citrus huanglongbing (greening) disease following incursion into Papua New Guinea [Abstract only] R. Davis, T. Gunua, M. Kame, D.I. Tenakana and T. Ruabete 136 Impact of some food-crop disease outbreaks in Papua New Guinea P. Kokoa 137 The PNG pest list database and its uses in quarantine surveillance and pest management R. Masamdu 144 Coconut inflorescence borer, Synneschodes papuana (Lepidoptera: Brachodidae), an important new pest of coconut in Papua New Guinea T. Kakul, M. Aloysius and K. Samai 146 Overview of internal plant quarantine and the challenges in Papua New Guinea R. Masamdu 151 The value of early detection and internal quarantine boundaries in the management of incursions: some examples in plant protection from northern Australia and Papua New Guinea J.F. Grimshaw, B.M. Waterhouse and M.P. Weinert 154 Red-banded mango caterpillar, Deanolis sublimbalis Snellen (Lepidoptera: Pyralidae: Odontinae), in Papua New Guinea D. Tenakanai, F. Dori and K. Kurika 161 Some aspects of banana entomology in northern Australia: what can we apply to Papua New Guinea? [Abstract only] B. Pinese 166 Pest and disease identification EntomID-PNG — a digital image database of the insects of Papua New Guinea M. Wiemers and M. Ero 168 From: Price, T.V., ed., 2006. Pest and disease incursions: risks, threats and management in 7 Papua New Guinea. Canberra, ACIAR Technical Reports No. 62. PNGPlantProt.book Page 8 Wednesday, May 24, 2006 4:03 PM Use of molecular markers in managing plant pests and diseases: a PNG perspective B. Nass-Komolong and M. Maino 174 The distribution of oryctes baculovirus in different species of Scarabaeidae on New Britain Island, Papua New Guinea A. Schuhbeck and J. Bokosou 184 A comparison of Colletotrichum species associated with berry diseases of Coffea arabica L. M.K. Kenny, V.J. Galea, P.T. Scott and T.V. Price 194 From: Price, T.V., ed., 2006. Pest and disease incursions: risks, threats and management in 8 Papua New Guinea. Canberra, ACIAR Technical Reports No. 62. PNGPlantProt.book Page 9 Wednesday, May 24, 2006 4:03 PM Preface The first Papua New Guinea (PNG) Plant/Crop Protection Conference was held at Lae in February 2002, and was sponsored by the Australian Contribution to the National Agricultural Research Service (ACNARS) and organised by the National Agricultural Research Institute (NARI).
Recommended publications
  • DOSSIER on Eumetopina Flavipes AS a PEST of SUGARCANE
    DOSSIER ON Eumetopina flavipes AS A PEST OF SUGARCANE Eumetopina flavipes Muir (Hemiptera: Delphacidae) Common name Island sugarcane planthopper Distribution Papua New Guinea (PNG), Torres Strait Islands (TSI) and northern Cape York Peninsula, Queensland, Australia (Bourke 1968; Gough & Peterson 1984; Chandler & Croft 1986; Kuniata et al. 1994; Magarey et al. 2002; Wilson 2004; Anderson et al. 2007, 2009, 2010; Grimshaw & Donaldson 2007; Anderson & Condon 2013). Also recorded from Indonesia (Borneo), Malaysia (Sarawak), Solomon Islands, Philippines, New Caledonia (M. Wilson, personal communication). Genus Eumetopina The genus Eumetopina is believed to have evolved in Papua New Guinea where several species occur together with E. flavipes. The genus is confined to South East Asia. So far, seven species have been described, and whilst the majority of species appear to be in PNG, there may be up to 25 undescribed species worldwide (M. Wilson, personal communication). The described species are: E. bakeri Muir 1919: Borneo; E. bicornis Fennah, 1965: PNG; E. caliginosa Muir, 1913: Indonesia; E. flava Muir, 1919: Philippines; E. flavipes Muir, 1913: PNG; E. kruegeri Breddin 1896 (type species): Indonesia (Java); E. maculata Muir, 1919: Philippines (Wilson 2004). Wilson (2004) gives the following description of the genus: “Eumetopina is a small genus of small (3-5 mm) rather elongate, slightly flattened delphacid planthoppers. Characters of the male genitalia define the genus; the anal segment with one process and the thin elongate parameres being among the characters. The adults often have black forewings and thorax but there is considerable variation in the extent of this dark pigmentation. Some species may be recognised easily by marking on the face.
