Reproductive Biology of the Green Ground Snake Erythrolamprus Poecilogyrus Sublineatus (Serpentes: Dipsadidae) in Subtropical Brazil

Total Page:16

File Type:pdf, Size:1020Kb

Reproductive Biology of the Green Ground Snake Erythrolamprus Poecilogyrus Sublineatus (Serpentes: Dipsadidae) in Subtropical Brazil Anais da Academia Brasileira de Ciências (2017) 89(3 Suppl.): 2189-2197 (Annals of the Brazilian Academy of Sciences) Printed version ISSN 0001-3765 / Online version ISSN 1678-2690 http://dx.doi.org/10.1590/0001-3765201720160805 www.scielo.br/aabc | www.fb.com/aabcjournal Reproductive biology of the Green Ground Snake Erythrolamprus poecilogyrus sublineatus (Serpentes: Dipsadidae) in Subtropical Brazil FERNANDO M. QUINTELA¹, WILIAM C. MARQUES² and DANIEL LOEBMANN¹ ¹Laboratório de Vertebrados, Universidade Federal do Rio Grande, Av. Itália, Km 8, 96203-900 Rio Grande, RS, Brazil ²Instituto de Matemática, Estatística e Física, Universidade Federal do Rio Grande, Av. Itália, Km 8, 96203-900 Rio Grande, RS, Brazil Manuscript received on November 28, 2016; accepted for publication on February 20, 2017 ABSTRACT We investigated reproductive features of the dipsadid snake Erythrolamprus poecilogyrus sublineatus in the southernmost Brazilian coast, a subtropical region characterized by well-marked seasons. Females are significantly smaller than males, have a shorter tail, and reach sexual maturity at later times along their development. In contrast to tropical subspecies, E. p. sublineatus females presented a seasonal pattern, with secondary follicles occurring from late winter to early autumn and egg production restricted to the whole spring and early summer. Males presented seasonal variation in testes volume (increase in autumn and decrease in winter) while no significant seasonal variation was found in ductus deferens width. The number of oviductal eggs varied from two to nine, thus, real fecundity is also inferior than that observed in tropical E. poecilogyrus forms. Considering the thermal requirements for reproduction, it is possible that the colder climatic conditions of the southern Brazilian coast have shaped the seasonal reproductive pattern in E. p. sublineatus. The shorter body size of this subspecies may also represent a conditioning factor of low fecundity. Key words: Ecology, neotropics, Pampa Biome, reproduction, Squamata. INTRODUCTION reproductive cycles (Seigel and Ford 1987, Barros et al. 2012, 2014), investigations on species distributed Several studies on the reproductive biology of over more than one single morphoclimatic domain Neotropical snakes have demonstrated a great have revealed marked geographic divergences variety of spatial/temporal patterns, many of which on reproduction traits which were attributed to are strongly influenced by environmental factors climatic dissimilarities between the areas occupied (Vitt 1983, Pizzato and Marques 2006, Pizzato et by the examined populations (Pizzato and Marques al. 2007, 2008a, Marques et al. 2009, Siqueira et al. 2006, Leite et al. 2009, Siqueira et al. 2013). 2013, Loebens et al. 2016). Although phylogenetic Erythrolamprus poecilogyrus is a small-sized relationships are a recognized determinant of anurophagous dipsadid widely distributed in South Correspondence to: Fernando Marques Quintela America, from Venezuela and the Guyana to central E-mail: [email protected] Argentina (Dixon and Markezich 1992, Giraudo An Acad Bras Cienc (2017) 89 (3 Suppl.) 