By the Wandering Spider Ctenus Ornatus (Araneae: Ctenidae) in Southeastern Brazil

Total Page:16

File Type:pdf, Size:1020Kb

By the Wandering Spider Ctenus Ornatus (Araneae: Ctenidae) in Southeastern Brazil Herpetology Notes, volume 8: 329-330 (2015) (published online on 16 June 2015) Predation on the tropical bullfrog Adenomera marmorata (Anura: Leptodactylidae) by the wandering spider Ctenus ornatus (Araneae: Ctenidae) in southeastern Brazil Lucas Coutinho Amaral¹,*, Pedro de Souza Castanheira², Sergio Potsch de Carvalho-e-Silva¹ and Renner Luiz Cerqueira Baptista² Anurans are common preys to some species of spiders tiny middle eyes and two large posterior eyes (Jocqué (Menin et al., 2005). Not only adults (e.g., Barej et al., and Dippenaar-Schoeman, 2006). Ctenids are nocturnal 2005), but also tadpoles are preyed on by spiders (e.g., hunters, running mainly on the leaf litter. They use mainly Folly et al., 2014a; Luiz et al., 2013). The frog species vibration and visual contact to locate prey, catching and Adenomera marmorata Steindachner, 1867, occurs in killing them with their powerful poison, delivered by the the Atlantic Rain Forest in southeastern Brazil, from fangs of their strong chelicerae (Jocqué and Dippenaar- Rio de Janeiro to Santa Catarina states (Frost, 2015), Schoeman, 2006). Ctenus ornatus (Keyserling, 1877) is and is one of the most abundant amphibian species in a large and very common ground spider in the Atlantic the leaf-litter (Heyer et al., 1990; Rocha et al., 2007). It Forest, distributed from Pernambuco state, in Northeast, is mostly a nocturnal frog, but males can also be heard to Goiás state, in the West, both in Brazil, to Misiones, at anytime of the day during rainy days (Izecksohn and Argentina (Brescovit and Simó, 2007). Carvalho-e-Silva, 2001). Males call from chambers The following event was observed during a dug in the ground, where the females lay their eggs herpetological field work at approximately 07:30 pm embedded in foam nests (Izecksohn and Carvalho-e- on 10 August, 2014, at the Centro Marista São José Silva, 2001). The spider family Ctenidae is the only das Paineiras, Mendes municipality, Rio de Janeiro known Brazilian wandering spider family including State, southeastern Brazil (22°30’48’’S, 43°45’14’’W). members that can harm humans, with a large number of The Centro Marista São José das Paineiras is located medically important bites in Brazil each year (Martins in a relatively well-preserved area, mostly covered by and Bertani, 2007). They can be easily identified by a secondary forest. Its anuran fauna is currently under longitudinal groove on the rear of their carapace and study and has shown to be quite diverse (Folly et al., by the eye formula 4-2-2, with four frontal eyes, two 2014b). While searching the leaf-litter, an adult female of Ctenus ornatus was seen jumping onto an adult A. marmorata, and quickly biting the frog’s dorsum with its chelicerae. The spider soon let the motionless A. marmorata loose, but stayed at approximately 5 cm from its prey until we collected both specimens. The frog died ¹ Laboratório de Anfíbios e Répteis (LAR), Universidade on the way back to Centro Marista headquarters. Both Federal do Rio de Janeiro, Centro de Ciências da Saúde, specimens were collected and deposited as vouchers. Instituto de Biologia, A1-111, Ilha do Fundão, CEP 21941- The spider (prosoma 5.52 mm long; 4.0 mm wide) is 590, Rio de Janeiro/RJ, Brazil housed in the Laboratório de Diversidade de Aracnídeos, ² Laboratório de Diversidade de Aracnídeos (LABAR), Departamento de Zoologia, Instituto de Biologia, Universidade Federal do Rio Janeiro, Instituto de Biologia, A1-097, Ilha do Fundão, CEP 21941-590, Rio de Janeiro/RJ, Universidade Federal do Rio de Janeiro (UFRJ 0949), Brazil. and the frog (snout-vent length 18.87 mm) is housed in * Corresponding author: [email protected] the Amphibian Collection of Departamento de Zoologia, 