    [Show full text]
  • Insert Report Title Here
    Vegetable biosecurity & quarantine gap analysis Prue McMichael Scholefield Robinson Horticultural Services Pty Ltd Project Number: VG07087 VG07087 This report is published by Horticulture Australia Ltd to pass on information concerning horticultural research and development undertaken for the vegetable industry. The research contained in this report was funded by Horticulture Australia Ltd with the financial support of the vegetable industry. All expressions of opinion are not to be regarded as expressing the opinion of Horticulture Australia Ltd or any authority of the Australian Government. The Company and the Australian Government accept no responsibility for any of the opinions or the accuracy of the information contained in this report and readers should rely upon their own enquiries in making decisions concerning their own interests. ISBN 0 7341 1849 X Published and distributed by: Horticulture Australia Ltd Level 7 179 Elizabeth Street Sydney NSW 2000 Telephone: (02) 8295 2300 Fax: (02) 8295 2399 E-Mail: [email protected] © Copyright 2008 FINAL REPORT Vegetable Biosecurity and Quarantine Gap Analysis VG07087 Prepared for : Horticulture Australia Ltd HAL Project No. VG07087 Prepared by : Prue McMichael Completion Date : September 2008 SCHOLEFIELD ROBINSON HORTICULTURAL SERVICES PTY LTD 118A Glen Osmond Road, Parkside SA 5063 Australia ACN 008 199 737 PO Box 650, Fullarton SA 5063 Ph: (08) 8373 2488 ABN 63 008 199 737 Fax: (08) 8373 2442 Email: [email protected] Web Site: www.srhs.com.au Offices in Adelaide and Mildura Scholefield Robinson Horticultural Services Pty Ltd HAL Project No. VG 07087 PROJECT LEADER Dr Prue McMichael Senior Consultant/Plant Pathologist Scholefield Robinson Horticultural Services Pty Ltd PO Box 650 Fullarton SA 5063 PURPOSE OF REPORT This Final Report has been prepared to document information acquired, analysed and considered during the review undertaken for HAL, into all aspects of the biosecurity of Australia’s vegetable industries that are members of AUSVEG.
    [Show full text]
  • Downloaded from BOLD Or Requested from Other Authors
    www.nature.com/scientificreports OPEN Towards a global DNA barcode reference library for quarantine identifcations of lepidopteran Received: 28 November 2018 Accepted: 5 April 2019 stemborers, with an emphasis on Published: xx xx xxxx sugarcane pests Timothy R. C. Lee 1, Stacey J. Anderson2, Lucy T. T. Tran-Nguyen3, Nader Sallam4, Bruno P. Le Ru5,6, Desmond Conlong7,8, Kevin Powell 9, Andrew Ward10 & Andrew Mitchell1 Lepidopteran stemborers are among the most damaging agricultural pests worldwide, able to reduce crop yields by up to 40%. Sugarcane is the world’s most prolifc crop, and several stemborer species from the families Noctuidae, Tortricidae, Crambidae and Pyralidae attack sugarcane. Australia is currently free of the most damaging stemborers, but biosecurity eforts are hampered by the difculty in morphologically distinguishing stemborer species. Here we assess the utility of DNA barcoding in identifying stemborer pest species. We review the current state of the COI barcode sequence library for sugarcane stemborers, assembling a dataset of 1297 sequences from 64 species. Sequences were from specimens collected and identifed in this study, downloaded from BOLD or requested from other authors. We performed species delimitation analyses to assess species diversity and the efectiveness of barcoding in this group. Seven species exhibited <0.03 K2P interspecifc diversity, indicating that diagnostic barcoding will work well in most of the studied taxa. We identifed 24 instances of identifcation errors in the online database, which has hampered unambiguous stemborer identifcation using barcodes. Instances of very high within-species diversity indicate that nuclear markers (e.g. 18S, 28S) and additional morphological data (genitalia dissection of all lineages) are needed to confrm species boundaries.
