Donors to the SSC Conservation Communications Programme and the Deer Action Plan

Total Page:16

File Type:pdf, Size:1020Kb

Donors to the SSC Conservation Communications Programme and the Deer Action Plan Donors to the SSC Conservation Communications Programme and the Deer Action Plan The IUCN/Species Survival Commission is committed to communicate important species conservation information to natural resource managers, decision-makers and others whose actions affect the conservation of biodiversity. The SSC’s Action Plans, Occasional Papers, news magazine (Species), Membership Directory and other publications are supported by a wide variety of generous donors including: The Sultanate of Oman established the Peter Scott IUCN/SSC Action Plan Fund in 1990. The Fund supports Action Plan development and implementation; to date, more than 80 grants have been made from the Fund to Specialist Groups. As a result, the Action Plan Programme has progressed at an accelerated level and the network has grown and matured significantly. The SSC is grateful to the Sultanate of Oman for its confidence in and support for species conservation worldwide. The Chicago Zoological Society (CZS) provides significant in-kind and cash support to the SSC, including grants for special projects, editorial and design services, staff secondments and related support services. The mission of CZS is to help people develop a sustainable and harmonious relationship with nature. The Zoo carries out its mission by informing and inspiring 2,000,000 annual visitors, serving as a refuge for species threatened with extinction, developing scientific approaches to manage species successfully in zoos and the wild, and working with other zoos, agencies, and protected areas around the world to conserve habitats and wildlife. The Council of Agriculture (COA), Taiwan has awarded major grants to the SSC’s Wildlife Trade Programme and Conservation Communications Programme. This support has enabled SSC to continue its valuable technical advisory service to the Parties to CITES as well as to the larger global conservation community. Among other responsibilities, the COA is in charge of matters concerning the designation and management of nature reserves, conservation of wildlife and their habitats, conservation of natural landscapes, coordination of law enforcement efforts as well as promotion of conservation education, research and international cooperation. The World Wide Fund for Nature (WWF) provides significant annual operating support to the SSC. WWF’s contribution supports the SSC’s minimal infrastructure and helps ensure that the voluntary network and Publications Programme are adequately supported. WWF aims to conserve nature and ecological processes by: (1) preserving genetic, species, and ecosystem diversity; (2) ensuring that the use of renewable natural resources is sustainable both now and in the longer term; and (3) promoting actions to reduce pollution and the wasteful exploitation and consumption of resources and energy. WWF is one of the world’s largest independent conservation organizations with a network of National Organizations and Associates around the world and over 5.2 million regular supporters. WWF continues to be known as World Wildlife Fund in Canada and in the United States of America. The Department of the Environment Transport and the Regions, UK, (DETR) supports a Red List Officer post at the SSC Centre in Cambridge, UK, where the SSC Trade Programme staff are also located. Together with two other Government-funded agencies, Scottish Natural Heritage and the Royal Botanic Gardens, Kew, the DETR is also financing a specialist plants officer. Further support for the centre is being offered by two NGO members of IUCN: the World Wide Fund for Nature – UK, and Conservation International, US. Contents Acknowledgements .......................................................iv Chapter 6: Asia ............................................................ 44 Synopsis ................................................................. 44 Executive Summary .......................................................v Eurasian moose or elk Alces alces cameloides ....... 45 Calamian deer Axis calamianensis ......................... 46 Chapter 1: Introduction ................................................. 1 Bawean deer or Kuhl’s deer Axis kuhli .................. 47 The IUCN/SSC Deer Specialist Group (DSG) ........1 Hog deer Axis porcinus .......................................... 