330 Lucas Coutinho Amaral et al. Instituto de Biologia, Universidade Federal do Rio de Jocqué, R., Dippenaar-Schoeman, A.S. (2006): Spider Families Janeiro (ZUFRJ 14937). of the World. Tervuren, Belgium. Musée Royal de l’Afrique Predation of Adenomera marmorata by Ctenus Centrale Press. Luiz, A.M., Pires, T.A., Dimitrov, V., Sawaya, R.J. (2013): medius Keyserling, 1891 was previously reported by Predation on tadpole of Itapotihyla langsdorffii (Anura: Hylidae) Barbo et al. (2009). Despite being the only report of by the semi-aquatic spider Thaumasia sp. (Araneae: Pisauridae) Ctenus species preying on A. marmorata, the authors in the Atlantic Forest, southeastern Brazil. Herpetology Notes have suggested that this behavior was presumably more 6: 451–452. frequent. Our report of another Ctenus species preying Martins, R., Bertani, R. (2007): The non-Amazonian species of on the same anuran species supports their suggestion. the Brazilian wandering spiders of the genus Phoneutria Perty, The form of attack was similar to the one described 1833 (Araneae: Ctenidae), with the description of a new species. Zootaxa 1526: 1–33. before (Barbo et al., 2009), differing only regarding Menin, M., Rodrigues, D.J., Azevedo, C.S. (2005): Predation on the distance of the spider from the prey. As both amphibians by spiders (Arachnida, Araneae) in the Neotropical Ctenus species and the frog A. marmorata are common region. Phyllomedusa 4(1): 39–47. nocturnal animals in the Atlantic forest, often sharing Rocha, C.F.D., Vrcibradic, D., Kiefer, M.C., Almeida-Gomes, M., the same habitats, predation might be common, albeit Borges-Junior, V.N.T., Siqueira, C.C., Goyannes-Araújo, P., not usually recorded. Knowledge of trophic relations is Fernandes, C.G.A., Rubião, E.C.N., Van Sluys, M. (2007): A an important key to understanding species’ interactions survey of the leaf-litter frog assembly from an Atlantic forest area (Reserva Ecológica de Guapiaçu) in Rio de Janeiro State, with its surroundings. Records of predation in nature are Brazil, with an estimate of frog densities. Tropical Zoology. 20: rare and can be helpful for behavioral and community 99–108. ecology in addition to other studies. References Barbo, F.E., Rodrigues, M.G., Couto, F.M., Sawaya, R.J. (2009): Predation on Leptodactylus marmoratus (Anura: Leptodactylidae) by the spider Ctenus medius (Araneae: Ctenidae) in the Atlantic Forest, southeast Brazil. Herpetology Notes 2: 99–100. Barej, M.F., Wurstner, J.A.M., Böhme, W. (2009): Predation on the treefrog Leptopelis brevirostris (Anura: Arthroleptidae) by a wandering spider (Araneae: Ctenidae) in Cameroon. Herpetology Notes 2: 137–139. Brescovit, A.D., Simó, M. (2007): On the Brazilian Atlantic Forest species of the spider genus Ctenus Walckenaer, with the description of a neotype for C. dubius Walckenaer (Araneae, Ctenidae, Cteninae). Bulletin of the British Arachnological Society, 14: 1–17. Folly, M., Carvalho-e-Silva, S.P., Castanheira, P.S., Baptista, R.L.C., Góes, D. (2014a): Dendropsophus pseudomeridianus (Small Tree Frog), predation. Herpetological Review 45(3): 477. Folly. M., Kirchmeyer, J., Gomes, M.R., Hepp, F., Ruggeri, J., Luna-Dias, C., Bezerra, A.M., Amaral, L.C., Carvalho-e-Silva, S.P. (2014b): Amphibians from the Centro Marista São José das Paineiras in Mendes, and surrounding municipalities, State of Rio de Janeiro, Brazil. Herpetology Notes 7: 489–499. Frost, D.R. (2015): Amphibian Species of the World: an Online Reference. Version 6.0 Electronic Database. Available at http://research.amnh.org/vz/herpetology/amphibia/. American Museum of Natural History, New York, USA. Accessed on 10 May 2015. Heyer, W.R, Rand, A.S., Cruz, C.A.G., Peixoto, O.L., Nelson, C.E. (1990): Frogs of Boracéia. Arquivos de Zoologia 31: 231–410. Accepted by Cynthia Prado Izecksohn, E., Carvalho-e-Silva, S.P. (2001): Anfíbios do município do Rio de Janeiro. Rio de Janeiro, Brazil, Editora UFRJ..