    [Show full text]
  • AIMS@JCU Outputs 2004 Onwards Abdul Wahab MA; De Nys R
    AIMS@JCU Outputs 2004 onwards Abdul Wahab MA; de Nys R; Whalan SW (2012) Closing the lifecycle for the sustainable aquaculture of the bath sponge Coscinoderma matthewsi. Aquaculture, 324-325. pp. 281-289 http://eprints.jcu.edu.au/22035 Adams VM; Pressey RL; Stoeckl NE (2012) Estimating land and conservation management costs: the first step in designing a stewardship program for the Northern Territory. Biological Conservation, 148 (1). pp. 44-53 http://eprints.jcu.edu.au/20245 Andutta FP; Kingsford MJ; Wolanski E (2012) 'Sticky water' enables the retention of larvae in a reef mosaic. Estuarine, Coastal and Shelf Science , 101. pp. 54-63 http://eprints.jcu.edu.au/22906 Angell AR; Pirozzi I; de Nys R; Paul N (2012) Feeding preferences and the nutritional value of tropical algae for the abalone Haliotis asinina. PLoS ONE, 7 (6). pp. 1-10 http://eprints.jcu.edu.au/22050 Athauda SB; Anderson TA; de Nys R (2012) Effect of rearing water temperature on protandrous sex inversion in cultured Asian Seabass (Lates calcarifer). General and Comparative Endocrinology, 175 (3). pp. 416-423 http://eprints.jcu.edu.au/20838 Baird AH; Campbell SJ; Fadli N; Hoey AS; Rudi E (2012) The shallow water hard corals of Pulau Weh, Aceh Province, Indonesia. Aquaculture, Aquarium, Conservation and Legislation, 5 (1). pp. 23-28 http://eprints.jcu.edu.au/22743 Bannister RJ; Battershill CN; de Nys R (2012) Suspended sediment grain size and mineralogy across the continental shelf of the Great Barrier Reef: impacts on the physiology of a coral reef sponge. Continental Shelf Research, 32. pp.
    [Show full text]
  • Biosecurity Risk Assessment
    An Invasive Risk Assessment Framework for New Animal and Plant-based Production Industries RIRDC Publication No. 11/141 RIRDCInnovation for rural Australia An Invasive Risk Assessment Framework for New Animal and Plant-based Production Industries by Dr Robert C Keogh February 2012 RIRDC Publication No. 11/141 RIRDC Project No. PRJ-007347 © 2012 Rural Industries Research and Development Corporation. All rights reserved. ISBN 978-1-74254-320-8 ISSN 1440-6845 An Invasive Risk Assessment Framework for New Animal and Plant-based Production Industries Publication No. 11/141 Project No. PRJ-007347 The information contained in this publication is intended for general use to assist public knowledge and discussion and to help improve the development of sustainable regions. You must not rely on any information contained in this publication without taking specialist advice relevant to your particular circumstances. While reasonable care has been taken in preparing this publication to ensure that information is true and correct, the Commonwealth of Australia gives no assurance as to the accuracy of any information in this publication. The Commonwealth of Australia, the Rural Industries Research and Development Corporation (RIRDC), the authors or contributors expressly disclaim, to the maximum extent permitted by law, all responsibility and liability to any person, arising directly or indirectly from any act or omission, or for any consequences of any such act or omission, made in reliance on the contents of this publication, whether or not caused by any negligence on the part of the Commonwealth of Australia, RIRDC, the authors or contributors. The Commonwealth of Australia does not necessarily endorse the views in this publication.