49 The Deer Action Plan ..............................................1 White-lipped or Thorold’s deer Action Plan objectives .............................................3 Cervus albirostris .............................................. 51 Methods ...................................................................3 Philippine spotted deer Cervus alfredi ................... 52 The recommendation and implementation process .. 4 Swamp deer or barasingha Cervus duvauceli ......... 53 Red deer Cervus elaphus ........................................ 56 Chapter 2: List of Species and Subspecies of the Eld’s deer Cervus eldi ............................................. 59 Families Tragulidae, Moschidae, and Cervidae .............. 6 Philippine deer Cervus mariannus .......................... 62 Sika deer Cervus nippon ......................................... 63 Chapter 3: North America ........................................... 17 Persian fallow deer Dama dama mesopotamica...... 66 Synopsis ................................................................. 17 Tufted deer Elaphodus cephalophus ....................... 67 Odocoileus hemionus cerrosensis Père David’s deer or milu Elaphurus davidianus .... 68 Cedros Island mule deer ................................... 17 Chinese water deer Hydropotes inermis ................. 69 Odocoileus virginianus Giant muntjac Megamuntiacus vuquangensis ......... 70 Columbian white-tailed deer and Key deer ...... 18 Musk deer Moschus spp. ....................................... 72 Rangifer tarandus pearyi Peary caribou ................. 20 Black or hairy-fronted muntjac Muntiacus crinifrons ......................................... 77 Chapter 4: South and Central America ........................ 22 Fea’s muntjac Muntiacus feae................................ 78 Synopsis ................................................................. 22 Gongshan muntjac Muntiacus gongshanensis ........ 79 Marsh deer Blastocerus dichotomus ....................... 23 Balabac mouse deer Tragulus napu nigricans ......... 80 Taruca, northern huemul or north Andean deer Truong Son muntjac (nomen nudum) ..................... 81 Hippocamelus antisensis.................................... 25 Huemul or south Andean deer Bibliography ................................................................ 82 Hippocamelus bisulcus ...................................... 27 Red brocket deer Mazama americana.................... 29 Appendix 1: Decision Tree for Prescribing Greater red brocket Mazama bororo ..................... 30 Management Action .................................................... 92 Peruvian dwarf brocket Mazama chunyi ............... 31 Brown brocket or grey brocket Appendix 2: List of Contributors ................................. 94 Mazama gouazoubira ....................................... 32 Brazilian dwarf brocket Mazama nana .................. 33 Appendix 3: Deer Specialist Group Members............... 97 Yucatan brown brocket Mazama pandora ............ 34 Pampas deer Ozotoceros bezoarticus ..................... 35 Appendix 4: IUCN Red List Categories ..................... 100 Northern pudu Pudu mephistophiles ...................... 38 Southern pudu Pudu puda ..................................... 39 Chapter 5: Europe, Middle East and Africa ................. 42 Synopsis ................................................................. 42 African chevrotain or water chevrotain Hyemoschus aquaticus ...................................... 42 iii Acknowledgements The support of the IUCN Peter Scott SSC Action Plan full course of the undertaking. Dr Susana Gonzalez has Fund is gratefully acknowledged for financing most of also been an energetic and helpful contact in the neotropical the travel and costs associated with the Action Plan region, and I look forward to her contributions in the drafting workshop. The IUCN Conservation Breeding future. Donald Moore went to extra lengths to review later Specialist Group (CBSG) and San Diego Zoo also drafts of the South and Central American sections, and his contributed travel funds and employee time for the attention to detail is greatly appreciated. Jaime Jimenez workshop. I am also grateful to Dr Michael H. Robinson also took the trouble to read all accounts and provided who supported further data compilation with funds from numerous corrections. William Oliver, in spite of a busy the Director’s Circle of the National Zoological Park. schedule, also contributed substantially to the undertaking. Additional costs of reviewing and compiling information Jonathan Baille was of invaluable assistance in converting were covered by the Friends of the National Zoo the Mace-Lande categories to the new IUCN Red List (FONZ). Mr Andrew McCarthy of the Sheffield Centre Categories for the Action Plan. Laura Walker spent many for Ecology, Sheffield Hallam University, UK, ably hours formatting and preparing the manuscript for compiled much of the Action Plan material. Raleigh publication, followed up on correspondence and other Blouch reviewed the accounts and provided additional outstanding matters, and kept track of a large volume of information and editorial comments. Many people paperwork; I would like to record a special thanks for her contributed
