The Classification Code
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Common Insects of Freshwater Pond and Their Control ~
COMMON INSECTS OF FRESHWATER POND AND THEIR CONTROL ~ Bulletin No. 54 Krishna Mitra and Kuldip Kumar 11 ~3r.J!I leAR CENTRAL INLAND CAPTURE FISHERIES RESEARCH INSTITUTE (Indfan Council of Agricultural Research) Barrackpore - 743101 West Bengal India. COMMON INSECTS OF FRESHWATER PONDS AND THEIR CONTROL Bulletin No. 54 March 1988 Krishna Mitra and Kuldip Kumar IfII'JrF ICAR CENTRAL INLAND CAPTURE FISHERIES RESEARCH INSTITUTE (Indian Council of Aqricultural Research) Barrackpore - 743101 West Bengal India. CONTENTS Introduction 1 Classification of insects 2 Order EPHEMEROPTERA 2 Family : Baetidae 2 Order ODONATA 3 Family: Libellulidae 4 Aeshnidae 5 Coenagrtonldae 5 Order HEMIPTERA 6 Family: Gerridae 7 Notonectidae 7 Pleidae 8 Nepidae 9 Belostomatidae 10 Cortxtdae 11 Order COLEOPTERA 12 Family : Dytiscidae 13 Hydrophilidae - 14 Gyrinidae 16 Curculionidae 16 Contents (contd.) Order TRICHOPTERA 17 Family: Leptocertdae 17 Order LEPIDOPTERA 18 Family: Pyralidae 18 Order DIPTERA 19 Family: Culicidae 19 Tendipedidae 20 Heleidae 20 Stratlomytdae 21 Tabanidae 21 Muscidae 22 Control 23 Acknowledgements 24 References 25 Enlarged text figures 2.5. ~--~------------------------~---I Foreword The insects which constitute an important component oJ the littoral Jauna oJ aquatic ecosystems play a vital role in the trophic structure and Junctions oJ culturable water bodies. Their primary role as converters oJ plant materials into animal protein and consumers oJ organic wastes oJ the fisti habitat is of great signifzcance Jor the healthy growth of fish populations. Though the insects serve as a source oJ natural food. for fishes, they ofteti impair the fist: productivity in the pond ecosystem by predating upon their young ones. By sharing a common trophic niche with the fist: Juveniles they also compete with them Jor food. -
F4 URS Protected Species Report 2012
Homes and Communities Agency Northstowe Phase 2 Environmental Statement F4 URS Protected Species Report 2012 Page F4 | | Northstowe Protected Species Report July 2013 47062979 Prepared for: Homes and Communities Agency UNITED KINGDOM & IRELAND REVISION RECORD Rev Date Details Prepared by Reviewed by Approved by 2 December Version 2 Rachel Holmes Steve Muddiman Steve Muddiman 2012 Principal Associate Associate Environmental Ecologist Ecologist Consultant 4 January Version 4 Rachel Holmes Steve Muddiman Steve Muddiman 2013 Principal Associate Associate Environmental Ecologist Ecologist Consultant 5 July 2013 Version 5 Rachel Holmes Steve Muddiman Steve Muddiman Principal Associate Associate Environmental Ecologist Ecologist Consultant URS Infrastructure & Environment UK Limited St George’s House, 5 St George’s Road Wimbledon, London SW19 4DR United Kingdom PROTECTED SPECIES REPORT 2 2013 Limitations URS Infrastructure & Environment UK Limited (“URS”) has prepared this Report for the sole use of Homes and Communities Agency (“Client”) in accordance with the Agreement under which our services were performed (proposal dated 7th April and 23 rd July 2012). No other warranty, expressed or implied, is made as to the professional advice included in this Report or any other services provided by URS. This Report is confidential and may not be disclosed by the Client nor relied upon by any other party without the prior and express written agreement of URS. The conclusions and recommendations contained in this Report are based upon information provided by others and upon the assumption that all relevant information has been provided by those parties from whom it has been requested and that such information is accurate. Information obtained by URS has not been independently verified by URS, unless otherwise stated in the Report. -
Amphibian Alliance for Zero Extinction Sites in Chiapas and Oaxaca