    [Show full text]
  • BSES Limited
    BSES Limited REVIEW OF MOTH-BORER RESISTANCE SCREENING AND REPORT ON VISIT TO SASRI by Peter Samson SR09004 Contact: Peter Samson Principal Entomologist BSES Limited PMB 57 Mackay Mail Centre, Q 4741 Telephone: 07 4963 6815 Facsimile: 07 4954 5167 Email: [email protected] BSES is not a partner, joint venturer, employee or agent of SRDC and has no authority to legally bind SRDC, in any publication of substantive details or results of this Project. BSES Limited Publication Study Tour Report SR09004 November 2009 Copyright © 2009 by BSES Limited All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of BSES Limited. Warning: Our tests, inspections and recommendations should not be relied on without further, independent inquiries. They may not be accurate, complete or applicable for your particular needs for many reasons, including (for example) BSES Limited being unaware of other matters relevant to individual crops, the analysis of unrepresentative samples or the influence of environmental, managerial or other factors on production. Disclaimer: Except as required by law and only to the extent so required, none of BSES Limited, its directors, officers or agents makes any representation or warranty, express or implied, as to, or shall in any way be liable (including liability in negligence) directly or indirectly for any loss, damages, costs, expenses or reliance arising out of or in connection with, the accuracy, currency, completeness or balance of (or otherwise), or any errors in or omissions from, any test results, recommendations statements or other information provided to you.
    [Show full text]
  • Recent Biotechnological Approaches in Diagnosis and Management of Sugarcane Phytoplasma Diseases
    ® Functional Plant Science and Biotechnology ©2012 Global Science Books Recent Biotechnological Approaches in Diagnosis and Management of Sugarcane Phytoplasma Diseases Govind P. Rao1* • Smriti Mall2 • Carmine Marcone3 1 Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi 110012, India 2 Sugarcane Research Station, Kunraghat, Gorakhpur 273008, U.P., India 3 Dipartimento di Scienze Farmaceutiche, Università degli Studi di Salerno, Via Ponte Don Melillo, I-84084 Fisciano (Salerno), Italy Corresponding author : * [email protected]; [email protected] ABSTRACT Phytoplasmas have been reported to be associated with two major sugarcane diseases viz., grassy shoot disease (GSD) and white leaf disease (WLD). Sugarcane yellow leaf syndrome is a new syndrome of sugarcane caused by a luteovirus and a phytoplasma. Sugarcane green grassy shoot (SCGGS) and ramu stunt are also associated with sugarcane from Thailand and Papua New Guinea, respectively. GSD and WLD are causing significant economic losses to sugarcane yield and sugar recovery in Asian countries. Both these phytoplasmas have been spreading very rapidly to newer locations with the help of infected seed material and leafhopper vectors. Hence it would be important to diagnose and manage these phytoplasmas at an early stage of sugarcane growth to avoid further spread and significant losses caused by them. Because of unreliable and unspecific symptoms, the identification and characterization of the associated phytoplasma at an early stage of plant growth is problematic and unreliable. The introduction of molecular genetic methods into plant mycoplasmology about 15 years ago greatly improved the diagnosis of phytoplasma infections in plant and insect hosts. PCR offers several advantages over other methods including versatility, relative simplicity, specificity and high sensitivity, which can be increased by a two-step PCR (nested PCR).
    [Show full text]
  • Identification of Natural Enemy in Stem Borers Complex in Sugar Cane at Tendaho Sugar Factory, Ethiopia
    Int. J. Adv. Res. Biol. Sci. (2019). 6(1): 25-32 International Journal of Advanced Research in Biological Sciences ISSN: 2348-8069 www.ijarbs.com DOI: 10.22192/ijarbs Coden: IJARQG(USA) Volume 6, Issue 1 - 2019 Research Article DOI: http://dx.doi.org/10.22192/ijarbs.2019.06.01.003 Identification of Natural Enemy in Stem Borers Complex in Sugar cane at Tendaho Sugar Factory, Ethiopia. Kidane T/Michael1*, Bayeh Mulatu2 and Mulugeta Negeri3 1Ethiopian Sugar Corporation, Research and Development, P. O. Box 15, Wonji, Ethiopia 2Ethiopia Food and Agricultural Organization (FAO) Addis Ababa, Ethiopia 3Department of Plant science, Ambo University, Ambo P. O. Box 19, Ethiopia *Corresponding Author: [email protected] Abstract Field study was conducted in Tendaho sugarcane plantation to identify the natural enemy of stalk borers under field condition using four commercial sugarcane varieties during 2013/14 cropping season. From 98 surveyed fields, a total of two different cotesia species were identified. the two species of natural enemy of stalk borers: Cotesia flavies and Cotesia sesamiae were recorded at Tendaho. Among these species, Cotesia flavies were the most dominant species. Among the different factors considered variety and cuttings had a significant effect on parasitism of stalk borer. Parasitism of stalk borer increased in the season. Among the different cuttings, ratoon had a significant variation in stalk borer larvae parasitism. Moreover, among the varieties, NCO334 had showed significant variation in percent parasitism of stalk borer larvae as compared to the other varieties in the plantation. as well as, in terms of percent parasitism of stalk borer larvae in the varieties B52/298, NCO334 and N14 showed no significant variation.