Recommended publications
  • Species Delimitation, Patterns of Diversification and Historical Biogeography of the Neotropical Frog Genus Adenomera
    Journal of Biogeography (J. Biogeogr.) (2014) 41, 855–870 ORIGINAL Species delimitation, patterns of ARTICLE diversification and historical biogeography of the Neotropical frog genus Adenomera (Anura, Leptodactylidae) Antoine Fouquet1,2*, Carla Santana Cassini3,Celio Fernando Baptista Haddad3, Nicolas Pech4 and Miguel Trefaut Rodrigues2 1CNRS Guyane USR3456, 97300 Cayenne, ABSTRACT French Guiana, 2Departamento de Zoologia, Aim For many taxa, inaccuracy of species boundaries and distributions Instituto de Bioci^encias, Universidade de S~ao hampers inferences about diversity and evolution. This is particularly true in Paulo, CEP 05508-090 S~ao Paulo, SP, Brazil, 3Departamento de Zoologia, Instituto de the Neotropics where prevalence of cryptic species has often been demon- Bioci^encias, Universidade Estadual Paulista strated. The frog genus Adenomera is suspected to harbour many more species Julio de Mesquita Filho, CEP 13506-900 Rio than the 16 currently recognized. These small terrestrial species occur in Claro, SP, Brazil, 4Aix-Marseille Universite, Amazonia, Atlantic Forest (AF), and in the open formations of the Dry Diagonal CNRS, IRD, UMR 7263 – IMBE, Evolution (DD: Chaco, Cerrado and Caatinga). This widespread and taxonomically com- Genome Environnement, 13331 Marseille plex taxon provides a good opportunity to (1) test species boundaries, and (2) Cedex 3, France investigate historical connectivity between Amazonia and the AF and associated patterns of diversification. Location Tropical South America east of the Andes. Methods We used molecular data (four loci) to estimate phylogenetic rela- tionships among 320 Adenomera samples. These results were integrated with other lines of evidence to propose a conservative species delineation. We subse- quently used an extended dataset (seven loci) and investigated ancestral area distributions, dispersal–vicariance events, and the temporal pattern of diversifi- cation within Adenomera.
    [Show full text]
  • Chromosome Evolution in Three Brazilian Leptodactylus Species
    Hereditas 146: 104Á111 (2009) Chromosome evolution in three Brazilian Leptodactylus species (Anura, Leptodactylidae), with phylogenetic considerations JOA˜ O REINALDO CRUZ CAMPOS1, FERNANDO ANANIAS2, CINTHIA AGUIRRE BRASILEIRO3, MARCOS YAMAMOTO4,CE´ LIO FERNANDO BAPTISTA HADDAD1 and SANAE KASAHARA1 1Instituto de Biocieˆncias, Univ. Estadual Paulista, UNESP, Rio Claro, SP, Brasil 2Univ.Sa˜o Francisco, Braganc¸a Paulista, SP, Brasil 3Museu de Histo´ria Natural, UNICAMP, Campinas, SP, Brasil 4Depto do Meio Ambiente, Votorantim Celulose e Papel S/A, Santa Branca, SP, Brasil Campos, J. R. C., Ananias, F., Brasileiro, C. A., Yamamoto, M., Haddad, C. F. B. and Kasahara, S. 2009. Chromosome evolution in three Brazilian Leptodactylus species (Anura, Leptodactylidae), with phylogenetic considerations. * Hereditas 0146: 104Á111. Lund, Sweden. eISSN 1601-5223. Received September 29, 2008. Accepted December 22, 2008 Karyotypic analyses on three species of the Leptodactylus from Brazil showed 2n24 in L.cf.marmoratus,2n23 in Leptodactylus sp. (aff. bokermanni), and 2n26 in L. hylaedactylus, with distinct numbers of bi and uni-armed chromosomes. Leptodactylus cf. marmoratus presented a variation as regard to the morphology of pair 12. All specimens of L.cf.marmoratus had Ag-NOR in pair 6, confirmed by FISH, but the sample from one of the localities presented additional Ag-NOR, in one of the chromosomes 8. In Leptodactylus sp. (aff. bokermanni) and L. hylaedactylus the chromosome pairs bearing Ag-NOR are 11 and 7, respectively. The C banding patterns are predominantly centromeric, but only in L. marmoratus this heterochromatin appeared very brilliant with DAPI. On the other hand, bright labelling was noticed with CMA3 in the three species, on the Ag-NOR site.