Amphibian Alliance for Zero Extinction Sites in Chiapas and Oaxaca John F. Lamoreux, Meghan W. McKnight, and Rodolfo Cabrera Hernandez Occasional Paper of the IUCN Species Survival Commission No. 53 Amphibian Alliance for Zero Extinction Sites in Chiapas and Oaxaca John F. Lamoreux, Meghan W. McKnight, and Rodolfo Cabrera Hernandez Occasional Paper of the IUCN Species Survival Commission No. 53 The designation of geographical entities in this book, and the presentation of the material, do not imply the expression of any opinion whatsoever on the part of IUCN concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The views expressed in this publication do not necessarily reflect those of IUCN or other participating organizations. Published by: IUCN, Gland, Switzerland Copyright: © 2015 International Union for Conservation of Nature and Natural Resources Reproduction of this publication for educational or other non-commercial purposes is authorized without prior written permission from the copyright holder provided the source is fully acknowledged. Reproduction of this publication for resale or other commercial purposes is prohibited without prior written permission of the copyright holder. Citation: Lamoreux, J. F., McKnight, M. W., and R. Cabrera Hernandez (2015). Amphibian Alliance for Zero Extinction Sites in Chiapas and Oaxaca. Gland, Switzerland: IUCN. xxiv + 320pp. ISBN: 978-2-8317-1717-3 DOI: 10.2305/IUCN.CH.2015.SSC-OP.53.en Cover photographs: Totontepec landscape; new Plectrohyla species, Ixalotriton niger, Concepción Pápalo, Thorius minutissimus, Craugastor pozo (panels, left to right) Back cover photograph: Collecting in Chamula, Chiapas Photo credits: The cover photographs were taken by the authors under grant agreements with the two main project funders: NGS and CEPF. -
M54 to M6 Link Road TR010054 Volume 6 6.3 Environmental Statement Appendices Appendix 8.14 Aquatic Invertebrates, Fish and Aquatic Macrophytes
M54 to M6 Link Road TR010054 Volume 6 6.3 Environmental Statement Appendices Appendix 8.14 Aquatic Invertebrates, Fish and Aquatic Macrophytes Regulation 5(2)(a) Planning Act 2008 Infrastructure Planning (Applications: Prescribed Forms and Procedure) Regulations 2009 January 2020 M54 to M6 Link Road Environmental Statement Infrastructure Planning Planning Act 2008 The Infrastructure Planning (Applications: Prescribed Forms and Procedure) Regulations 2009 M54 to M6 Link Road Development Consent Order 202[ ] 6.3 Environmental Statement Appendices 8.14 Aquatic Invertebrates, Fish and Aquatic Macrophytes Regulation Number Regulation 5(2)(a) Planning Inspectorate Scheme TR010054 Reference Application Document Reference 6.3 Author M54 to M6 Link Road Project Team and Highways England Version Date Status of Version 1 January 2020 DCO Application Planning Inspectorate Scheme Ref: TR010054 Application Document Ref: TR010054/APP/6.3 M54 to M6 Link Road Environmental Statement Table of contents Chapter Pages 1 Introduction ............................................................................................................. 1 2 Relevant Legislation and Policy............................................................................. 2 2.2 Planning policy .......................................................................................................... 2 2.3 Priority species .......................................................................................................... 2 3 Methodology ........................................................................................................... -
Fruiting Body Form, Not Nutritional Mode, Is the Major Driver of Diversification in Mushroom-Forming Fungi
Fruiting body form, not nutritional mode, is the major driver of diversification in mushroom-forming fungi Marisol Sánchez-Garcíaa,b, Martin Rybergc, Faheema Kalsoom Khanc, Torda Vargad, László G. Nagyd, and David S. Hibbetta,1 aBiology Department, Clark University, Worcester, MA 01610; bUppsala Biocentre, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, SE-75005 Uppsala, Sweden; cDepartment of Organismal Biology, Evolutionary Biology Centre, Uppsala University, 752 36 Uppsala, Sweden; and dSynthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, 6726 Szeged, Hungary Edited by David M. Hillis, The University of Texas at Austin, Austin, TX, and approved October 16, 2020 (received for review December 22, 2019) With ∼36,000 described species, Agaricomycetes are among the and the evolution of enclosed spore-bearing structures. It has most successful groups of Fungi. Agaricomycetes display great di- been hypothesized that the loss of ballistospory is irreversible versity in fruiting body forms and nutritional modes. Most have because it involves a complex suite of anatomical features gen- pileate-stipitate fruiting bodies (with a cap and stalk), but the erating a “surface tension catapult” (8, 11). The effect of gas- group also contains crust-like resupinate fungi, polypores, coral teroid fruiting body forms on diversification rates has been fungi, and gasteroid forms (e.g., puffballs and stinkhorns). Some assessed in Sclerodermatineae, Boletales, Phallomycetidae, and Agaricomycetes enter into ectomycorrhizal symbioses with plants, Lycoperdaceae, where it was found that lineages with this type of while others are decayers (saprotrophs) or pathogens. We constructed morphology have diversified at higher rates than nongasteroid a megaphylogeny of 8,400 species and used it to test the following lineages (12). -