    [Show full text]
  • Sugarcane 1 Sugarcane
    Sugarcane 1 Sugarcane Sugarcane Cut sugar cane Scientific classification Kingdom: Plantae (unranked): Monocots (unranked): Commelinids Order: Poales Family: Poaceae Subfamily: Panicoideae Tribe: Andropogoneae Genus: Saccharum L. Selected species Sugarcane 2 Saccharum arundinaceum Saccharum barberi Saccharum bengalense Saccharum edule Saccharum munja Saccharum officinarum Saccharum procerum Saccharum ravennae Saccharum robustum Saccharum sinense Saccharum spontaneum Sugarcane, or Sugar cane, is any of six to 37 species (depending on which taxonomic system is used) of tall perennial true grasses of the genus Saccharum, tribe Andropogoneae. Native to the warm temperate to tropical regions of South Asia, they have stout jointed fibrous stalks that are rich in sugar, and measure two to six metres (6 to 19 feet) tall. All sugar cane species interbreed, and the major commercial cultivars are complex hybrids. Sugarcane belongs to the grass family (Poaceae), an economically important seed plant family that includes maize, wheat, rice, and sorghum and many forage crops. The main product of sugarcane is sucrose, which accumulates in the stalk internodes. Sucrose, extracted and purified in specialized mill factories, is used as raw material in human food industries or is fermented to produce ethanol. Ethanol is produced on a large scale by the Brazilian sugarcane industry. Sugarcane is the world's largest crop.[1] In 2010, FAO estimates it was cultivated on about 23.8 million hectares, in more than 90 countries, with a worldwide harvest of 1.69 billion tonnes. Brazil was the largest producer of sugar cane in the world. The next five major producers, in decreasing amounts of production, were India, China, Thailand, Pakistan and Mexico.
    [Show full text]
  • Biocontrol of Insect Pests of Sugarcane (Saccharum Sp
    BIOCONTROL OF INSECT PESTS OF SUGARCANE ( SACCHARUM SP .) By *Zia-ul-Hussnain, Asia Naheed and Saadia Rizwana *Shakarganj Sugar Research Institute, Jhang, PAKISTAN ABSTRACT Sugarcane ( Saccharum sp.) crop is habitat of more than 1500 species of insects in the sugar world. Amongst these borers like Scirpophaga excerptalis , Chilo infuscatellus , Emmalocera depresella , Acigona steniellus and sucking insect pest Pyrilla perpusilla are major devastators to cause considerable loss in yield and quality of the crop. In our country primary and secondary insect pests species identified were 11, while parasites and predators species were 14 in cane fields. Studies revealed that with 75 % infestation of borers, sucrose recovery was 52 % lower. Field data on infestation of Pyrilla perpusilla showed that decline in cane yield was 18%. Biocontrol of insect pest of sugarcane crop through artificial rearing of Trichogramma chilonis was initiated from 1999 and for Chrysoperla carnea from 2002 at the institute . Results of the field studies revealed that under unreleased area of Trichogramma chilonis, the infestation of borers was 11.65% and in the released area it was 2.74 %. The acreage covered with the released of the parasites was more than 50 thousands from last five years in cane growing areas of Shakarganj Mills. It was observed that under controlled conditions Chrysoperla carnea larvae predated 80% eggs of Pyrilla perpusilla . Efficiency of biocontrol of the insect pest can be improved only with integrated management practices of the crop identified, these are resistant varieties, alternate planting dates, trash blanketing of ratoon crop, early harvesting, balanced fertigation, pest-free seed cane and field monitoring.
