Notes on the Feeding Habits of a Wandering Spider, Phoneutria Boliviensis (Arachnida: Ctenidae)

Total Page:16

File Type:pdf, Size:1020Kb

Notes on the Feeding Habits of a Wandering Spider, Phoneutria Boliviensis (Arachnida: Ctenidae) 2020. Journal of Arachnology 48:43–48 Notes on the feeding habits of a wandering spider, Phoneutria boliviensis (Arachnida: Ctenidae) Juan Carlos Valenzuela-Rojas1,2, Julio Ce´sar Gonza´lez-Go´mez2, Giovany Guevara3, Lida Marcela Franco4, Gladys Reinoso- Flo´rez3 and Luis Fernando Garc´ıa5: 1Programa de Licenciatura en Ciencias Naturales y Educacio´n Ambiental. Facultad de Educacio´n. Universidad Surcolombiana. Neiva, Huila, Colombia. E-mail: [email protected]; 2Grupo de Investigacio´n Biolog´ıa y Ecolog´ıa de Artro´podos (BEA), Corporacio´n Huiltur y Facultad de Ciencias, Universidad del Tolima, Altos de Santa Helena, Ibague´, Colombia; 3Grupo de Investigacio´n en Zoolog´ıa (GIZ), Facultad de Ciencias, Universidad del Tolima, Altos de Santa Helena, Ibague´, Colombia; 4Facultad de Ciencias Naturales y Matema´ticas, Universidad de Ibague´, Ibague´, Colombia; 5Grupo Multidisciplinario en Ecolog´ıa para la Agricultura, Centro Universitario Regional Este, Universidad de la Repu´blica, Treinta y Tres, Uruguay. Abstract. Phoneutria Perty, 1833 is considered one of the most toxic spider genera in the world; however, the natural history and biology of these spiders is still largely unexplored. The objective of this study was to determine the natural diet of the medically important species Phoneutria boliviensis (F.O.P.-Cambridge, 1897) based on prey records from Colombia, and supplemented by published records found in electronic databases as well as photographic records from the internet. We found that P. boliviensis is an euryphagous predator with a broad diet made up predominantly of arthropods (orders Araneae, Blattodea, Coleoptera, Hymenoptera, Lepidoptera, Mantodea, Orthoptera, and Phasmatodea) and to a lesser extent of small vertebrates (Gekkonidae, Hylidae, and Sphaerodactylidae). These results support previous evidence suggesting that P. boliviensis is a generalist predator that includes both invertebrates and small vertebrates in its diet. Keywords: Colombia, diet, generalist predator, predation Spiders are the seventh most abundant group of terrestrial genus Phoneutria.Bu¨cherl (1969), Lucas (1988), Ramos et al. predators on the planet as well as being the most diversified (1998), and Almeida et al. (2000), have examined different order (Peka´r & Toft 2014). They are predators of great aspects of activity, territorial behavior and prey, preference of importance in terrestrial ecosystems where they can have ecotopes, reproduction and use of habitat, mainly from significant effects on the other arthropod communities (Clarke Phoneutria nigriventer (Keyserling, 1891). & Grant 1968; Wilder 2011). They have been described as Phoneutria boliviensis (F.O.P.-Cambridge, 1897) is a spider possible controllers of pests in crops (Sunderland & Samu of medical importance with a wide distribution from Costa 2000; Nyffeler & Birkhofer 2017). Their natural prey are Rica to northernmost Argentina (Hazzi 2014). In addition, it mainly invertebrates—mostly springtails and other arthropods has a powerful venom which contains a neurotoxin, similar to (Nyffeler & Birkhofer 2017). In addition to this, some species that produced by other Phoneutria spp. (Estrada-Go´mez et al. in the families Araneidae, Ctenidae, Nephilidae, Lycosidae, 2015). In Colombia, P. boliviensis bites have been poorly Salticidae, Sparassidae and Theraphosidae have been reported documented. However, Flo´rez et al. (2003) reported 31 bite to consume small vertebrates such as lizards, frogs, fishes, bats accidents in several municipalities in the department of and birds (Foelix 2010; Nyffeler & Kno¨rnschild 2013; Nyffeler Antioquia in one month. & Pusey 2014; Nyffeler et al. 2017). The possibility that spiders Despite the importance of this group and in contrast to have for accessing different types of prey is attributed to other medically important spiders groups such as Loxosceles several capture strategies that they can develop (Willemart & or Latrodectus (see Bu¨cherl 1969; Salomon 2011; Vetter 2015), Lacava 2017), including the construction of webs and the use few studies have been made regarding to the biology or of venom to immobilize and/or kill prey (Kuhn-Nentwig et al. natural history of Phoneutria spiders (Bu¨cherl 1969; Lucas 2011). Spider venoms are mixtures of peptides and proteins 1988; Ramos et al. 1998; Hazzi 2014) focused on observations that allow the spiders to quickly immobilize their prey, and of predatory behavior, mating and development. defend themselves against possible predators (Casewell et al. Because knowledge of the natural diet provides important 2013). So far, few studies have reported on the natural diet of information on spiders’ trophic ecology (Peka´r et al. 2017), the venomous spiders, particularly in the Neotropical region, aim of this research was to describe the feeding habits of the where feeding behavior studies have been focused mainly in medically important wandering spider Phoneutria boliviensis some groups such as Latrodectus Walckenaer, 1805 (Theridi- based on field observations, a literature search, and photo- idae) and Loxosceles Heineken & Lowe, 1832 (Sicariidae) graphic records found on the internet. Taking into account the (Dias & Brazil 1999; Fischer et al. 2006; Pompozzi et al. 2013; lack of information about spiders of the genus Phoneutria, we Garc´ıa et al. 2016). expect this study will contribute to the knowledge of this Species in the genus Phoneutria Perty, 1833 are considered important group of spiders. to be one of the main groups of spiders of medical importance (Herzig et al. 2002; Foelix 2010; Torres-Sa´nchez & Gasnier METHODS 2010), with bites widely reported in tropical areas, particularly so in Brazil (see Herzig et al. 2002; Peralta 2013). Several We evaluated the composition of the diet (consumed prey) studies have addressed different aspects of the biology of the in populations of P. boliviensis, present in rural and urban 43 44 JOURNAL OF ARACHNOLOGY Figure 1.—Prey reported for Phoneutria boliviensis. A. Phasmatodea. B. Saturniidae (source: www.flickr.com/andreaskay/albums). C. Phyllophaga sp. D. Acheta cf. E. Orthoptera. F. Odonata remains. G. Blatta cf. H. Gonatodes albogularis (female) (source: www.flickr.com/ Diegophidio/albums). I. Ctenus sp. J. Periplaneta americana.K.Hemidactylus frenatus (female). L. P. boliviensis. areas of two localities in Colombia: Oporapa (Huila, prey remains could not be identified, these were not measured. 281040.5"N; 75859043"W) and Ibague´ (Tolima, 4826016"N; To analyze the relationship between the spider’s body length 75812002"W). Between June of 2017 and August of 2018, four and prey size, we used a linear regression using the statistical field trips were made, three to Oporapa and one to Ibague´ software R version 3.5.0 (R Core Team 2018). Prey items where spiders were collected on roadsides and close to coffee captured by P. boliviensis wereclassifiedtothelowest crops and pastures. In Oporapa four collectors sampled taxonomic level allowed by their condition and grouped into spiders in a 10 km2 area during 12 days. In Ibague´, two morphospecies. Phoneutria boliviensis was identified using the collectors sampled spiders in 1 km2 area during two days. key proposed by Martins & Bertani (2007) and confirmed by Observations were made between the hours of 21:00 and 05:00, specialists on this group. Sampled individuals were deposited using headlights, as Phoneutria