Recommended publications
  • Habitat Preference of Himalayan Musk Deer (Moschus Leucogaster Hodgson, 1839) at Lapchi of Bigu Rural Municipality, Gaurishankar Conservation Area
    21 Nep J Environ Sci (2021), 9(1), 21-28 ISSN 2350-8647 (Print) 2542-2901 (Online) https://doi.org/10.3126/njes.v9i1.37844 Research Article Habitat preference of Himalayan musk deer (Moschus leucogaster Hodgson, 1839) at Lapchi of Bigu Rural Municipality, Gaurishankar Conservation Area Narayan Prasad Koju1,2,*, Bijay Bashyal3, Satya Narayan Shah1,4 1 Center for Post Graduate Studies, Nepal Engineering College, Pokhara University, Nepal 2 Department of Psychology, University of Washington, Seattle, USA 3 Central Department of Environmental Science, Tribhuvan University, Kathmandu 4 Gaurishankar Conservation Area Project, National Trust of Nature Conservation (Received: 06 June 2021; Revised: 02 July 2021; Accepted: 03 July 2021) Abstract The Himalayan musk deer (Moschus leucogaster) is an endangered species listed in the IUCN Red List and Appendix I of CITES. It is widely but discontinuously distributed in Nepal. A Pellet sign survey was carried in April 2019 in Lapchi valley of Gaurishankar Conservation Area (GCA) in Nepal to assess the habitat preference of Himalayan musk deer. A total of 11 transects of 16348 m length and 10 m wide was surveyed. Seven Parameters: Elevation, Aspect, ground cover, distance from the water source, crown cover, rock exposure, and distance from settlement/cow sheds were recorded from the location where pellet (toilet) of musk deer were recorded to extrapolate the probable habitat map. We recorded a total of 157 musk deer pellet groups in the study area14.27 ± 2.91. The study concluded that the 38.4% (26.5 km2) area of Lapchi valley is the probable habitat of musk deer. The 2 – test suggested that the distribution of musk deer is significantly associated with elevation and aspect of the location.
    [Show full text]
  • Review of Asian Species/Country Combinations Subject to Long-Standing Import Suspensions
    Review of Asian species/country combinations subject to long-standing import suspensions (Version edited for public release) SRG 54 Prepared for the European Commission Directorate General Environment ENV.E.2. – Environmental Agreements and Trade by the United Nations Environment Programme World Conservation Monitoring Centre November, 2010 UNEP World Conservation Monitoring PREPARED FOR Centre 219 Huntingdon Road The European Commission, Brussels, Belgium Cambridge CB3 0DL DISCLAIMER United Kingdom Tel: +44 (0) 1223 277314 The contents of this report do not necessarily Fax: +44 (0) 1223 277136 reflect the views or policies of UNEP or Email: [email protected] Website: www.unep-wcmc.org contributory organisations. The designations employed and the presentations do not imply ABOUT UNEP-WORLD CONSERVATION the expressions of any opinion whatsoever on MONITORING CENTRE the part of UNEP, the European Commission or contributory organisations concerning the The UNEP World Conservation Monitoring legal status of any country, territory, city or Centre (UNEP-WCMC), based in Cambridge, area or its authority, or concerning the UK, is the specialist biodiversity information delimitation of its frontiers or boundaries. and assessment centre of the United Nations Environment Programme (UNEP), run cooperatively with WCMC, a UK charity. The © Copyright: 2010, European Commission Centre's mission is to evaluate and highlight the many values of biodiversity and put authoritative biodiversity knowledge at the centre of decision-making. Through the analysis and synthesis of global biodiversity knowledge the Centre provides authoritative, strategic and timely information for conventions, countries and organisations to use in the development and implementation of their policies and decisions. The UNEP-WCMC provides objective and scientifically rigorous procedures and services.