    [Show full text]
  • The Phylogenetic Distribution of Sphingomyelinase D Activity in Venoms of Haplogyne Spiders
    Comparative Biochemistry and Physiology Part B 135 (2003) 25–33 The phylogenetic distribution of sphingomyelinase D activity in venoms of Haplogyne spiders Greta J. Binford*, Michael A. Wells Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, AZ 85721, USA Received 6 October 2002; received in revised form 8 February 2003; accepted 10 February 2003 Abstract The venoms of Loxosceles spiders cause severe dermonecrotic lesions in human tissues. The venom component sphingomyelinase D (SMD) is a contributor to lesion formation and is unknown elsewhere in the animal kingdom. This study reports comparative analyses of SMD activity and venom composition of select Loxosceles species and representatives of closely related Haplogyne genera. The goal was to identify the phylogenetic group of spiders with SMD and infer the timing of evolutionary origin of this toxin. We also preliminarily characterized variation in molecular masses of venom components in the size range of SMD. SMD activity was detected in all (10) Loxosceles species sampled and two species representing their sister taxon, Sicarius, but not in any other venoms or tissues surveyed. Mass spectrometry analyses indicated that all Loxosceles and Sicarius species surveyed had multiple (at least four to six) molecules in the size range corresponding to known SMD proteins (31–35 kDa), whereas other Haplogynes analyzed had no molecules in this mass range in their venom. This suggests SMD originated in the ancestors of the Loxoscelesy Sicarius lineage. These groups of proteins varied in molecular mass across species with North American Loxosceles having 31–32 kDa, African Loxosceles having 32–33.5 kDa and Sicarius having 32–33 kDa molecules.
    [Show full text]
  • On the Uncertain Taxonomic Identity of Adenomera Hylaedactyla (Cope, 1868) and the Composite Type Series of A
    Copeia 107, No. 4, 2019, 708–723 On the Uncertain Taxonomic Identity of Adenomera hylaedactyla (Cope, 1868) and the Composite Type Series of A. andreae (Muller,¨ 1923) (Anura, Leptodactylidae) Thiago R. de Carvalho1, Ariovaldo A. Giaretta2, Natan M. Maciel3, Diego A. Barrera4,Cesar´ Aguilar-Puntriano4,5,Celio´ F. B. Haddad1, Marcelo N. C. Kokubum6, Marcelo Menin7, and Ariadne Angulo4,5 Adenomera andreae and A. hylaedactyla are two widespread Amazonian frogs that have been traditionally distinguished from each other by the use of different habitats, toe tip development, and more recently through advertisement calls. Yet, taxonomic identification of these species has always been challenging. Herein we undertake a review of type specimens and include new phenotypic (morphology and vocalization) and mitochondrial DNA information for an updated diagnosis of both species. Our morphological analysis indicates that the single type (holotype) of A. hylaedactyla could either belong to lineages associated with Amazonian forest-dwelling species (A. andreae clade) or to the open-formation morphotype (A. hylaedactyla clade). Given the holotype’s poor preservation, leading to the ambiguous assignment of character states for toe tip development, as well as a vague type locality encompassing a vast area in eastern Ecuador and northern Peru, the identity of this specimen is uncertain. Morphology of toe tip fragments and the original species description suggest that A. hylaedactyla could correspond to at least two described species (A. andreae or A. simonstuarti) or additional unnamed genetic lineages of the A. andreae clade, all bearing toe tips expanded into discs. Analysis of morphometric data, however, clustered the holotype with the Amazonian open-formation morphotype (toe tips unexpanded).