2190 FERNANDO M. QUINTELA et al. 2001). Currently, four subspecies are recognized: Rio Grande, Brazil (Appendix). All procedures the nominal E. p. poecilogyrus, restricted to adopted are in accordance with the institutional Atlantic Forest domains in the southeastern Brazil; committee on ethics in the use of animals for E. p. caesius, associated to Chaquean formations research. The study area is inserted in the Pampa in Bolivia, Paraguay and northern Argentina; E. p. biome (IBGE 2004) and comprises the climate types schotti, the most widespread subspecies, occurring “subtemperate humid” and “temperate humid” from Venezuela to Corrientes and Misiones according to the regional classification proposed provinces of Argentina; E. p. sublineatus, restricted by Maluf (2000). Seasons are well-defined and to the subtropical region of Rio Grande do Sul, in rainfall is concentrated mainly in the months of southernmost Brazil, up to Uruguay, Northeastern winter and spring (Vieira 1984). Monthly average and Central Argentina (Dixon and Markezich 1992, (grouped months) profiles of air temperatures and Giraudo 2001). fluvial discharge (spatial rainfall average estimates) Reproductive features are scarcely investigated measured throughout the sampling period (January in Erythrolamprus poecilogyrus. It is known that 2009-August 2016) in the study area are shown in Erythrolamprus p. poecilogyrus from the tropical Figure 1. Atlantic Forest shows a continuous pattern of Snout-vent length (SVL) and tail length (TL) vitellogenic development, which was attributed were measured in each specimen and a ventral to an abundance of anurans during the whole year incision was made from the middle of the body in the studied region (Pinto and Fernandes 2004). to around 5 mm above the cloaca. After sex A smaller sample of E. p. schotti from the semi- confirmation, the significance of differences in arid biome of Caatinga also revealed a continuous SVL values and in tail proportion in relation to pattern, likewise associated to anuran abundance body length (ratio TL/SVL) between adult males (Vitt 1983). Herein, we investigated the reproductive (n=125) and females (n=99) was examined with a biology of the southernmost distributed subspecies t test. The following data were obtained from E. p. sublineatus, restricted to humid subtemperate/ females: total number of ovarian follicles, number temperate domains (Dixon and Markezich 1992). of follicles in secondary vitellogenesis (secondary We examined the reproductive cycle, fecundity, follicles), diameter of the largest secondary follicle, sexual dimorphism and size at sexual maturity of total number of eggs, diameter of the largest egg. specimens from the southernmost Brazilian coast, The initial diameter of secondary follicles was and compared such data with the previous studies determined based on the scatterplot of the largest on the reproductive biology of E. poecilogyrus. follicles of all specimens (Almeida-Santos et al. MATERIALS AND METHODS 2014), which indicated a pronounced growth from 10 mm. In recently fixed specimens, follicles with We examined 283 specimens of Erythrolamprus diameters around 10 mm or greater differed from poecilogyrus sublineatus collected between smaller follicles due to the dark yellow coloration January 2009 and August 2016 along a stretch of (see Almeida-Santos et al. 2014). Thus, follicles approximately 450 km of coastal plain in the Rio with diameter equal or over 10 mm were considered Grande do Sul state (30º15’S, 50º29’W – 33º38’S, as in secondary vitellogenesis. Females were 53º17’W), in southernmost Brazil. All specimens considered mature when showing at least one of are deposited in the herpetological collection of the following characteristics: secondary follicles; Universidade Federal do Rio Grande (CHFURG), oviductal eggs; fold oviducts, an indicative of recent An Acad Bras Cienc (2017) 89 (3 Suppl.) Erythrolamprus p. sublineatus REPRODUCTION 2191 Figure 1 - Monthly average (grouped months) profiles of air temperatures (dashed line) and fluvial discharge (spatial rainfall average estimates; straight line) in the southernmost Brazilian coast throughout the sampling period of this study (January 2009-August 2016). oviposition (Mesquita et al. 2013). The female ellipsoid formula 4/3 π (a/2) x (b/2) x (c/2), where a reproductive cycle was characterized