    [Show full text]
  • Hippotragus Equinus – Roan Antelope
    Hippotragus equinus – Roan Antelope authorities as there may be no significant genetic differences between the two. Many of the Roan Antelope in South Africa are H. e. cottoni or equinus x cottoni (especially on private properties). Assessment Rationale This charismatic antelope exists at low density within the assessment region, occurring in savannah woodlands and grasslands. Currently (2013–2014), there are an observed 333 individuals (210–233 mature) existing on nine formally protected areas within the natural distribution range. Adding privately protected subpopulations and an Cliff & Suretha Dorse estimated 0.8–5% of individuals on wildlife ranches that may be considered wild and free-roaming, yields a total mature population of 218–294 individuals. Most private Regional Red List status (2016) Endangered subpopulations are intensively bred and/or kept in camps C2a(i)+D*†‡ to exclude predators and to facilitate healthcare. Field National Red List status (2004) Vulnerable D1 surveys are required to identify potentially eligible subpopulations that can be included in this assessment. Reasons for change Non-genuine: While there was an historical crash in Kruger National Park New information (KNP) of 90% between 1986 and 1993, the subpopulation Global Red List status (2008) Least Concern has since stabilised at c. 50 individuals. Overall, over the past three generations (1990–2015), based on available TOPS listing (NEMBA) Vulnerable data for nine formally protected areas, there has been a CITES listing None net population reduction of c. 23%, which indicates an ongoing decline but not as severe as the historical Endemic Edge of Range reduction. Further long-term data are needed to more *Watch-list Data †Watch-list Threat ‡Conservation Dependent accurately estimate the national population trend.
    [Show full text]
  • REPORT on TRANSBOUNDARY CONSERVATION HOTSPOTS for the CENTRAL ASIAN MAMMALS INITIATIVE (Prepared by the Secretariat)
    CONVENTION ON UNEP/CMS/COP13/Inf.27 MIGRATORY 8 January 2020 SPECIES Original: English 13th MEETING OF THE CONFERENCE OF THE PARTIES Gandhinagar, India, 17 - 22 February 2020 Agenda Item 26.3 REPORT ON TRANSBOUNDARY CONSERVATION HOTSPOTS FOR THE CENTRAL ASIAN MAMMALS INITIATIVE (Prepared by the Secretariat) Summary: This report was developed with funding from the Government of Switzerland within the frame of the Central Asian Mammals Initiative (CAMI) (Doc. 26.3.5) to identify transboundary conservation hotspots and develop recommendations for their conservation. The report builds on existing projects, in particular, the CAMI Linear Infrastructure and Migration Atlas (see Inf.Doc.19) and focusses on the same species and geographical area. The study was discussed during the CAMI Range State Meeting held from 25-28 September 2019 in Ulaanbaatar, Mongolia where participants reviewed the pre-identified areas. Their comments are incorporated in this report. Participants also provided new information about important transboundary sites from Bhutan, India, Nepal and Pakistan and recommended to send the report for final review to Range States and experts. It was also recommended that the final report covers all CAMI species as adopted at COP13. This report is therefore a final draft with the last step to expand the geographical and species scope and finalize the report to be undertaken after COP13. Mapping Transboundary Conservation Hotspots for the Central Asian Mammals Initiative Photo credit: Viktor Lukarevsky Report – Draft 5 incorporating comments made during the CAMI Range States Meeting on 25-28 September 2019 in Ulaanbaatar, Mongolia. The report does not yet consider the Urial, Persian leopard and Gobi bear as CAMI species pending decision at the CMS COP13, as well as the proposed expansion of the geographic and species scope to include the entire CAMI region in this study.