CZECH MYCOLOGY Publication of the Czech Scientific Society for Mycology
CZECH MYCOLOGY Publication of the Czech Scientific Society for Mycology Volume 57 August 2005 Number 1-2 Central European genera of the Boletaceae and Suillaceae, with notes on their anatomical characters Jo s e f Š u t a r a Prosetická 239, 415 01 Tbplice, Czech Republic Šutara J. (2005): Central European genera of the Boletaceae and Suillaceae, with notes on their anatomical characters. - Czech Mycol. 57: 1-50. A taxonomic survey of Central European genera of the families Boletaceae and Suillaceae with tubular hymenophores, including the lamellate Phylloporus, is presented. Questions concerning the delimitation of the bolete genera are discussed. Descriptions and keys to the families and genera are based predominantly on anatomical characters of the carpophores. Attention is also paid to peripheral layers of stipe tissue, whose anatomical structure has not been sufficiently studied. The study of these layers, above all of the caulohymenium and the lateral stipe stratum, can provide information important for a better understanding of relationships between taxonomic groups in these families. The presence (or absence) of the caulohymenium with spore-bearing caulobasidia on the stipe surface is here considered as a significant ge neric character of boletes. A new combination, Pseudoboletus astraeicola (Imazeki) Šutara, is proposed. Key words: Boletaceae, Suillaceae, generic taxonomy, anatomical characters. Šutara J. (2005): Středoevropské rody čeledí Boletaceae a Suillaceae, s poznámka mi k jejich anatomickým znakům. - Czech Mycol. 57: 1-50. Je předložen taxonomický přehled středoevropských rodů čeledí Boletaceae a. SuiUaceae s rourko- vitým hymenoforem, včetně rodu Phylloporus s lupeny. Jsou diskutovány otázky týkající se vymezení hřibovitých rodů. Popisy a klíče k čeledím a rodům jsou založeny převážně na anatomických znacích plodnic. -
Review Article Distribution and Conservation Status of Amphibian
Mongabay.com Open Access Journal - Tropical Conservation Science Vol.7 (1):1-25 2014 Review Article Distribution and conservation status of amphibian and reptile species in the Lacandona rainforest, Mexico: an update after 20 years of research Omar Hernández-Ordóñez1, 2, *, Miguel Martínez-Ramos2, Víctor Arroyo-Rodríguez2, Adriana González-Hernández3, Arturo González-Zamora4, Diego A. Zárate2 and, Víctor Hugo Reynoso3 1Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México; Av. Universidad 3000, C.P. 04360, Coyoacán, Mexico City, Mexico. 2 Centro de Investigaciones en Ecosistemas, Universidad Nacional Autónoma de México, Antigua Carretera a Pátzcuaro No. 8701, Ex Hacienda de San José de la Huerta, 58190 Morelia, Michoacán, Mexico. 3Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico. 4División de Posgrado, Instituto de Ecología A.C. Km. 2.5 Camino antiguo a Coatepec No. 351, Xalapa 91070, Veracruz, Mexico. * Corresponding author: Omar Hernández Ordóñez, email: [email protected] Abstract Mexico has one of the richest tropical forests, but is also one of the most deforested in Mesoamerica. Species lists updates and accurate information on the geographic distribution of species are necessary for baseline studies in ecology and conservation of these sites. Here, we present an updated list of the diversity of amphibians and reptiles in the Lacandona region, and actualized information on their distribution and conservation status. Although some studies have discussed the amphibians and reptiles of the Lacandona, most herpetological lists came from the northern part of the region, and there are no confirmed records for many of the species assumed to live in the region. -
Pseudoeurycea Naucampatepetl. the Cofre De Perote Salamander Is Endemic to the Sierra Madre Oriental of Eastern Mexico. This