by analyses of = length, b = width and c = thickness (Pleguezuelos the distribution of females with secondary follicles and Feriche 1999, Rojas et al. 2013). Values of testes and/or oviductal eggs along the months of the year volume and distal ductus deferens of mature males and from analyses of the annual profile resultant (n=111) were submitted to statistical analysis. We from the plot of the largest follicules/eggs of each first examined the correlation between SVL and female (Mesquita et al. 2013, Almeida-Santos et al. the testes/ductus deferens variables. Since positive 2014). Fecundity was determined by the number of and moderate correlation was found between SVL eggs in the oviduct (real fecundity) and number of and both variables (SVL/testes volume: r= 0.412, secondary follicles (potential fecundity) (Mesquita p< 0.05; SVL/ductus deferens width: r= 0.414, p< et al. 2013). We examined the relationship between 0.05), we examined the occurrence of significant female SVL and fecundity parameters (real seasonal variation in the residuals generated by fecundity and potential fecundity) through a simple the linear regressions of testes volume and SVL linear regression analysis (Siqueira et al. 2013). and distal ductus deferens width and SVL through Males were considered mature when presenting an analysis of variance (ANOVA). This procedure coiled and opaque ductus deferens, indicating the aimed to remove the effect of the specimens’ body presence of sperm (Shine 1977, Almeida-Santos size on the seasonal variation of testes/ductus et al. 2014). The following measures were taken deferens dimensions (Pleguezuelos and Feriche from males: length, width and thickness of the right 1999). Samples were grouped by seasons as testis; width of the distal portion of the right ductus follows: summer (January-March), autumn (April- deferens (between the kidney and the cloaca). June), winter (July-September), spring (October- Volume of the right testis was calculated by the December). Next, aiming to identify the season(s)
Recommended publications
  • Why Do Most Tropical Animals Reproduce Seasonally? Testing Hypotheses on an Australian Snake
    Ecology, 87(1), 2006, pp. 133±143 q 2006 by the Ecological Society of America WHY DO MOST TROPICAL ANIMALS REPRODUCE SEASONALLY? TESTING HYPOTHESES ON AN AUSTRALIAN SNAKE G. P. BROWN AND R. SHINE1 Biological Sciences A08, University of Sydney, New South Wales 2006 Australia Abstract. Most species reproduce seasonally, even in the tropics where activity occurs year-round. Squamate reptiles provide ideal model organisms to clarify the ultimate (adap- tive) reasons for the restriction of reproduction to speci®c times of year. Females of almost all temperate-zone reptile species produce their eggs or offspring in the warmest time of the year, thereby synchronizing embryogenesis with high ambient temperatures. However, although tropical reptiles are freed from this thermal constraint, most do not reproduce year-round. Seasonal reproduction in tropical reptiles might be driven by biotic factors (e.g., peak periods of predation on eggs or hatchlings, or food for hatchlings) or abiotic factors (e.g., seasonal availability of suitably moist incubation conditions). Keelback snakes (Tropidonophis mairii, Colubridae) in tropical Australia reproduce from April to November, but with a major peak in May±June. Our ®eld studies falsify hypotheses that invoke biotic factors as explanations for this pattern: the timing of nesting does not minimize predation on eggs, nor maximize food availability or survival rates for hatchlings. Instead, our data implicate abiotic factors: female keelbacks nest most intensely soon after the cessation of monsoonal rains when soils are moist enough to sustain optimal embryogenesis (wetter nests produce larger hatchlings, that are more likely to survive) but are unlikely to become waterlogged (which is lethal to eggs).
    [Show full text]
  • HERPETOLOGICAL BULLETIN Number 106 – Winter 2008
    The HERPETOLOGICAL BULLETIN Number 106 – Winter 2008 PUBLISHED BY THE BRITISH HERPETOLOGICAL SOCIETY THE HERPETOLOGICAL BULLETIN Contents RESEA R CH AR TICLES Use of transponders in the post-release monitoring of translocated spiny-tailed lizards (Uromastyx aegyptia microlepis) in Abu Dhabi Emirate, United Arab Emirates Pritpal S. Soorae, Judith Howlett and Jamie Samour .......................... 1 Gastrointestinal helminths of three species of Dicrodon (Squamata: Teiidae) from Peru Stephen R. Goldberg and Charles R. Bursey ..................................... 4 Notes on the Natural History of the eublepharid Gecko Hemitheconyx caudicinctus in northwestern Ghana Stephen Spawls ........................................................ 7 Significant range extension for the Central American Colubrid snake Ninia pavimentata (Bocourt 1883) Josiah H. Townsend, J. Micheal Butler, Larry David Wilson, Lorraine P. Ketzler, John Slapcinsky and Nathaniel M. Stewart ..................................... 15 Predation on Italian Newt larva, Lissotriton italicus (Amphibia, Caudata, Salamandridae), by Agabus bipustulatus (Insecta, Coleoptera, Dytiscidae) Luigi Corsetti and Gianluca Nardi........................................ 18 Behaviour, Time Management, and Foraging Modes of a West Indian Racer, Alsophis sibonius Lauren A. White, Peter J. Muelleman, Robert W. Henderson and Robert Powell . 20 Communal egg-laying and nest-sites of the Goo-Eater, Sibynomorphus mikanii (Colubridae, Dipsadinae) in southeastern Brazil Henrique B. P. Braz, Francisco L. Franco
    [Show full text]
  • Khalladi-Bpp Anexes-Arabic.Pdf
    Khalladi Windfarm and Power Line Projects Biodiversity Protection Plan, July 2015 107 Khalladi Windfarm and Power Line Projects Biodiversity Protection Plan, July 2015 108 Khalladi Windfarm and Power Line Projects Biodiversity Protection Plan, July 2015 109 Khalladi Windfarm and Power Line Projects Biodiversity Protection Plan, July 2015 110 Khalladi Windfarm and Power Line Projects Biodiversity Protection Plan, July 2015 111 Khalladi Windfarm and Power Line Projects Biodiversity Protection Plan, July 2015 112 Khalladi Windfarm and Power Line Projects Biodiversity Protection Plan, July 2015 113 The IUCN Red List Categories and Criteria are intended to be an easily and widely understood system for classifying species at high risk of global extinction. The IUCN Red List is categorized in the following Categories: • Extinct (EX): A taxon is Extinct when there is no reasonable doubt that the last individual has died. A taxon is presumed Extinct when exhaustive surveys in known and/or expected habitat, at appropriate times (diurnal, seasonal, annual), throughout its historic range have failed to record an individual. Surveys should be over a time frame appropriate to the taxon’s life cycle and life form. Khalladi Windfarm and Power Line Projects 114 Biodiversity Protection Plan, July 2015 • Extinct in the Wild (EW): A taxon is Extinct in the Wild when it is known only to survive in cultivation, in captivity or as a naturalized population (or populations) well outside the past range. A taxon is presumed Extinct in the Wild when exhaustive surveys in known and/or expected habitat, at appropriate times (diurnal, seasonal, annual), throughout its historic range have failed to record an individual.
    [Show full text]
  • B I R D W a T C H I N G •
    18 . F UENTE DE PIEDRA - CAMPILLOS STAGE18 E S N O 158 BIRDWATCHING • GR-249 Great Path of Malaga F UENTE DE PIEDRA - CAMPILLOS 18 . STAGE 18 Fuente de Piedra - Campillos L O C A T I O N he José Antonio Valverde Visitor´s Centre at the TReserva Natural de la Laguna de Fuente de Piedra is the starting point of Stage 18. Taking the direction south around the taken up mainly by olive trees and grain. eastern side of the salt water lagoon This type of environment will continue to you will be walking through farmland the end of this stage and it determines until the end of this stage in Campillos the species of birds which can be seen village. The 15, 7 km of Stage 18 will here. You will be crossing a stream and allow you to discover this wetland well then walking along the two lakes which known at national level in Spain, and will make your Stage 18 bird list fill cultivated farmland which creates a up with highly desirable species. The steppe-like environment. combination of wetland and steppe creates very valuable habitats with DESCRIPTION a rare composition of taxa unique at European level. ABOUT THE BIRDLIFE: Stage 18 begins at the northern tip HIGHLIGHTED SPECIES of the lagoon where you take direction Neither the length, diffi culty level or south through agricultural environment, elevation gain of this stage is particularly DID YOU KNOW? ecilio Garcia de la Leña, in Conversation 9th of “Historical Conversations of Malaga” published by Cristóbal Medina Conde (1726-1798) and entitled «About Animal Kingdom of Malaga and some Places in its Bishopric», Ccomments: «…In some lagoons, along sea shores and river banks some large and beautiful birds breed, called Flamingos and Phoenicopteros according to the ancients...», after a description of the bird´s anatomy he adds: «The Romans appreciated the bird greatly, especially its tongue which was served as an exquisite dish…».
    [Show full text]
  • Maternal Nest-Site Choice and Offspring Fitness in a Tropical Snake (Tropidonophis Mairii, Colubridae)
    Ecology, 85(6), 2004, pp. 1627±1634 q 2004 by the Ecological Society of America MATERNAL NEST-SITE CHOICE AND OFFSPRING FITNESS IN A TROPICAL SNAKE (TROPIDONOPHIS MAIRII, COLUBRIDAE) G. P. BROWN AND R. SHINE1 Biological Sciences A08, University of Sydney, NSW 2006 Australia Abstract. Do reproducing female reptiles adaptively manipulate phenotypic traits of their offspring by selecting appropriate nest sites? Evidence to support this hypothesis is indirect, mostly involving the distinctive characteristics of used (vs. available) nest sites, and the fact that physical conditions during egg incubation can modify hatchling phenotypic traits that plausibly might in¯uence ®tness. Such data fall well short of demonstrating that nesting females actively select from among potential sites based on cues that predict ®tness- determining phenotypic modi®cations of their offspring. We provide such data from ex- perimental studies on a small oviparous snake (the keelback, Tropidonophis mairii) from the wet-dry tropics of Australia. When presented with a choice of alternative nesting sites, egg-laying females selected more moist substrates for egg deposition. Incubation on wetter substrates signi®cantly increased body size at hatching, a trait under strong positive selection in this population (based on mark±recapture studies of free-ranging hatchlings). Remark- ably, the hydric conditions experienced by an egg in the ®rst few hours after it was laid substantially affected phenotypic traits (notably, muscular strength) of the hatchling that emerged from that egg 10 weeks later. Thus, our data provide empirical support for the hypothesis that nesting female reptiles manipulate the phenotypic traits of their offspring through nest-site selection, in ways that enhance offspring ®tness.
    [Show full text]
  • Tail Breakage and Predatory Pressure Upon Two Invasive Snakes (Serpentes: Colubridae) at Two Islands in the Western Mediterranean
    Canadian Journal of Zoology Tail breakage and predatory pressure upon two invasive snakes (Serpentes: Colubridae) at two islands in the Western Mediterranean Journal: Canadian Journal of Zoology Manuscript ID cjz-2020-0261.R2 Manuscript Type: Article Date Submitted by the 17-Jan-2021 Author: Complete List of Authors: Febrer-Serra, Maria; University of the Balearic Islands Lassnig, Nil; University of the Balearic Islands Colomar, Victor; Consorci per a la Recuperació de la Fauna de les Illes Balears Draft Sureda Gomila, Antoni; University of the Balearic Islands; Carlos III Health Institute, CIBEROBC Pinya Fernández, Samuel; University of the Balearic Islands, Biology Is your manuscript invited for consideration in a Special Not applicable (regular submission) Issue?: Zamenis scalaris, Hemorrhois hippocrepis, invasive snakes, predatory Keyword: pressure, Balearic Islands, frequency of tail breakage © The Author(s) or their Institution(s) Page 1 of 34 Canadian Journal of Zoology 1 Tail breakage and predatory pressure upon two invasive snakes (Serpentes: 2 Colubridae) at two islands in the Western Mediterranean 3 4 M. Febrer-Serra, N. Lassnig, V. Colomar, A. Sureda, S. Pinya* 5 6 M. Febrer-Serra. Interdisciplinary Ecology Group. University of the Balearic Islands, 7 Ctra. Valldemossa km 7.5, 07122 Palma, Balearic Islands, Spain. E-mail address: 8 [email protected]. 9 N. Lassnig. Interdisciplinary Ecology Group. University of the Balearic Islands, Ctra. 10 Valldemossa km 7.5, 07122 Palma, Balearic Islands, Spain. E-mail address: 11 [email protected]. 12 V. Colomar. Consortium for the RecoveryDraft of Fauna of the Balearic Islands (COFIB). 13 Government of the Balearic Islands, Spain.