    [Show full text]
  • Royle Safaris Sichuan Mammals Tour Trip Report
    In March 2019 Royle Safaris ran our second specialist Sichuan Mammals Tour with a focus on a particularly special species. The trip was run with Martin Royle, Roland Zeidler & Sid Francis as our guides. We visited 3 different locations (covering the rugged bamboo forests of the greater Wolong ecosystem, the high altitude grasslands of Rouergai and the wonderful forests of Tangjiahe. We were very successful with sightings of 44 different species of mammals and over 100 species of birds including Giant Panda, Red Panda, Pallas’s Cat, Chinese Mountain Cat, Indochinese Leopard Cat, Particoloured Flying Squirrel, Golden Snub-nosed Monkey, Chinese Ferret Badger, Eurasian Otter and Chinese Pipistrelle. We ran a second Sichuan’s Mammals Tour (back to back with this one) in April 2019 and we had even more success in some areas. The sightings log for that trip will follow in a few days. We have started to promote our 2020 Sichuan Mammals Tour (with special focus on a particular special species for half of the trip); we have already received many bookings on these two trips. Our first tour for 2020 (9th – 22nd March 2020) has just one place remaining and our second tour for 2020 (25th April – 8th May 2020) which also has only one place remaining. We have also started offering places on another specialist mammal tour of China, visiting Qinghai and the wonderful Valley of the Cats. This tour is for July 2020 (1st – 15th July 2020) and focuses on Snow leopards, Eurasian lynx, Himalayan wolf, Himalayan brown bear, Tibetan antelope, Wild Yak, White-lipped deer, Alpine musk deer, Glover’s pika, Bharal, McNeil’s deer and many more species.
    [Show full text]
  • Reproductive Seasonality in Captive Wild Ruminants: Implications for Biogeographical Adaptation, Photoperiodic Control, and Life History
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2012 Reproductive seasonality in captive wild ruminants: implications for biogeographical adaptation, photoperiodic control, and life history Zerbe, Philipp Abstract: Zur quantitativen Beschreibung der Reproduktionsmuster wurden Daten von 110 Wildwiederkäuer- arten aus Zoos der gemässigten Zone verwendet (dabei wurde die Anzahl Tage, an denen 80% aller Geburten stattfanden, als Geburtenpeak-Breite [BPB] definiert). Diese Muster wurden mit verschiede- nen biologischen Charakteristika verknüpft und mit denen von freilebenden Tieren verglichen. Der Bre- itengrad des natürlichen Verbreitungsgebietes korreliert stark mit dem in Menschenobhut beobachteten BPB. Nur 11% der Spezies wechselten ihr reproduktives Muster zwischen Wildnis und Gefangenschaft, wobei für saisonale Spezies die errechnete Tageslichtlänge zum Zeitpunkt der Konzeption für freilebende und in Menschenobhut gehaltene Populationen gleich war. Reproduktive Saisonalität erklärt zusätzliche Varianzen im Verhältnis von Körpergewicht und Tragzeit, wobei saisonalere Spezies für ihr Körpergewicht eine kürzere Tragzeit aufweisen. Rückschliessend ist festzuhalten, dass Photoperiodik, speziell die abso- lute Tageslichtlänge, genetisch fixierter Auslöser für die Fortpflanzung ist, und dass die Plastizität der Tragzeit unterstützend auf die erfolgreiche Verbreitung der Wiederkäuer in höheren Breitengraden wirkte. A dataset on 110 wild ruminant species kept in captivity in temperate-zone zoos was used to describe their reproductive patterns quantitatively (determining the birth peak breadth BPB as the number of days in which 80% of all births occur); then this pattern was linked to various biological characteristics, and compared with free-ranging animals. Globally, latitude of natural origin highly correlates with BPB observed in captivity, with species being more seasonal originating from higher latitudes.
    [Show full text]
  • Connochaetes Gnou – Black Wildebeest
    Connochaetes gnou – Black Wildebeest Blue Wildebeest (C. taurinus) (Grobler et al. 2005 and ongoing work at the University of the Free State and the National Zoological Gardens), which is most likely due to the historic bottlenecks experienced by C. gnou in the late 1800s. The evolution of a distinct southern endemic Black Wildebeest in the Pleistocene was associated with, and possibly driven by, a shift towards a more specialised kind of territorial breeding behaviour, which can only function in open habitat. Thus, the evolution of the Black Wildebeest was directly associated with the emergence of Highveld-type open grasslands in the central interior of South Africa (Ackermann et al. 2010). Andre Botha Assessment Rationale Regional Red List status (2016) Least Concern*† This is an endemic species occurring in open grasslands in the central interior of the assessment region. There are National Red List status (2004) Least Concern at least an estimated 16,260 individuals (counts Reasons for change No change conducted between 2012 and 2015) on protected areas across the Free State, Gauteng, North West, Northern Global Red List status (2008) Least Concern Cape, Eastern Cape, Mpumalanga and KwaZulu-Natal TOPS listing (NEMBA) (2007) Protected (KZN) provinces (mostly within the natural distribution range). This yields a total mature population size of 9,765– CITES listing None 11,382 (using a 60–70% mature population structure). This Endemic Yes is an underestimate as there are many more subpopulations on wildlife ranches for which comprehensive data are *Watch-list Threat †Conservation Dependent unavailable. Most subpopulations in protected areas are stable or increasing.
    [Show full text]
  • Whole-Genome Sequencing of Wild Siberian Musk
    Yi et al. BMC Genomics (2020) 21:108 https://doi.org/10.1186/s12864-020-6495-2 RESEARCH ARTICLE Open Access Whole-genome sequencing of wild Siberian musk deer (Moschus moschiferus) provides insights into its genetic features Li Yi1†, Menggen Dalai2*†, Rina Su1†, Weili Lin3, Myagmarsuren Erdenedalai4, Batkhuu Luvsantseren4, Chimedragchaa Chimedtseren4*, Zhen Wang3* and Surong Hasi1* Abstract Background: Siberian musk deer, one of the seven species, is distributed in coniferous forests of Asia. Worldwide, the population size of Siberian musk deer is threatened by severe illegal poaching for commercially valuable musk and meat, habitat losses, and forest fire. At present, this species is categorized as Vulnerable on the IUCN Red List. However, the genetic information of Siberian musk deer is largely unexplored. Results: Here, we produced 3.10 Gb draft assembly of wild Siberian musk deer with a contig N50 of 29,145 bp and a scaffold N50 of 7,955,248 bp. We annotated 19,363 protein-coding genes and estimated 44.44% of the genome to be repetitive. Our phylogenetic analysis reveals that wild Siberian musk deer is closer to Bovidae than to Cervidae. Comparative analyses showed that the genetic features of Siberian musk deer adapted in cold and high-altitude environments. We sequenced two additional genomes of Siberian musk deer constructed demographic history indicated that changes in effective population size corresponded with recent glacial epochs. Finally, we identified several candidate genes that may play a role in the musk secretion based on transcriptome analysis. Conclusions: Here, we present a high-quality draft genome of wild Siberian musk deer, which will provide a valuable genetic resource for further investigations of this economically important musk deer.
    [Show full text]
  • Identification of the Endangered Small Red Brocket Deer (Mazama Bororo) Using Noninvasive Genetic Techniques (Mammalia; Cervidae)
    Molecular Ecology Resources (2009) 9, 754-758 doi:10.1111/j.l755-0998.2008.02390.x MOLECULAR DIAGNOSTICS AND DNA TAXONOMY Identification of the endangered small red brocket deer (Mazama bororo) using noninvasive genetic techniques (Mammalia; Cervidae) SUSANA GONZALEZ,* JESUS E. MALDONADO/r JORGE ORTEGA/tJ: ANGELA CRISTINA TALARICO,§LETICIABIDEGARAY-BATISTA,*,**JOSE EDUARDO GARCIA! and JOSE MAURICIO BARBANTI DUARTEg *Unidad de Genetica de la Conservation, Departamento de Genetica, IIBCE-Facultad de Ciencias/UdelaR, Montevideo, Uruguay, tCenterfor Conservation and Evolutionary Genetics, NZP/NMNH, Smithsonian Institution, 3001 Connecticut Ave. NW, Washington D.C. 20008, USA, %Laboratorio de Ictiologia y Limnologia, Posgrado en Ciencias Quimico-Biologicas, Escuela National de Ciencias Biologicas, lnstituto Politecnico National, Prolongation de Carpio y Plan de Ayala s/n, Col. Santo Tomds, 11340 Mexico, %Nucleo de Pesauisa e Conservacao de Cervideos (NUPECCE), Departamento de Zootecnia, FCAV/UNESP, Sao Paulo State University, Via de Acesso Paulo Donato Castellane, s/n, CEP 14884-900, Jaboticabal-SP, Brazil, fCentro Academico de Vitoria. Universidade Federal de Pernambuco, 55608-680 Vitoria de Santo Antao — PE, Brazil Abstract The small red brocket deer Mazama bororo is one of the most endangered deer in the Neotropics. The great morphological similarities with three other sympatric brocket deer species, coupled with the fact that they inhabit densely forested habitats complicate detection and prevent the use of traditional methodologies for accurate identification of species. The ability to determine the presence of this endangered species in an area is crucial for estimating its distribution range, and is critical for establishing conservation management strategies. Here we describe a fast and reliable noninvasive genetic method for species identification of Mazama species from faeces.
    [Show full text]
  • Handraising Exotic Animals Western Plains
    HANDRAISING EXOTIC ANIMALS WESTERN PLAINS ZOO GENERAL DIRECTIVES: * All neonates (newborn) to be given colostrum for the first 24 - 36 hours where possible. Bovids, cervids, camelids, hippos etc. (order: Artiodactyla) to receive bovine colostrum. Equids, tapir, rhinos etc. (order: Perissodactyla) to receive equine colostrum. * All milk formulas to be gradually increased to 100% strength concentrations as recommended. i.e. Commence at 25% - 50% concentrations supplemented with vytrate, staged up by 25% at 24 hour intervals until 100% is reached. Use pre-boilded water to make up formulas. * Young to be fed 12 - 20% of their bodyweight in milk formula each day, divided equally between feeds. If innadequate volumes of formula are suckled then the neonate is to be tube fed until intake is adequate from the bottle. * Number of feeds per day is determined by species. * Weigh initially and weight gain/loss to be monitored at least weekly. * Routine is extremely important. Feeding times must be set and adhered to. It is usually better for one person to initiate feeding and to introduce other feeders as soon as possible to avoid neonates imprinting on one person. * All young need to be stimulated to urinate and defaecate after each feed by gentle patting - never rub. Ensure they are left clean afterwards. * Hygiene is of great importance. Bottles and teats need to be washed thoroughly and soaked in sterilising solution (Halasept). Utensils are to be rinsed with pre-boiled water before use. Face wipes are not shared with anus wipes etc. Cloths to be washed daily. All young to be left with a clean mouth after the feed (includes chin, lips etc.) * Milk temperature is to be fed at body temperature.
    [Show full text]
  • Sexual Selection and Extinction in Deer Saloume Bazyan
    Sexual selection and extinction in deer Saloume Bazyan Degree project in biology, Master of science (2 years), 2013 Examensarbete i biologi 30 hp till masterexamen, 2013 Biology Education Centre and Ecology and Genetics, Uppsala University Supervisor: Jacob Höglund External opponent: Masahito Tsuboi Content Abstract..............................................................................................................................................II Introduction..........................................................................................................................................1 Sexual selection........................................................................................................................1 − Male-male competition...................................................................................................2 − Female choice.................................................................................................................2 − Sexual conflict.................................................................................................................3 Secondary sexual trait and mating system. .............................................................................3 Intensity of sexual selection......................................................................................................5 Goal and scope.....................................................................................................................................6 Methods................................................................................................................................................8
    [Show full text]
  • {TEXTBOOK} