Using Timelines to Teach History
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Geological Timeline
Geological Timeline In this pack you will find information and activities to help your class grasp the concept of geological time, just how old our planet is, and just how young we, as a species, are. Planet Earth is 4,600 million years old. We all know this is very old indeed, but big numbers like this are always difficult to get your head around. The activities in this pack will help your class to make visual representations of the age of the Earth to help them get to grips with the timescales involved. Important EvEnts In thE Earth’s hIstory 4600 mya (million years ago) – Planet Earth formed. Dust left over from the birth of the sun clumped together to form planet Earth. The other planets in our solar system were also formed in this way at about the same time. 4500 mya – Earth’s core and crust formed. Dense metals sank to the centre of the Earth and formed the core, while the outside layer cooled and solidified to form the Earth’s crust. 4400 mya – The Earth’s first oceans formed. Water vapour was released into the Earth’s atmosphere by volcanism. It then cooled, fell back down as rain, and formed the Earth’s first oceans. Some water may also have been brought to Earth by comets and asteroids. 3850 mya – The first life appeared on Earth. It was very simple single-celled organisms. Exactly how life first arose is a mystery. 1500 mya – Oxygen began to accumulate in the Earth’s atmosphere. Oxygen is made by cyanobacteria (blue-green algae) as a product of photosynthesis. -
Geology Timeline
Red Rock Canyon NCA Environmental Education Program Geology Timeline Grades: 3-12 Objective: Demonstrate the relative distance of events in Estimated Time: 15-30 minutes time Standards Met: Procedure: 3-5 grade: Lead in to topic by discussing the age of the o Science E.5.C Students earth and how long students think various things understand that features on the of the surrounding area are. Earth's surface are constantly changed by a combination of Ask a chaperone to hold one end of the yarn to slow and rapid processes. mark the beginning of the earth. Explain that the earth is 4.6 billion years old, and that you’ll be 6-8 grade: doing an activity to get a better understanding of o Science E.8.C Students the age of everything around you. understand that landforms result from a combination of Have the students walk with you to when rocks constructive and destructive first appear on earth, 12 feet from the chaperone, processes. and mark it with tape or yarn. Explain that to 9-12 grade: scale this represents 600 million years and how o Science E.12.C Students geology is measured on a much larger scale that understand evidence for we are used to looking at things. processes that take place on a geological time scale. Note: Depending on your class, it may be helpful to have the measurements pre-marked on the Materials Needed: yarn before doing activity with students. Ball of yarn or twine Method for measuring Continue on as a group to the third point, when Brightly colored tape or contrasting life begins on earth, 16 feet from the chaperone. -
The Mathematics of the Chinese, Indian, Islamic and Gregorian Calendars
Heavenly Mathematics: The Mathematics of the Chinese, Indian, Islamic and Gregorian Calendars Helmer Aslaksen Department of Mathematics National University of Singapore [email protected] www.math.nus.edu.sg/aslaksen/ www.chinesecalendar.net 1 Public Holidays There are 11 public holidays in Singapore. Three of them are secular. 1. New Year’s Day 2. Labour Day 3. National Day The remaining eight cultural, racial or reli- gious holidays consist of two Chinese, two Muslim, two Indian and two Christian. 2 Cultural, Racial or Religious Holidays 1. Chinese New Year and day after 2. Good Friday 3. Vesak Day 4. Deepavali 5. Christmas Day 6. Hari Raya Puasa 7. Hari Raya Haji Listed in order, except for the Muslim hol- idays, which can occur anytime during the year. Christmas Day falls on a fixed date, but all the others move. 3 A Quick Course in Astronomy The Earth revolves counterclockwise around the Sun in an elliptical orbit. The Earth ro- tates counterclockwise around an axis that is tilted 23.5 degrees. March equinox June December solstice solstice September equinox E E N S N S W W June equi Dec June equi Dec sol sol sol sol Beijing Singapore In the northern hemisphere, the day will be longest at the June solstice and shortest at the December solstice. At the two equinoxes day and night will be equally long. The equi- noxes and solstices are called the seasonal markers. 4 The Year The tropical year (or solar year) is the time from one March equinox to the next. The mean value is 365.2422 days. -