    [Show full text]
  • Adapting to an Invasive Species: Toxic Cane Toads Induce Morphological Change in Australian Snakes
    Adapting to an invasive species: Toxic cane toads induce morphological change in Australian snakes Ben L. Phillips* and Richard Shine School of Biological Sciences A08, University of Sydney, New South Wales 2006, Australia Edited by David B. Wake, University of California, Berkeley, CA, and approved October 27, 2004 (received for review August 31, 2004) The arrival of invasive species can devastate natural ecosystems, much less research has been conducted on counteradaptations but the long-term effects of invasion are less clear. If native by native species (17, 18). organisms can adapt to the presence of the invader, the severity of Many species of Australian snake have been severely impacted impact will decline with time. In Australia, invasive cane toads by the invasion of highly toxic cane toads (Bufo marinus), a (Bufo marinus) are highly toxic to most snakes that attempt to eat conservation problem that also offers an ideal situation to them. Because snakes are gape-limited predators with strong explore the possibility of an adaptive response by natives to an negative allometry for head size, maximum relative prey mass (and invader. Cane toads were introduced into Australia in 1935. thus, the probability of eating a toad large enough to be fatal) Since then, they have spread throughout large areas of Queens- decreases with an increase in snake body size. Thus, the arrival of land and have entered the Northern Territory and New South Ϸ 2 toads should exert selection on snake morphology, favoring an Wales, currently occupying a range of 1 million km (19). The ecological impact of toads on the native fauna has been poorly increase in mean body size and a decrease in relative head size.
    [Show full text]
  • Contents Herpetological Journal
    British Herpetological Society Herpetological Journal Volume 31, Number 3, 2021 Contents Full papers Killing them softly: a review on snake translocation and an Australian case study 118-131 Jari Cornelis, Tom Parkin & Philip W. Bateman Potential distribution of the endemic Short-tailed ground agama Calotes minor (Hardwicke & Gray, 132-141 1827) in drylands of the Indian sub-continent Ashish Kumar Jangid, Gandla Chethan Kumar, Chandra Prakash Singh & Monika Böhm Repeated use of high risk nesting areas in the European whip snake, Hierophis viridiflavus 142-150 Xavier Bonnet, Jean-Marie Ballouard, Gopal Billy & Roger Meek The Herpetological Journal is published quarterly by Reproductive characteristics, diet composition and fat reserves of nose-horned vipers (Vipera 151-161 the British Herpetological Society and is issued free to ammodytes) members. Articles are listed in Current Awareness in Marko Anđelković, Sonja Nikolić & Ljiljana Tomović Biological Sciences, Current Contents, Science Citation Index and Zoological Record. Applications to purchase New evidence for distinctiveness of the island-endemic Príncipe giant tree frog (Arthroleptidae: 162-169 copies and/or for details of membership should be made Leptopelis palmatus) to the Hon. Secretary, British Herpetological Society, The Kyle E. Jaynes, Edward A. Myers, Robert C. Drewes & Rayna C. Bell Zoological Society of London, Regent’s Park, London, NW1 4RY, UK. Instructions to authors are printed inside the Description of the tadpole of Cruziohyla calcarifer (Boulenger, 1902) (Amphibia, Anura, 170-176 back cover. All contributions should be addressed to the Phyllomedusidae) Scientific Editor. Andrew R. Gray, Konstantin Taupp, Loic Denès, Franziska Elsner-Gearing & David Bewick A new species of Bent-toed gecko (Squamata: Gekkonidae: Cyrtodactylus Gray, 1827) from the Garo 177-196 Hills, Meghalaya State, north-east India, and discussion of morphological variation for C.
    [Show full text]
  • Catalogue of Protozoan Parasites Recorded in Australia Peter J. O
    1 CATALOGUE OF PROTOZOAN PARASITES RECORDED IN AUSTRALIA PETER J. O’DONOGHUE & ROBERT D. ADLARD O’Donoghue, P.J. & Adlard, R.D. 2000 02 29: Catalogue of protozoan parasites recorded in Australia. Memoirs of the Queensland Museum 45(1):1-164. Brisbane. ISSN 0079-8835. Published reports of protozoan species from Australian animals have been compiled into a host- parasite checklist, a parasite-host checklist and a cross-referenced bibliography. Protozoa listed include parasites, commensals and symbionts but free-living species have been excluded. Over 590 protozoan species are listed including amoebae, flagellates, ciliates and ‘sporozoa’ (the latter comprising apicomplexans, microsporans, myxozoans, haplosporidians and paramyxeans). Organisms are recorded in association with some 520 hosts including mammals, marsupials, birds, reptiles, amphibians, fish and invertebrates. Information has been abstracted from over 1,270 scientific publications predating 1999 and all records include taxonomic authorities, synonyms, common names, sites of infection within hosts and geographic locations. Protozoa, parasite checklist, host checklist, bibliography, Australia. Peter J. O’Donoghue, Department of Microbiology and Parasitology, The University of Queensland, St Lucia 4072, Australia; Robert D. Adlard, Protozoa Section, Queensland Museum, PO Box 3300, South Brisbane 4101, Australia; 31 January 2000. CONTENTS the literature for reports relevant to contemporary studies. Such problems could be avoided if all previous HOST-PARASITE CHECKLIST 5 records were consolidated into a single database. Most Mammals 5 researchers currently avail themselves of various Reptiles 21 electronic database and abstracting services but none Amphibians 26 include literature published earlier than 1985 and not all Birds 34 journal titles are covered in their databases. Fish 44 Invertebrates 54 Several catalogues of parasites in Australian PARASITE-HOST CHECKLIST 63 hosts have previously been published.
    [Show full text]
  • Wet Tropics Lizards No
    Tropical Topics A n i n t e r p r e t i v e n e w s l e t t e r f o r t h e t o u r i s m i n d u s t r y Wet tropics lizards No. 33 January 1996 Lizards tell a tale of history Notes from the A prickly forest skink from Cardwell and a prickly forest skink from Cooktown look the same but recent studies of their genetic make-up have Editor revealed hidden differences which tell a tale of history. While mammals and snakes are a The wet tropics contain the remnants Studies of birds, skinks, frogs, geckos fairly rare sight in the rainforests, of tropical rainforests which once and snails as well as some mammals lizards are one of the few types of covered much of Australia. As the revealed genetic breaks at exactly the animal we can be almost certain to climate became drier only the same location. It is thought that a dry see. mountainous regions of the north-east corridor cut through the wet tropics at coast remained constantly moist and this point for hundreds of thousands The wet tropics rainforests have an became the last refuges of Australia’s of years, preventing rainforest animals extraordinarily high number of lizard ancient tropical rainforests. on either side from mixing with each species — at least 14 — which are other at all. This affected not just found nowhere else. Some only However, the area currently occupied individual species but whole occur in very restricted areas such by rainforest has fluctuated.
    [Show full text]
  • A Serpentes Atual.Pmd
    VOLUME 18, NÚMERO 2, NOVEMBRO 2018 ISSN 1519-1982 Edição revista e atualizada em julho de 2019 BIOLOGIA GERAL E EXPERIMENTAL VERTEBRADOS TERRESTRES DE RORAIMA IV. SERPENTES BOA VISTA, RR Biol. Geral Exper. 3 BIOLOGIA GERAL E EXPERIMENTAL EDITORES EDITORES ASSOCIADOS Celso Morato de Carvalho – Instituto Nacional de Adriano Vicente dos Santos– Centro de Pesquisas Pesquisas da Amazônia, Manaus, Am - Necar, Ambientais do Nordeste, Recife, Pe UFRR, Boa Vista, Rr Edson Fontes de Oliveira – Universidade Tecnológica Jeane Carvalho Vilar – Aracaju, Se Federal do Paraná, Londrina, Pr Everton Amâncio dos Santos – Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brasília, D.F. Francisco Filho de Oliveira – Secretaria Municipal da Educação, Nossa Senhora de Lourdes, Se Biologia Geral e Experimental é indexada nas Bases de Dados: Latindex, Biosis Previews, Biological Abstracts e Zoological Record. Edição eletrônica: ISSN 1980-9689. www.biologiageralexperimental.bio.br Endereço: Biologia Geral e Experimental, Núcleo de Estudos Comparados da Amazônia e do Caribe, Universidade Federal de Roraima, Campus do Paricarana, Boa Vista, Av. Ene Garcez, 2413. E-mail: [email protected] ou [email protected] Aceita-se permuta. 4 Vol. 18(2), 2018 BIOLOGIA GERAL E EXPERIMENTAL Série Vertebrados Terrestres de Roraima. Coordenação e revisão: CMorato e SPNascimento. Vol. 17 núm. 1, 2017 I. Contexto Geográfico e Ecológico, Habitats Regionais, Localidades e Listas de Espécies. Vol. 17 núm. 2, 2017 II. Anfíbios. Vol. 18 núm. 1, 2018 III. Anfisbênios e Lagartos. Vol. 18 núm. 2, 2018 IV. Serpentes. Vol. 18 núm. 3, 2018 V. Quelônios e Jacarés. Vol. 19 núm. 1, 2019 VI. Mamíferos não voadores. Vol. 19 núm.
    [Show full text]
  • Checklist of Amphibians and Reptiles of Morocco: a Taxonomic Update and Standard Arabic Names
    Herpetology Notes, volume 14: 1-14 (2021) (published online on 08 January 2021) Checklist of amphibians and reptiles of Morocco: A taxonomic update and standard Arabic names Abdellah Bouazza1,*, El Hassan El Mouden2, and Abdeslam Rihane3,4 Abstract. Morocco has one of the highest levels of biodiversity and endemism in the Western Palaearctic, which is mainly attributable to the country’s complex topographic and climatic patterns that favoured allopatric speciation. Taxonomic studies of Moroccan amphibians and reptiles have increased noticeably during the last few decades, including the recognition of new species and the revision of other taxa. In this study, we provide a taxonomically updated checklist and notes on nomenclatural changes based on studies published before April 2020. The updated checklist includes 130 extant species (i.e., 14 amphibians and 116 reptiles, including six sea turtles), increasing considerably the number of species compared to previous recent assessments. Arabic names of the species are also provided as a response to the demands of many Moroccan naturalists. Keywords. North Africa, Morocco, Herpetofauna, Species list, Nomenclature Introduction mya) led to a major faunal exchange (e.g., Blain et al., 2013; Mendes et al., 2017) and the climatic events that Morocco has one of the most varied herpetofauna occurred since Miocene and during Plio-Pleistocene in the Western Palearctic and the highest diversities (i.e., shift from tropical to arid environments) promoted of endemism and European relict species among allopatric speciation (e.g., Escoriza et al., 2006; Salvi North African reptiles (Bons and Geniez, 1996; et al., 2018). Pleguezuelos et al., 2010; del Mármol et al., 2019).
    [Show full text]