    [Show full text]
  • Evolution of Delphacidae (Hemiptera: Fulgoroidea): Combined-Evidence Phylogenetics Reveals Importance of Grass Host Shifts
    Systematic Entomology (2010), 35, 678–691 DOI: 10.1111/j.1365-3113.2010.00539.x Evolution of Delphacidae (Hemiptera: Fulgoroidea): combined-evidence phylogenetics reveals importance of grass host shifts JULIE M. URBAN1, CHARLES R. BARTLETT2 and J A S O N R . CRYAN1 1Research and Collections, Laboratory for Conservation and Evolutionary Genetics, New York State Museum, Albany, NY, U.S.A. and 2Department of Entomology and Wildlife Ecology, University of Delaware, Newark, DE, U.S.A. Abstract. The planthopper family Delphacidae is a speciose lineage of phloem- feeding insects, with many species considered as pests of economic significance on essential world food commodities (including rice, maize, wheat, barley and sugar cane). Despite their economic importance, evolutionary relationships among delphacids, particularly those within the speciose tribe Delphacini, are largely unknown. Presented here are the results of a phylogenetic investigation of Delphacidae based on DNA nucleotide sequence data from four genetic loci (18S rDNA, 28S rDNA, wingless and cytochrome oxidase I ) and 132 coded morphological characters. The resulting topologies are used to test the higher classification of Delphacidae and to examine evolutionary patterns in host–plant associations. Our results generally support the higher classifications of Delphacidae proposed by Asche, Emeljanov and Hamilton, and suggest that the rapid diversification of the Delphacini was associated with host shifts to, and within, Poaceae, and specifically from C3 to C4 grasses. Introduction infestations in 2009 reportedly occurring in Bangladesh, China, Malaysia, Philippines, Thailand and Vietnam (Heong, 2009). The insect family Delphacidae (Hemiptera: Fulgoroidea), Within Delphacidae, 85 species are recognized as economically including approximately 2100 described species, is the most significant pests, incurring damage to approximately 25 plant speciose and economically important of the ∼20 planthopper crops (Wilson & O’Brien, 1987; Wilson, 2005).
    [Show full text]
  • As a Vector of Ramu Stunt Disease of Sugarcane in Papua New Guinea
    J. Aust. ent. SOC., 1994, 33: 185-186 I85 Preliminary Observations on Eumetopina sp. (Hemiptera: Delphacidae) as a Vector of Ramu Stunt Disease of Sugarcane in Papua New Guinea L. S. KUNIATA', G. R. YOUNG', E. PAIS', P. JONES3 and H. NAGARAJA' 'Ramu Sugar Ltd., P.O. Box 2183, Lae, Papua New Guinea. '27 Boyce St, Ryde, N.S.W. 2112. 'Plant Pathology Department, Crop Protection Division, Rothamsted Experiment Station, Harpendon, Hem AL5 2JQ, England. ABSTRACT A pot trial conducted in 1992 at Ramu Sugar Ltd., Papua New Guinea, indicated that the leafhopper Eumelopina sp. was most effective in the transmission of Rarnu stunt disease of sugarcane. Ramu stunt-like symptoms were first observed in test sugarcane plants 9-12 weeks after the introduction of infected insects. Papua New Guinea (PNG) is a centre of diversity Eurnetopina was commenced at the end of for the genus Saccharurn (Daniels and Roach February 1992. Setts were collected from 1987). Some of the diseases and insect pests of apparently healthy cane growing at Leron, commercial sugarcane (hybrids of Saccharurn spp) approximately 80 km from the disease outbreak at Ramu Sugar Limited (RSL) are still unknown at RSL. Parent material had been imported from to other sugar industries of the world (Kuniata and Australia in 1987, grown in quarantine at a Sweet 1991). In 1986, a new disease was identified Department of Agriculture and Livestock Station in sugarcane at RSL, reducing sugar production at Port Moresby, and further propagated at by at least 60% in the highly susceptible cultivar Leron. Single one-bud setts of cv.
    [Show full text]