Critical Analysis of Article "21 Reasons to Believe the Earth Is Young" by Jeff Miller
1 Critical analysis of article "21 Reasons to Believe the Earth is Young" by Jeff Miller Lorence G. Collins [email protected] Ken Woglemuth [email protected] January 7, 2019 Introduction The article by Dr. Jeff Miller can be accessed at the following link: http://apologeticspress.org/APContent.aspx?category=9&article=5641 and is an article published by Apologetic Press, v. 39, n.1, 2018. The problems start with the Article In Brief in the boxed paragraph, and with the very first sentence. The Bible does not give an age of the Earth of 6,000 to 10,000 years, or even imply − this is added to Scripture by Dr. Miller and other young-Earth creationists. R. C. Sproul was one of evangelicalism's outstanding theologians, and he stated point blank at the Legionier Conference panel discussion that he does not know how old the Earth is, and the Bible does not inform us. When there has been some apparent conflict, either the theologians or the scientists are wrong, because God is the Author of the Bible and His handiwork is in general revelation. In the days of Copernicus and Galileo, the theologians were wrong. Today we do not know of anyone who believes that the Earth is the center of the universe. 2 The last sentence of this "Article In Brief" is boldly false. There is almost no credible evidence from paleontology, geology, astrophysics, or geophysics that refutes deep time. Dr. Miller states: "The age of the Earth, according to naturalists and old- Earth advocates, is 4.5 billion years. -
Geologic Timeline
SCIENCE IN THE PARK: GEOLOGY GEOLOGIC TIME SCALE ANALOGY PURPOSE: To show students the order of events and time periods in geologic time and the order of events and ages of the physiographic provinces in Virginia. BACKGROUND: Exact dates for events change as scientists explore geologic time. Dates vary from resource to resource and may not be the same as the dates that appear in your text book. Analogies for geologic time: a 24 hour clock or a yearly calendar. Have students or groups of students come up with their own original analogy. Before you assign this activity, you may want to try it, depending on the age of the student, level of the class, or time constraints, you may want to leave out the events that have a date of less than 1 million years. ! Review conversions in the metric system before you begin this activity ! References L.S. Fichter, 1991 (1997) http://csmres.jmu.edu/geollab/vageol/vahist/images/Vahistry.PDF http://pubs.usgs.gov/gip/geotime/age.html Wicander, Reed. Historical Geology. Fourth Edition. Toronto, Ontario: Brooks/Cole, 2004. Print. VIRGINIA STANDARDS OF LEARNING ES.10 The student will investigate and understand that many aspects of the history and evolution of the Earth can be inferred by studying rocks and fossils. Key concepts include: relative and absolute dating; rocks and fossils from many different geologic periods and epochs are found in Virginia. Developed by C.P. Anderson Page 1 SCIENCE IN THE PARK: GEOLOGY Building a Geologic Time Scale Time: Materials Meter stick, 5 cm adding machine tape, pencil, colored pencils Procedure 1. -
Geochronology Database for Central Colorado
Geochronology Database for Central Colorado Data Series 489 U.S. Department of the Interior U.S. Geological Survey Geochronology Database for Central Colorado By T.L. Klein, K.V. Evans, and E.H. DeWitt Data Series 489 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior KEN SALAZAR, Secretary U.S. Geological Survey Marcia K. McNutt, Director U.S. Geological Survey, Reston, Virginia: 2010 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment, visit http://www.usgs.gov or call 1-888-ASK-USGS For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod To order this and other USGS information products, visit http://store.usgs.gov Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report. Suggested citation: T.L. Klein, K.V. Evans, and E.H. DeWitt, 2009, Geochronology database for central Colorado: U.S. Geological Survey Data Series 489, 13 p. iii Contents Abstract ...........................................................................................................................................................1 Introduction.....................................................................................................................................................1 -
The Calendars of India