    [Show full text]
  • Ecological Functions of Neotropical Amphibians and Reptiles: a Review
    Univ. Sci. 2015, Vol. 20 (2): 229-245 doi: 10.11144/Javeriana.SC20-2.efna Freely available on line REVIEW ARTICLE Ecological functions of neotropical amphibians and reptiles: a review Cortés-Gomez AM1, Ruiz-Agudelo CA2 , Valencia-Aguilar A3, Ladle RJ4 Abstract Amphibians and reptiles (herps) are the most abundant and diverse vertebrate taxa in tropical ecosystems. Nevertheless, little is known about their role in maintaining and regulating ecosystem functions and, by extension, their potential value for supporting ecosystem services. Here, we review research on the ecological functions of Neotropical herps, in different sources (the bibliographic databases, book chapters, etc.). A total of 167 Neotropical herpetology studies published over the last four decades (1970 to 2014) were reviewed, providing information on more than 100 species that contribute to at least five categories of ecological functions: i) nutrient cycling; ii) bioturbation; iii) pollination; iv) seed dispersal, and; v) energy flow through ecosystems. We emphasize the need to expand the knowledge about ecological functions in Neotropical ecosystems and the mechanisms behind these, through the study of functional traits and analysis of ecological processes. Many of these functions provide key ecosystem services, such as biological pest control, seed dispersal and water quality. By knowing and understanding the functions that perform the herps in ecosystems, management plans for cultural landscapes, restoration or recovery projects of landscapes that involve aquatic and terrestrial systems, development of comprehensive plans and detailed conservation of species and ecosystems may be structured in a more appropriate way. Besides information gaps identified in this review, this contribution explores these issues in terms of better understanding of key questions in the study of ecosystem services and biodiversity and, also, of how these services are generated.
    [Show full text]
  • Reproduction and Larval Morphology of Adenomera Diptyx (Anura: Leptodactylidae) from the Argentinean Humid Chaco and Brazilian Pantanal
    SALAMANDRA 53(1)Reproduction1–9 15 and February larval morphology2017 ISSN of 0036–3375Adenomera diptyx from Argentina and Brazil Reproduction and larval morphology of Adenomera diptyx (Anura: Leptodactylidae) from the Argentinean humid Chaco and Brazilian Pantanal Víctor Hugo Zaracho1 & Marcelo Nogueira de Carvalho Kokubum2 1) Laboratorio de Herpetología, Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Av. Libertad 5470, (3400) Corrientes, Argentina 2) Laboratório de Herpetologia, Unidade Acadêmica de Ciências Biológicas e Programa de Pós-graduação em Ciências Florestais, Centro de Saúde e Tecnologia Rural, Universidade Federal de Campina Grande, Brazil, Rodovia Patos/Teixeira, CEP 58708–110, Patos, Paraíba, Brazil Corresponding author: Víctor Hugo Zaracho, e-mail: [email protected] Manuscript received: 20 January 2015 Accepted: 20 April 2015 by Arne Schulze Abstract. Whereas the external larval morphology of some species of Adenomera has been described, their internal mor- phology remains poorly studied. In this work, we provide information on the reproductive features and larval morphol- ogy of populations of Adenomera from northeastern Argentina and southwestern Brazil, including the first description of the chondrocranium and hyobranchial apparatus for a member of the genus Adenomera. We found that, morphologi- cally, the buccal cavity of A. diptyx is more similar to that of the species of the Leptodactylus fuscus group than to that of A. marmorata, the only species of Adenomera whose buccal cavity is known. Adenomera diptyx shares with the species of the L. fuscus group a semicircular crest in the prenarial region, two pairs of infralabial papillae, four lingual papillae, and few papillae on the roof and the floor of the cavity.