spiders are mainly nocturnal in the entomological collection of the University of Tolima. (Hazzi 2014). Spiders and their prey were photographed in situ In addition, we conducted a literature search based largely with a Nikon D7000 digital camera, equipped with a 60 mm on the Thomson-Reuters data base (Web of Science), Google Nikkor lens; a millimeter paper was used as a reference to Search, Google Scholar, Google Books, Google Pictures, establish predator:prey size ratio using the software ImageJ ProQuest Dissertations & Theses, Scielo.org, ScienceDirect (Rueden et al. 2017). We identified the sex and measured the and the hosting website Flickr image following the method- length of the spider’s body (prosomaþopisthosoma length) ology suggested by Nyffeler & Kno¨rnschild (2013). Three and the total body length of the prey when possible. When photographs were selected where P. boliviensis could be VALENZUELA-ROJAS ET AL.—FEEDING OF Table 1.—Prey reported for Phoneutria boliviensis from selected electronic databases and records supporting two new distributional data for Colombia. Relation Spider predator Predator/ Location (province, country) Habitat (sex) Prey species prey length Observation Source Oporapa (Huila, Colombia) Leaf litter P. boliviensis (female) Acheta sp. (Gryllidae) 0.83 Field observation This study Oporapa (Huila, Colombia) Rural road P. boliviensis (-) Mantidae - Field observation This study Oporapa (Huila, Colombia) Pastureland P. boliviensis (female) Phyllophaga sp. 0.63 Field observation This study (Scarabaeidae) Oporapa (Huila, Colombia) Rural road P. boliviensis (male) Ctenus sp. (Ctenidae) 0.52 Field observation This study Oporapa (Huila, Colombia) Leaf litter P. boliviensis (female) P. boliviensis (female) 1.10 Field observation This study (Ctenidae) Oporapa (Huila, Colombia) Leaf litter P. boliviensis (female) Orthoptera 1.19 Field observation This study Ibague´, (Tolima, Colombia) Leaf of a P. boliviensis (female) Tettigoniidae 2.18 Field observation This study living plant PHONEUTRIA BOLIVIENSIS Ibague´, (Tolima, Colombia) - P. boliviensis (female) Hemidactylus frenatus 3.27 Web search This
Recommended publications
  • False Black Widows and Other Household Spiders
    False Black Widows and Other Household Spiders Spiders can quite unnecessarily evoke all kinds of dread and fear. The Press does not help by publishing inaccurate and often alarmist stories about them. Spiders are in fact one of our very important beneficial creatures. Spiders in the UK devour a weight of insect 'pests' equivalent to that of the nation's human population! During the mid-late summer, many spiders mature and as a result become more obvious as they have then grown to their full size. One of these species is Steatoda nobilis. It came from the Canary and Madeiran Islands into Devon over a 100 years ago, being first recorded in Britain near Torquay in 1879! However it was not described from Britain until 1993, when it was known to have occurred since at least 1986 and 1989 as flourishing populations in Portsmouth (Hampshire) and Swanage (Dorset). There was also a population in Westcliff-on-Sea (Essex) recorded in 1990, and another in Littlehampton and Worthing (West Sussex). Its distribution is spreading more widely along the coast in the south and also inland, with confirmed records from South Devon, East Sussex, Kent, Surrey and Warwick. The large, grape-like individuals are the females and the smaller, more elongate ones, the males. These spiders are have become known as False Widows and, because of their colour, shape and size, are frequently mistaken for the Black Widow Spider that are found in warmer climes, but not in Britain (although some occasionally come into the country in packaged fruit and flowers). Black Widow Spiders belong to the world-wide genus Latrodectus.
    [Show full text]
  • The Behavioural Ecology of Latrodectus Hasselti (Thorell), the Australian Redback Spider (Araneae: Theridiidae): a Review
    Records of the Western Australian MIISellnl Supplement No. 52: 13-24 (1995). The behavioural ecology of Latrodectus hasselti (Thorell), the Australian Redback Spider (Araneae: Theridiidae): a review Lyn Forster McMasters Road, RD 1, Saddle Hill, Dunedin, New Zealand Abstract - Aspects of the biogeographical history and behavioural ecology of the AustralIan Latrodectus hasseIti provide support for the endemic status of this species. Cannibalism, prey stealing and short instar lengths are growth strategies for. female spiders whereas early maturation, small size, hiding and scavengmg are useful survival tactics for males. Moreover male complicity is an important component of sexual cannibalism which is ~hown to be a highly predictable event. Latrodectus hasseIti males hybridize with female L. katlpo (a New Zealand species) and fertile Fl and F2 generations Imply genetic relatedness. Hence, it is likely that L. hasselti and L. katipo evolv~d from a common ancestor in ancient Pangaea, a feasible explanation only If L. hasseItl IS endemic to Australia. It is concluded that L. hasseIti would have been able to persist in outback Australia for millions of years, with ItS mtraspeClfJc predatory habits aiding subsistence and the evolution of sexual cannibalism providing a way of coping with infrequent meeting and matmg opportunities. INTRODUCTION indigenous status, Main (1993) notes that, (as a Many stories and articles have been written consequence of its supposed introduction), "the about the redback spider (McKeown 1963; Raven absence of Latrodectus in the Australian region, 1992) with considerable attention being devoted to prior to human habitation, poses a curious its venomous nature (Southcott 1978; Sutherland zoogeographic dilemma". This comment raises an and Trinca 1978).
    [Show full text]
  • By Phoneutria Nigriventer (Aranae: Ctenidae) in Atlantic Forest, South-East of Brazil
    Herpetology Notes, volume 10: 369-371 (2017) (published online on 03 July 2017) Predation on Physalaemus olfersii (Anura: Leptodactylidae) by Phoneutria nigriventer (Aranae: Ctenidae) in Atlantic Forest, South-east of Brazil Mariana Pedrozo1,*, Lucas de Souza Almeida2, Matheus de Toledo Moroti3 and Diego José Santana3 Anurans are essential in trophic chains (Duellman and mm of snout-vent length in males and 22.4–41.1 mm Trueb, 1994), and are preyed upon many vertebrates and in females (Cassini et al. 2010), and is distributed in invertebrates (Toledo et al., 2007). Usually, predation the Atlantic Rain Forest domain and its influence areas, on anurans by invertebrates occurs mostly during from the municipality of Santa Teresa, state of Espírito larval and adult stages, but they also attack on anuran Santo, southern region of the states of Minas Gerais and spawns (Downie et al., 1995; Santos, 2009). Among São Paulo (Cassini et al. 2010). Ctenid spiders of the the invertebrates that may feed on anurans, there are genus Phoneutria have already been reported as anuran records of beetles, waterbugs, ants, spiders and crabs predators (Rego et al., 2005, Santana et al., 2009, Caldart (Duellman and Trueb, 1994; Toledo et al., 2005; Caldart et al., 2011, Pacheco et al., 2016), and are nocturnal with et al., 2011). Predation events, involving anurans and wandering habits, which actively seek their prey (Lucas, invertebrates, may be trivial in nature, however these 1988). According to Brazil et al. (2009), Phoneutria records are dependent of fortuitous observations nigriventer (Keyserling, 1891) has a wide distribution, (Pombal Jr, 2007; Santana et al., 2009).
    [Show full text]
  • Dna Sequence Data Indicates the Polyphyl Y of the Family Ctenidae (Araneae )
    1993. The Journal of Arachnology 21 :194–201 DNA SEQUENCE DATA INDICATES THE POLYPHYL Y OF THE FAMILY CTENIDAE (ARANEAE ) Kathrin C . Huber', Thomas S . Haider2, Manfred W . Miiller2, Bernhard A . Huber' , Rudolf J. Schweyen2, and Friedrich G . Barth' : 'Institut fair Zoologie, Althanstr . 14; 1090 Wien; and 2lnstitut fur Mikrobiologie and Genetik; Dr. Bohrgasse 9 ; 1030 Wien (Vienna), Austria . ABSTRACT. Mitochondrial DNA fragments comprising more than 400 bases of the 16S rDNA from nine spider species have been sequenced: Cupiennius salei, C. getazi, C. coccineus and Phoneutria boliviensis (Ctenidae), Pisaura mirabilis, Dolomedes fimbriatus (Pisauridae), Pardosa agrestis (Lycosidae), Clubiona pallidula (Clubi- onidae) and Ryuthela nishihirai (syn. Heptathela nishihirai; Heptathelidae: Mesothelae). Sequence divergence ranges from 3–4% among Cupiennius species and up to 36% in pairwise comparisons of the more distantly related spider DNAs. Maximally parsimonious gene trees based on these sequences indicate that Phoneutri a and Cupiennius are the most distantly related species of the examined Lycosoidea . The monophyly of the family Ctenidae is therefore doubted ; and a revision of the family, which should include DNA-data, is needed . Cupiennius salei (Ctenidae) is one of the most get a high copy number of the DNA segment of extensively studied species of spiders (see Lach - interest. The PCR depends on the availability of muth et al. 1985). The phylogeny of the Ctenidae , oligonucleotides that specifically bind to the a mainly South and Central American family, i s flanking sequences of this DNA segment. These poorly understood ; and systematists propose oligonucleotides serve as primers for a polymer- highly contradicting views on its classification ization reaction that copies the segment in vitro.
    [Show full text]
  • Curriculum Vitae Bradley Evan Carlson, Ph.D
    Curriculum Vitae Bradley Evan Carlson, Ph.D. Byron K. Trippet Assistant Professor of Biology Wabash College Crawfordsville, IN 47933 Email: [email protected] Telephone: (765) 361-6460 Website: carlsonecolab.weebly.com Professional Experience 2014 - present Byron K. Trippet Assistant Professor of Biology, Wabash College Education 2009-2014 PhD in Ecology, minor in Statistics, The Pennsylvania State University, University Park, PA Advisor: Dr. Tracy Langkilde Dissertation: The evolutionary ecology of intraspecific trait variation in larval amphibians 2008 B.S. in Biology, Bethel University, St. Paul, MN Summa cum laude, Honors Graduate Thesis: Temperature and desiccation effects on the antipredator behavior of Centruroides vittatus (Scorpiones: Buthidae) Research Interests Evolutionary ecology – phenotypic diversity, local adaptation, trait integration Behavioral ecology – phenotypic plasticity, predator-prey interactions, personality traits Community ecology – trait-mediated indirect interactions, predation, aquatic ecology Zoology – herpetology, arachnology, comparative morphology Publications (*co-author was undergraduate) Kashon*, EAF, and BE Carlson. 2018. Consistently bolder turtles maintain higher body temperatures in the field but may experience greater predation risk. Behavioral Ecology and Sociobiology 72:9. Carlson, BE, and T Langkilde. 2017. Body size variation in aquatic consumers causes pervasive community effects, independent of mean body size. Ecology and Evolution 7:9978-9990. Lambert, MR, Carlson, BE, Smylie, MS, and L Swierk. 2017. Ontogeny of sexual dichromatism in the explosively breeding Wood Frog. Herpetological Conservation and Biology 12:447-456. Media coverage: InsideEcology.com (https://insideecology.com/2018/02/12/amphibians-that-change-colour/) Carlson, BE, and T Langkilde. 2016. The role of resources in microgeographic variation in Red- spotted Newt (Notophthalmus v. viridescens) morphology. Journal of Herpetology 50:442-448.
    [Show full text]
  • Common Name Proposal
    3 Park Place, Suite 307 Phone: 301-731-4535 [email protected] Annapolis, MD 21401-3722 USA Fax: 301-731-4538 www.entsoc.org Proposal Form for new Common Name or Change of ESA-Approved Common Name Complete this form and send or e-mail to the above address. Submissions will not be considered unless this form is filled out completely. The proposer is expected to be familiar with the rules, recommendations, and procedures outlined in the “Use and Submission of Common Names” on the ESA website and with the discussion by A.B. Gurney, 1953, Journal of Economic Entomology 46:207-211. 1. Proposed new common name: Four species in the spider genus Cupiennius: 1) redfaced banana spider, 2) spotlegged banana spider, 3) redlegged banana spider, 4) Sale’s banana spider 2. Previously approved common name (if any): none 3. Scientific name (genus, species, author): 1) Cupiennius chiapanensis Medina, 2) Cupiennius getazi Simon, 3) Cupiennius coccineus F. O. Pickard-Cambridge, 4) Cupiennius salei (Keyserling) Order: Araneae Family: Ctenidae Supporting Information 4. Reasons supporting the need for the proposed common name: For the last decade, I have been working on a project involving spiders that have been brought into North America in international cargo. I am in the process of summarizing the work and writing a manuscript. Some of these spiders are huge (leg span 50 to 70 mm) and typically cause strong reaction by cargo processors and produce handlers who discover these creatures when they are unloading and unpacking bananas. One of the spiders, C. chiapanensis, (which has bright red cheliceral hairs – see cover of American Entomologist, 2008, volume 54, issue 2) has caused several misidentifications by qualified arachnologists because 1) this spider was unknown until it was given its scientific name in 2006 and 2) prior to the 21st century, the only reference that many entomologists had to ID international spiders was a children’s book, The Golden Guide to Spiders by Levi and Levi.
    [Show full text]
  • Sexual Selection Research on Spiders: Progress and Biases
    Biol. Rev. (2005), 80, pp. 363–385. f Cambridge Philosophical Society 363 doi:10.1017/S1464793104006700 Printed in the United Kingdom Sexual selection research on spiders: progress and biases Bernhard A. Huber* Zoological Research Institute and Museum Alexander Koenig, Adenauerallee 160, 53113 Bonn, Germany (Received 7 June 2004; revised 25 November 2004; accepted 29 November 2004) ABSTRACT The renaissance of interest in sexual selection during the last decades has fuelled an extraordinary increase of scientific papers on the subject in spiders. Research has focused both on the process of sexual selection itself, for example on the signals and various modalities involved, and on the patterns, that is the outcome of mate choice and competition depending on certain parameters. Sexual selection has most clearly been demonstrated in cases involving visual and acoustical signals but most spiders are myopic and mute, relying rather on vibrations, chemical and tactile stimuli. This review argues that research has been biased towards modalities that are relatively easily accessible to the human observer. Circumstantial and comparative evidence indicates that sexual selection working via substrate-borne vibrations and tactile as well as chemical stimuli may be common and widespread in spiders. Pattern-oriented research has focused on several phenomena for which spiders offer excellent model objects, like sexual size dimorphism, nuptial feeding, sexual cannibalism, and sperm competition. The accumulating evidence argues for a highly complex set of explanations for seemingly uniform patterns like size dimorphism and sexual cannibalism. Sexual selection appears involved as well as natural selection and mechanisms that are adaptive in other contexts only. Sperm competition has resulted in a plethora of morpho- logical and behavioural adaptations, and simplistic models like those linking reproductive morphology with behaviour and sperm priority patterns in a straightforward way are being replaced by complex models involving an array of parameters.
    [Show full text]
  • Daily Locomotor Activity Patterns in Three Species of Cupiennius (Araneae, Ctenidae): the Males Are the Wandering Spiders
    Schmitt, A., M. Schuster and E B. Barth. 1990. Daily locomotor activity patterns in three species of Cupiennius (Araneae, Ctenidae): The males are the wandering spiders. J. Araehnol., 18:249-255. DAILY LOCOMOTOR ACTIVITY PATTERNS IN THREE SPECIES OF CUPIENNIUS (ARANEAE, CTENIDAE): THE MALES ARE THE WANDERING SPIDERS Alain Schmitt, Martin Schuster and Friedrich G. Barth Institut fiir Zoologic, Abteilung Neurobiologie Universit~it Wien, Althanstr. 14 A-1090 Wien, Austria ABSTRACT The daily locomotor activity patterns of spiders of three large species of the genus Cupiennius (Ctenidae) were measured in an artificial 12:12 light:dark cycle. Adult males (N = 10) and females = 10) of each species of these nocturnal Central American wandering spiders were compared. On average, males were 3.5 (C. coccineus and C. gemzi) to 12.7 (C. saleO times more active than females. Hence, males are the truly wandering spiders. We suggest that this is due to sexually motivated searching behavior of the males. Of the two sympatric species, the males and the females of C. cot.t.inell.~ were on average 3.1 times more active than those of C. getazi. In addition C. coccineus exhibited a relative minimumin its locomotor activity when C. getazi showed its absolute maximum. This difference in activity pattern may contribute to the reproductive isolation of these two sympatric species. INTRODUCTION In the field adult and subadult wandering spiders of the species Cupiennius salei (Keyserling) are quite sedentary. Identified individuals were previously found in their retreats on the same dwelling plants for at least one week (Barth and Seyfarth 1979; Seyfarth 1980).
    [Show full text]
  • The Phylogenetic Distribution of Sphingomyelinase D Activity in Venoms of Haplogyne Spiders
    Comparative Biochemistry and Physiology Part B 135 (2003) 25–33 The phylogenetic distribution of sphingomyelinase D activity in venoms of Haplogyne spiders Greta J. Binford*, Michael A. Wells Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, AZ 85721, USA Received 6 October 2002; received in revised form 8 February 2003; accepted 10 February 2003 Abstract The venoms of Loxosceles spiders cause severe dermonecrotic lesions in human tissues. The venom component sphingomyelinase D (SMD) is a contributor to lesion formation and is unknown elsewhere in the animal kingdom. This study reports comparative analyses of SMD activity and venom composition of select Loxosceles species and representatives of closely related Haplogyne genera. The goal was to identify the phylogenetic group of spiders with SMD and infer the timing of evolutionary origin of this toxin. We also preliminarily characterized variation in molecular masses of venom components in the size range of SMD. SMD activity was detected in all (10) Loxosceles species sampled and two species representing their sister taxon, Sicarius, but not in any other venoms or tissues surveyed. Mass spectrometry analyses indicated that all Loxosceles and Sicarius species surveyed had multiple (at least four to six) molecules in the size range corresponding to known SMD proteins (31–35 kDa), whereas other Haplogynes analyzed had no molecules in this mass range in their venom. This suggests SMD originated in the ancestors of the Loxoscelesy Sicarius lineage. These groups of proteins varied in molecular mass across species with North American Loxosceles having 31–32 kDa, African Loxosceles having 32–33.5 kDa and Sicarius having 32–33 kDa molecules.
    [Show full text]
  • Kirill Glebovich Mikhailov: on the Occasion of His 60Th Birthday
    Zootaxa 5006 (1): 006–012 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Biography ZOOTAXA Copyright © 2021 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.5006.1.4 http://zoobank.org/urn:lsid:zoobank.org:pub:B883A8B0-F324-400F-B670-304511C53963 Kirill Glebovich Mikhailov: On the occasion of his 60th Birthday YURI M. MARUSIK1 & VICTOR FET2 1Institute for Biological Problems of the North, Portovaya Street 18, Magadan 685000, Russia Department of Zoology & Entomology, University of the Free State, Bloemfontein 9300, South Africa [email protected]; https://orcid.org/0000-0002-4499-5148 2Department of Biological Sciences, Marshall University, Huntington, West Virginia 25755-2510, USA [email protected]; https://orcid.org/0000-0002-1016-600X Kirill Glebovich Mikhailov was born on 29 July 1961 in Moscow, Russia. Both of his parents, Gleb K. Mikhailov (1929–2021) and Galina R. Mikhailova (1926–2019), were research scientists. Kirill’s father was an expert in the history of mechanics, and mother, a biologist. Since early childhood Kirill was raised mainly by his maternal grandparents, Ro- man P. Nosov and Antonina V. Nosova. Kirill’s grandfather, a CPSU official and a career administrator at the Ministry of Energetics, retired from his post in 1965 to take care of the grandson. Kirill’s grandmother, an obstetrician by profession, received disability at a military plant during the WWII in evacuation, and was a housewife after the war. In 1978, Kirill began his studies at the Division of Biology (Biologicheskii Fakul’tet) of the Moscow State University (below, MSU). Even earlier, as a schoolboy, Kirill used to buy books on zoology, especially separate issues of the Fauna of the USSR and Keys to the Fauna of the USSR, then relatively cheap and available.
    [Show full text]
  • Black Widow Spider, Latrodectus Variolus, Latrodectus Mactans, Family Theridiidae
    Rose Hiskes, Diagnostician and Horticulturist Department of Entomology The Connecticut Agricultural Experiment Station 123 Huntington Street, P. O. Box 1106 New Haven, CT 06504 Phone: (203) 974-8600 Fax: (203) 974-8502 Email: [email protected] NORTHERN BLACK WIDOW, SOUTHERN BLACK WIDOW SPIDER, LATRODECTUS VARIOLUS, LATRODECTUS MACTANS, FAMILY THERIDIIDAE the northern range for the southern black widow. Historically, CAES has had a few specimens of the northern black widow brought into our offices. It was apparently not common and rarely seen, due in part, to being found mainly in woodland settings. The southern black widow can be found outdoors as well as indoors. It is more common in and around human habitations. Kaston does mention that both species have been found in Connecticut. It is possible that these spiders may become more abundant and will increasingly be detected by residents. Southern Black Widow juvenile, Latrodectus mactans. Photo by Jim Thompson The Connecticut Agricultural Experiment Station (CAES) has received several reports of northern and southern black widow sightings in Connecticut during June, 2013. In the recent past, any black widow spiders brought to the station were mostly from bags of South American grapes purchased in local grocery stores. The northern black widow spider can be found in the eastern U.S. from Florida to southern Canada. The southern black widow Black Widow female, Latrodectus spp. spider is found from the central U.S. south Photo by Karin DiMauro into South America. While Connecticut lies in the middle of the range for the northern black widow spider, we are at the edge of NORTHERN BLACK WIDOW, LATRODECTUS VARIOLUS, THERIDIIDAE, Rose Hiskes, The Connecticut Agricultural Experiment Station, www.ct.gov/caes 1 Females of both species are not likely to bite black widow, L.
    [Show full text]
  • Accidents Caused by Spider Bites
    Open Journal of Animal Sciences, 2014, 4, 113-117 Published Online June 2014 in SciRes. http://www.scirp.org/journal/ojas http://dx.doi.org/10.4236/ojas.2014.43015 Accidents Caused by Spider Bites Annelise Carla Camplesi1*, Sthefani Soares Albernaz1, Karina Paes Burger1, Carla Fredrichsen Moya-Araujo2 1School of Agriculture and Veterinary Science, Sao Paulo State University—UNESP, Jaboticabal, Brazil 2School of Veterinary Medicine—FIO, Ourinhos, Brazil Email: *[email protected] Received 9 April 2014; revised 15 May 2014; accepted 22 May 2014 Copyright © 2014 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract Accidents caused by spider bites occur in many countries and represent a public health problem due to their high severity and occurrence of fatal accidents. In Veterinary Medicine, the incidence of arachnidism is considered nonexistent in large animals, as their thick skin cannot be pierced, rare in cats and common in dogs, particularly due to their exploratory and curious habit, and the habitats of venomous animals, such as the arachnids, located close to urban areas. The aim of this review is to describe the characteristics and distribution of spiders, the mechanism of action of the venom, clinical signs, diagnosis and treatment of accidents caused by arachnids of genera Loxos- celes sp., Phoneutria sp., Latrodectus sp., and suborder Mygalomorphae. Keywords Arachnids, Clinical Signs, Diagnosis, Treatment 1. Introduction Spiders are the second largest order of arachnids, with more than 41,000 species described. Practically all of them are venomous, but only some of them have potential significance to human medicine and veterinary medi- cine, due to their venom toxicity, habitat of species, among other factors [1].
    [Show full text]