The Calendars of India By Vinod K. Mishra, Ph.D. 1 Preface. 4 1. Introduction 5 2. Basic Astronomy behind the Calendars 8 2.1 Different Kinds of Days 8 2.2 Different Kinds of Months 9 2.2.1 Synodic Month 9 2.2.2 Sidereal Month 11 2.2.3 Anomalistic Month 12 2.2.4 Draconic Month 13 2.2.5 Tropical Month 15 2.2.6 Other Lunar Periodicities 15 2.3 Different Kinds of Years 16 2.3.1 Lunar Year 17 2.3.2 Tropical Year 18 2.3.3 Siderial Year 19 2.3.4 Anomalistic Year 19 2.4 Precession of Equinoxes 19 2.5 Nutation 21 2.6 Planetary Motions 22 3. Types of Calendars 22 3.1 Lunar Calendar: Structure 23 3.2 Lunar Calendar: Example 24 3.3 Solar Calendar: Structure 26 3.4 Solar Calendar: Examples 27 3.4.1 Julian Calendar 27 3.4.2 Gregorian Calendar 28 3.4.3 Pre-Islamic Egyptian Calendar 30 3.4.4 Iranian Calendar 31 3.5 Lunisolar calendars: Structure 32 3.5.1 Method of Cycles 32 3.5.2 Improvements over Metonic Cycle 34 3.5.3 A Mathematical Model for Intercalation 34 3.5.3 Intercalation in India 35 3.6 Lunisolar Calendars: Examples 36 3.6.1 Chinese Lunisolar Year 36 3.6.2 Pre-Christian Greek Lunisolar Year 37 3.6.3 Jewish Lunisolar Year 38 3.7 Non-Astronomical Calendars 38 4. Indian Calendars 42 4.1 Traditional (Siderial Solar) 42 4.2 National Reformed (Tropical Solar) 49 4.3 The Nānakshāhī Calendar (Tropical Solar) 51 4.5 Traditional Lunisolar Year 52 4.5 Traditional Lunisolar Year (vaisnava) 58 5. -
1St Term Worksheet Subject – Social Studies Class – IV Name : Sec
1 (iv) so.std. 1st Term Worksheet Subject – Social Studies Class – IV Name : Sec. : Chapter – 2 [Calendar and Timeline] [Stop to answer] [A] Name the months of the Gregorian calendar. [21] _________________________________________________________________________________________ _________________________________________________________________________________________ _________________________________________________________________________________________ _________________________________________________________________________________________ [New words] BC: ________________________________________________________________________________________ AD: ________________________________________________________________________________________ BCE: _________________________________________________________________________________________ CE: _________________________________________________________________________________________ [Exercises] [A] Write true or false: [22] 1. We need a calendar to organise our lives in a better way. ____________ 2. Saka calendar is also known as the Christian calendar. ____________ 3. The birth year of Jesus was taken as zero. ____________ 4. Saka calendar has 365 days in a leap year. ____________ 5. Gregorian calendar came into use in 1582. ____________ [B] Fill in the blanks: [22] 1. We mark the important _____________________, _____________________ and festivals on a calendar. 2. _____________________ calendar was started by Pope Gregory XIII. 3. _____________________ is the official civil calendar used in India. -
Late Neogene Chronology: New Perspectives in High-Resolution Stratigraphy
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Columbia University Academic Commons Late Neogene chronology: New perspectives in high-resolution stratigraphy W. A. Berggren Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543 F. J. Hilgen Institute of Earth Sciences, Utrecht University, Budapestlaan 4, 3584 CD Utrecht, The Netherlands C. G. Langereis } D. V. Kent Lamont-Doherty Earth Observatory of Columbia University, Palisades, New York 10964 J. D. Obradovich Isotope Geology Branch, U.S. Geological Survey, Denver, Colorado 80225 Isabella Raffi Facolta di Scienze MM.FF.NN, Universita ‘‘G. D’Annunzio’’, ‘‘Chieti’’, Italy M. E. Raymo Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 N. J. Shackleton Godwin Laboratory of Quaternary Research, Free School Lane, Cambridge University, Cambridge CB2 3RS, United Kingdom ABSTRACT (Calabria, Italy), is located near the top of working group with the task of investigat- the Olduvai (C2n) Magnetic Polarity Sub- ing and resolving the age disagreements in We present an integrated geochronology chronozone with an estimated age of 1.81 the then-nascent late Neogene chronologic for late Neogene time (Pliocene, Pleisto- Ma. The 13 calcareous nannoplankton schemes being developed by means of as- cene, and Holocene Epochs) based on an and 48 planktonic foraminiferal datum tronomical/climatic proxies (Hilgen, 1987; analysis of data from stable isotopes, mag- events for the Pliocene, and 12 calcareous Hilgen and Langereis, 1988, 1989; Shackle- netostratigraphy, radiochronology, and cal- nannoplankton and 10 planktonic foram- ton et al., 1990) and the classical radiometric careous plankton biostratigraphy. -
A TIMELINE for GOLDEN, COLORADO (Revised October 2003)
A TIMELINE FOR GOLDEN, COLORADO (Revised October 2003) "When a society or a civilization perishes, one condition can always be found. They forgot where they came from." Carl Sandburg This time-line was originally created by the Golden Historic Preservation Board for the 1995 Golden community meetings concerning growth. It is intended to illustrate some of the events and thoughts that helped shape Golden. Major historical events and common day-to-day happenings that influenced the lives of the people of Golden are included. Corrections, additions, and suggestions are welcome and may be relayed to either the Historic Preservation Board or the Planning Department at 384-8097. The information concerning events in Golden was gathered from a variety of sources. Among those used were: • The Colorado Transcript • The Golden Transcript • The Rocky Mountain News • The Denver Post State of Colorado Web pages, in particular the Colorado State Archives The League of Women Voters annual reports Golden, The 19th Century: A Colorado Chronicle. Lorraine Wagenbach and Jo Ann Thistlewood. Harbinger House, Littleton, 1987 The Shining Mountains. Georgina Brown. B & B Printers, Gunnison. 1976 The 1989 Survey of Historic Buildings in Downtown Golden. R. Laurie Simmons and Christine Whitacre, Front Range Research Associates, Inc. Report on file at the City of Golden Planning and Development Department. Survey of Golden Historic Buildings. by R. Laurie Simmons and Christine Whitacre, Front Range Research Associates, Inc. Report on file at the City of Golden Planning and Development Department. Golden Survey of Historic Buildings, 1991. R. Laurie Simmons and Thomas H. Simmons. Front Range Research Associates, Inc. -
Internet Use Timeline Calendar Instructions
INTERNET USE TIMELINE CALENDAR INSTRUCTIONS To help us evaluate your Internet use for purposes other than work or school, we need to get an idea of what your Internet use was like in the past ____ days. To do this, we would like you to fill out the attached calendar. Filling out the calendar is not hard! Try to be as accurate as possible. We recognize you won’t have perfect recall. That’s OKAY. WHAT TO FILL IN The idea is to put a number in for each day on the calendar. On days when you did not use the Internet other than for work or school, you should write a ”0”. On days when you did use the Internet other than for work or school, you should write in the total number of hours you think you were online. We want you to record your Internet use on the calendar using hours, rounded to the closest half hour. For example, if you think you were online from 4 pm to 9:40 pm, put “4.5” on the calendar for 4 and one half hours. It’s important that something is written for every day, even if it is a “0”. YOUR BEST ESTIMATE We realize it isn’t easy to recall things with 100% accuracy. If you are not sure whether you were online for 2 or for 3 hours or if you weren’t sure whether you were online on a Thursday or a Friday, give it your best guess! What is important is that 1 or 2 hours is very different from 7 or 8 hours. -
60-Day Calendar Timeline Chart
60-DAY CALENDAR TIMELINE CHART Assessments to be conducted and IEP meetings to be held within 60 days of the Request for Assessment being signed. (Calendar does not reflect school breaks for holidays.) JAN FEB FEB MAR MAR APR APR MAY MAY JULY Jan 1 = Mar 2 Feb 7 = Apr 8 Mar 15 = May 14 Apr 21 = Jun 20 May 28 = Jul 27 Jan 2 = Mar 3 Feb 8 = Apr 9 Mar 16 = May 15 Apr 22 = Jun 21 May 29 = Jul 28 Jan 3 = Mar 4 Feb 9 = Apr 10 Mar 17 = May 16 Apr 23 = Jun 22 May 30 = Jul 29 Jan 4 = Mar 5 Feb 10 = Apr 11 Mar 18 = May 17 Apr 24 = Jun 23 May 31 = Jul 30 Jan 5 = Mar 6 Feb 11 = Apr 12 Mar 19 = May 18 Apr 25 = Jun 24 Jun 1 = Jul 31 Jan 6 = Mar 7 Feb 12 = Apr 13 Mar 20 = May 19 Apr 26 = Jun 25 Jun 2 = Aug 1 Jan 7 = Mar 8 Feb 13 = Apr 14 Mar 21 = May 20 Apr 27 = Jun 26 Jun 3 = Aug 2 Jan 8 = Mar 9 Feb 14 = Apr 15 Mar 22 = May 21 Apr 28 = Jun 27 Jun 4 = Aug 3 Jan 9 = Mar 10 Feb 15 = Apr 16 Mar 23 = May 22 Apr 29 = Jun 28 Jun 5 = Aug 4 Jan 10 = Mar 11 Feb 16 = Apr 17 Mar 24 = May 23 Apr 30 = Jun 29 Jun 6 = Aug 5 Jan 11 = Mar 12 Feb 17 = Apr 18 Mar 25 = May 24 May 1 = Jun 30 Jun 7 = Aug 6 Jan 12 = Mar 13 Feb 18 = Apr 19 Mar 26 = May 25 May 2 = Jul 1 Jun 8 = Aug 7 Jan 13 = Mar 14 Feb 19 = Apr 20 Mar 27 = May 26 May 3 = Jul 2 Jun 9 = Aug 8 Jan 14 = Mar 15 Feb 20 = Apr 21 Mar 28 = May 27 May 4 = Jul 3 Jun 10 = Aug 9 Jan 15 = Mar 16 Feb 21 = Apr 22 Mar 29 = May 28 May 5 = Jul 4 Jun 11 = Aug 10 Jan 16 = Mar 17 Feb 22 = Apr 23 Mar 30 = May 29 May 6 = Jul 5 Jun 12 = Aug 11 Jan 17 = Mar 18 Feb 23 = Apr 24 Mar 31 = May 30 May 7 = Jul 6 Jun 13 = Aug 12 Jan 18 = Mar