    [Show full text]
  • A Rapid Biological Assessment of the Upper Palumeu River Watershed (Grensgebergte and Kasikasima) of Southeastern Suriname
    Rapid Assessment Program A Rapid Biological Assessment of the Upper Palumeu River Watershed (Grensgebergte and Kasikasima) of Southeastern Suriname Editors: Leeanne E. Alonso and Trond H. Larsen 67 CONSERVATION INTERNATIONAL - SURINAME CONSERVATION INTERNATIONAL GLOBAL WILDLIFE CONSERVATION ANTON DE KOM UNIVERSITY OF SURINAME THE SURINAME FOREST SERVICE (LBB) NATURE CONSERVATION DIVISION (NB) FOUNDATION FOR FOREST MANAGEMENT AND PRODUCTION CONTROL (SBB) SURINAME CONSERVATION FOUNDATION THE HARBERS FAMILY FOUNDATION Rapid Assessment Program A Rapid Biological Assessment of the Upper Palumeu River Watershed RAP (Grensgebergte and Kasikasima) of Southeastern Suriname Bulletin of Biological Assessment 67 Editors: Leeanne E. Alonso and Trond H. Larsen CONSERVATION INTERNATIONAL - SURINAME CONSERVATION INTERNATIONAL GLOBAL WILDLIFE CONSERVATION ANTON DE KOM UNIVERSITY OF SURINAME THE SURINAME FOREST SERVICE (LBB) NATURE CONSERVATION DIVISION (NB) FOUNDATION FOR FOREST MANAGEMENT AND PRODUCTION CONTROL (SBB) SURINAME CONSERVATION FOUNDATION THE HARBERS FAMILY FOUNDATION The RAP Bulletin of Biological Assessment is published by: Conservation International 2011 Crystal Drive, Suite 500 Arlington, VA USA 22202 Tel : +1 703-341-2400 www.conservation.org Cover photos: The RAP team surveyed the Grensgebergte Mountains and Upper Palumeu Watershed, as well as the Middle Palumeu River and Kasikasima Mountains visible here. Freshwater resources originating here are vital for all of Suriname. (T. Larsen) Glass frogs (Hyalinobatrachium cf. taylori) lay their
    [Show full text]
  • (Osteocephalus Taurinus) by Arthropods (Insecta, Mantodea and Arachnida, Araneae) in Central Brazil
    Biota Neotrop., vol. 10, no. 3 Predation on young treefrog (Osteocephalus taurinus) by arthropods (Insecta, Mantodea and Arachnida, Araneae) in Central Brazil Raul Costa-Pereira1,5, Fernando Ibanez Martins2, Eurico Antonio Sczesny-Moraes3 & Antonio Brescovit4 1Centro de Ciências Biológicas e da Saúde – CCBS, Universidade Federal de Mato Grosso do Sul – UFMS, Cidade Universitária s/n, CEP 79070-900,Campo Grande, MS, Brasil 2Programa de Pós-graduação em Ecologia e Conservação, Centro de Ciências Biológicas e da Saúde – CCBS, Universidade Federal de Mato Grosso do Sul – UFMS, Cidade Universitária, s/n, CEP 79070-900, Campo Grande, MS, Brasil 3Departamento de Patologia, Centro de Ciências Biológicas e da Saúde – CCBS, Universidade Federal de Mato Grosso do Sul – UFMS, Cidade Universitária, s/n, CEP 79070-900, Campo Grande, MS, Brasil 4Laboratório de Artrópodes, Instituto Butantan, Av. Vital Brasil, 1500, CEP 05503-900, São Paulo, SP, Brasil 5Autor para correspondência: Raul Costa-Pereira, e-mail: [email protected] COSTA-PEREIRA, R., MARTINS, F.I., SCZESNY-MORAES, E.A. & BRASCOVIT, A. Predation on young treefrogs (Osteocephalus taurinus) by arthropods (Insecta, Mantodea and Arachnida, Araneae) in Central Brazil. Biota Neotrop. 10(3): http://www.biotaneotropica.org.br/v10n3/en/abstract?short- communication+bn04310032010. Abstract: Praying mantis and spider species are common food items in the diet of several anuran species. Nevertheless, in this study we report the predation of young treefrogs Osteocephalus taurinus by two spider species, a Pisauridae and a Trechaleidae (Neoctenus sp.) and by the praying mantis Eumusonia sp. in Mato Grosso, Central Brazil. The great abundance of this treefrog in the region, combined with its small body size during the juvenil stage, favor its predation by generalists predators.
    [Show full text]
  • Brown Recluse Spider, Loxosceles Reclusa Gertsch & Mulaik (Arachnida: Araneae: Sicariidae)1 G
    EENY299 Brown Recluse Spider, Loxosceles reclusa Gertsch & Mulaik (Arachnida: Araneae: Sicariidae)1 G. B. Edwards2 Introduction Kansas, east through middle Missouri to western Tennessee and northern Alabama, and south to southern Mississippi. The brown recluse spider, Loxosceles reclusa Gertsch & Gorham (1968) added Illinois, Kentucky, and northern Mulaik, is frequently reported in Florida as a cause of Georgia. Later, he added Nebraska, Iowa, Indiana and necrotic lesions in humans. For example, in the year 2000 Ohio, with scattered introductions in other states, includ- alone, Loft (2001) reported that the Florida Poison Control ing Florida; his map indicated a record in the vicinity of Network had recorded nearly 300 alleged cases of brown Tallahassee (Gorham 1970). recluse bites in the state; a subset of 95 of these bites was reported in the 21 counties (essentially Central Florida) under the jurisdiction of the regional poison control center in Tampa. I called the Florida Poison Control Network to confirm these numbers, and was cited 182 total cases and 96 in the Tampa region. The actual numbers are less important than the fact that a significant number of unconfirmed brown recluse spider bites are reported in the state every year. Yet not one specimen of brown recluse spider has ever been collected in Tampa, and the only records of Loxosceles species in the entire region are from Orlando and vicinity. A general review of the brown recluse, along with a critical examination of the known distribution of brown recluse and related spiders in Florida, seems in order at this time. Figure 1. Female brown recluse spider, Loxosceles reclusa Gertsch & Distribution Mulaik.
    [Show full text]
  • Leptodactylus Bufonius Sally Positioned. the Oral Disc Is Ventrally
    905.1 AMPHIBIA: ANURA: LEPTODACTYLIDAE Leptodactylus bufonius Catalogue of American Amphibians and Reptiles. Schalk, C. M. and D. J. Leavitt. 2017. Leptodactylus bufonius. Leptodactylus bufonius Boulenger Oven Frog Leptodactylus bufonius Boulenger 1894a: 348. Type locality, “Asunción, Paraguay.” Lectotype, designated by Heyer (1978), Museum of Natural History (BMNH) Figure 1. Calling male Leptodactylus bufonius 1947.2.17.72, an adult female collected in Cordillera, Santa Cruz, Bolivia. Photograph by by G.A. Boulenger (not examined by au- Christopher M. Schalk. thors). See Remarks. Leptodactylus bufonis Vogel, 1963: 100. Lap- sus. sally positioned. Te oral disc is ventrally po- CONTENT. No subspecies are recognized. sitioned. Te tooth row formula is 2(2)/3(1). Te oral disc is slightly emarginated, sur- DESCRIPTION. Leptodactylus bufonius rounded with marginal papillae, and possess- is a moderately-sized species of the genus es a dorsal gap. A row of submarginal papil- (following criteria established by Heyer and lae is present. Te spiracle is sinistral and the Tompson [2000]) with adult snout-vent vent tube is median. Te tail fns originate at length (SVL) ranging between 44–62 mm the tail-body junction. Te tail fns are trans- (Table 1). Head width is generally greater parent, almost unspotted (Cei 1980). Indi- than head length and hind limbs are moder- viduals collected from the Bolivian Chaco ately short (Table 1). Leptodactylus bufonius possessed tail fns that were darkly pigment- lacks distinct dorsolateral folds. Te tarsus ed with melanophores, especially towards contains white tubercles, but the sole of the the terminal end of the tail (Christopher M. foot is usually smooth.
    [Show full text]
  • Lista Das Espécies De Aranhas (Arachnida, Araneae) Do Estado Do Rio Grande Do Sul, Brasil
    Lista das espécies de aranhas (Arachnida, Araneae) do estado do... 483 Lista das espécies de aranhas (Arachnida, Araneae) do estado do Rio Grande do Sul, Brasil Erica Helena Buckup1, Maria Aparecida L. Marques1, Everton Nei Lopes Rodrigues1,2 & Ricardo Ott1 1. Museu de Ciências Naturais, Fundação Zoobotânica do Rio Grande do Sul, Rua Dr. Salvador França, 1427, 90690-000 Porto Alegre, RS, Brasil. ([email protected]; [email protected]; [email protected]) 2. Programa de Pós-Graduação em Biologia Animal, Departamento de Zoologia, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, Bloco IV, Prédio 43435, 91501-970 Porto Alegre, RS, Brasil. ([email protected]) ABSTRACT. List of spiders species (Arachnida, Araneae) of the state of Rio Grande do Sul, Brazil. A spiders species list including 808 species of 51 families occurring in the state of Rio Grande do Sul, Brazil, is presented. Type locality, municipalities of occurrence and taxonomic bibliography concerning these species are indicated. KEYWORDS. Inventory revision, type localities, municipalities records, Neotropical. RESUMO. É apresentada uma lista de 808 espécies de aranhas, incluídas em 51 famílias ocorrentes no Rio Grande do Sul, Brasil. São indicados localidade-tipo, municípios de ocorrência e a bibliografia taxonômica de cada espécie. PALAVRAS-CHAVES. Inventário, localidades-tipo, registros municipais, Neotropical. A ordem Araneae reúne atualmente 110 famílias e 31 famílias. Registrou as 219 espécies descritas por distribuídas em 3821 gêneros e 42055 espécies, mostrando Keyserling em “Die Spinnen Amerikas” e relacionou mais nas últimas décadas um aumento progressivo no 212 espécies, entre as quais 67 novas para a ciência.
    [Show full text]
  • Characterization of the Venom Proteome for the Wandering Spider
    ics om & B te i ro o Cole et al., J Proteomics Bioinform 2016, 9:8 P in f f o o r l m DOI: 10.4172/jpb.1000406 a Journal of a n t r i c u s o J ISSN: 0974-276X Proteomics & Bioinformatics Research Article Article OpenOpen Access Access Characterization of the Venom Proteome for the Wandering Spider, Ctenus hibernalis (Aranea: Ctenidae) Jeffrey Cole1, Patrick A Buszka1, James A Mobley2 and Robert A Hataway1* 1Department of Biological and Environmental Science, Samford University, Birmingham, AL 35229-2234, USA 2Department of Surgery, University of Alabama-Birmingham, Birmingham, AL 35294-0113, USA Abstract Spider venom is a rich multicomponent mixture of neurotoxic polypeptides. The venom of a small percentage of the currently classified spiders has been categorized. In order to determine what venom proteins are expressed in our species, the wandering spider Ctenus hibernalis, we constructed a comprehensive proteome derived from a crude venom extract using a GeLC approach that required a one dimensional denatured gel electrophoresis separation combined with enzymatic digestion of the entire lane cut into many molecular weight fractions followed by LC-ESI-MS2. In this way, we identified 1,182 proteins with >99% confidence that closely matched sequences derived from the combined genomes taken from several similar species of spiders. Our results suggest that the venom proteins of C. hibernalis contain several proteins with conserved sequences similar to other species. Going forward, with next generation sequencing (NSG), combined with extended annotations will be used to construct a more complete genoproteomic database. Therefore, it is expected that with further studies like this, there will be a continued and growing understand of the genoproteomic makeup of the venom for many species derived from insects, plants, and animals.
    [Show full text]