Pseudoeurycea naucampatepetl. The Cofre de Perote salamander is endemic to the Sierra Madre Oriental of eastern Mexico. This relatively large salamander (reported to attain a total length of 150 mm) is recorded only from, “a narrow ridge extending east from Cofre de Perote and terminating [on] a small peak (Cerro Volcancillo) at the type locality,” in central Veracruz, at elevations from 2,500 to 3,000 m (Amphibian Species of the World website). Pseudoeurycea naucampatepetl has been assigned to the P. bellii complex of the P. bellii group (Raffaëlli 2007) and is considered most closely related to P. gigantea, a species endemic to the La specimens and has not been seen for 20 years, despite thorough surveys in 2003 and 2004 (EDGE; www.edgeofexistence.org), and thus it might be extinct. The habitat at the type locality (pine-oak forest with abundant bunch grass) lies within Lower Montane Wet Forest (Wilson and Johnson 2010; IUCN Red List website [accessed 21 April 2013]). The known specimens were “found beneath the surface of roadside banks” (www.edgeofexistence.org) along the road to Las Lajas Microwave Station, 15 kilometers (by road) south of Highway 140 from Las Vigas, Veracruz (Amphibian Species of the World website). This species is terrestrial and presumed to reproduce by direct development. Pseudoeurycea naucampatepetl is placed as number 89 in the top 100 Evolutionarily Distinct and Globally Endangered amphib- ians (EDGE; www.edgeofexistence.org). We calculated this animal’s EVS as 17, which is in the middle of the high vulnerability category (see text for explanation), and its IUCN status has been assessed as Critically Endangered. -
9B Taxonomy to Genus
Fungus and Lichen Genera in the NEMF Database Taxonomic hierarchy: phyllum > class (-etes) > order (-ales) > family (-ceae) > genus. Total number of genera in the database: 526 Anamorphic fungi (see p. 4), which are disseminated by propagules not formed from cells where meiosis has occurred, are presently not grouped by class, order, etc. Most propagules can be referred to as "conidia," but some are derived from unspecialized vegetative mycelium. A significant number are correlated with fungal states that produce spores derived from cells where meiosis has, or is assumed to have, occurred. These are, where known, members of the ascomycetes or basidiomycetes. However, in many cases, they are still undescribed, unrecognized or poorly known. (Explanation paraphrased from "Dictionary of the Fungi, 9th Edition.") Principal authority for this taxonomy is the Dictionary of the Fungi and its online database, www.indexfungorum.org. For lichens, see Lecanoromycetes on p. 3. Basidiomycota Aegerita Poria Macrolepiota Grandinia Poronidulus Melanophyllum Agaricomycetes Hyphoderma Postia Amanitaceae Cantharellales Meripilaceae Pycnoporellus Amanita Cantharellaceae Abortiporus Skeletocutis Bolbitiaceae Cantharellus Antrodia Trichaptum Agrocybe Craterellus Grifola Tyromyces Bolbitius Clavulinaceae Meripilus Sistotremataceae Conocybe Clavulina Physisporinus Trechispora Hebeloma Hydnaceae Meruliaceae Sparassidaceae Panaeolina Hydnum Climacodon Sparassis Clavariaceae Polyporales Gloeoporus Steccherinaceae Clavaria Albatrellaceae Hyphodermopsis Antrodiella -
(Boletaceae, Basidiomycota) – a New Monotypic Sequestrate Genus and Species from Brazilian Atlantic Forest
A peer-reviewed open-access journal MycoKeys 62: 53–73 (2020) Longistriata flava a new sequestrate genus and species 53 doi: 10.3897/mycokeys.62.39699 RESEARCH ARTICLE MycoKeys http://mycokeys.pensoft.net Launched to accelerate biodiversity research Longistriata flava (Boletaceae, Basidiomycota) – a new monotypic sequestrate genus and species from Brazilian Atlantic Forest Marcelo A. Sulzbacher1, Takamichi Orihara2, Tine Grebenc3, Felipe Wartchow4, Matthew E. Smith5, María P. Martín6, Admir J. Giachini7, Iuri G. Baseia8 1 Departamento de Micologia, Programa de Pós-Graduação em Biologia de Fungos, Universidade Federal de Pernambuco, Av. Nelson Chaves s/n, CEP: 50760-420, Recife, PE, Brazil 2 Kanagawa Prefectural Museum of Natural History, 499 Iryuda, Odawara-shi, Kanagawa 250-0031, Japan 3 Slovenian Forestry Institute, Večna pot 2, SI-1000 Ljubljana, Slovenia 4 Departamento de Sistemática e Ecologia/CCEN, Universidade Federal da Paraíba, CEP: 58051-970, João Pessoa, PB, Brazil 5 Department of Plant Pathology, University of Flori- da, Gainesville, Florida 32611, USA 6 Departamento de Micologia, Real Jardín Botánico, RJB-CSIC, Plaza Murillo 2, Madrid 28014, Spain 7 Universidade Federal de Santa Catarina, Departamento de Microbiologia, Imunologia e Parasitologia, Centro de Ciências Biológicas, Campus Trindade – Setor F, CEP 88040-900, Flo- rianópolis, SC, Brazil 8 Departamento de Botânica e Zoologia, Universidade Federal do Rio Grande do Norte, Campus Universitário, CEP: 59072-970, Natal, RN, Brazil Corresponding author: Tine Grebenc ([email protected]) Academic editor: A.Vizzini | Received 4 September 2019 | Accepted 8 November 2019 | Published 3 February 2020 Citation: Sulzbacher MA, Orihara T, Grebenc T, Wartchow F, Smith ME, Martín MP, Giachini AJ, Baseia IG (2020) Longistriata flava (Boletaceae, Basidiomycota) – a new monotypic sequestrate genus and species from Brazilian Atlantic Forest. -
Xerocomus S. L. in the Light of the Present State of Knowledge
CZECH MYCOL. 60(1): 29–62, 2008 Xerocomus s. l. in the light of the present state of knowledge JOSEF ŠUTARA Prosetická 239, 415 01 Teplice, Czech Republic [email protected] Šutara J. (2008): Xerocomus s. l. in the light of the present state of knowledge. – Czech Mycol. 60(1): 29–62. The definition of the generic limits of Xerocomus s. l. and particularly the delimitation of this genus from Boletus is very unclear and controversial. During his study of European species of the Boletaceae, the author has come to the conclusion that Xerocomus in a wide concept is a heterogeneous mixture of several groups of species. These groups are separated from each other by different anatomical and some other characters. Also recent molecular studies show that Xerocomus s. l. is not a monophyletic group. In agreement with these facts, the European species of Xerocomus s. l. whose anatomy was studied by the present author are here classified into the following, more distinctly delimited genera: Xerocomus s. str., Phylloporus, Xerocomellus gen. nov., Hemileccinum gen. nov. and Pseudoboletus. Boletus badius and Boletus moravicus, also often treated as species of Xerocomus, are retained for the present in the genus Boletus. The differences between Xerocomus s. str., Phylloporus, Xerocomellus, Hemileccinum, Pseudoboletus and Boletus (which is related to this group of genera) are discussed in detail. Two new genera, Xerocomellus and Hemileccinum, and necessary new combinations of species names are proposed. Key words: Boletaceae, Xerocomus, Xerocomellus, Hemileccinum, generic taxonomy, anatomy, histology. Šutara J. (2008): Rod Xerocomus s. l. ve světle současného stavu znalostí. – Czech Mycol. -
3Systematics and Diversity of Extant Amphibians
Systematics and Diversity of 3 Extant Amphibians he three extant lissamphibian lineages (hereafter amples of classic systematics papers. We present widely referred to by the more common term amphibians) used common names of groups in addition to scientifi c Tare descendants of a common ancestor that lived names, noting also that herpetologists colloquially refer during (or soon after) the Late Carboniferous. Since the to most clades by their scientifi c name (e.g., ranids, am- three lineages diverged, each has evolved unique fea- bystomatids, typhlonectids). tures that defi ne the group; however, salamanders, frogs, A total of 7,303 species of amphibians are recognized and caecelians also share many traits that are evidence and new species—primarily tropical frogs and salaman- of their common ancestry. Two of the most defi nitive of ders—continue to be described. Frogs are far more di- these traits are: verse than salamanders and caecelians combined; more than 6,400 (~88%) of extant amphibian species are frogs, 1. Nearly all amphibians have complex life histories. almost 25% of which have been described in the past Most species undergo metamorphosis from an 15 years. Salamanders comprise more than 660 species, aquatic larva to a terrestrial adult, and even spe- and there are 200 species of caecilians. Amphibian diver- cies that lay terrestrial eggs require moist nest sity is not evenly distributed within families. For example, sites to prevent desiccation. Thus, regardless of more than 65% of extant salamanders are in the family the habitat of the adult, all species of amphibians Plethodontidae, and more than 50% of all frogs are in just are fundamentally tied to water.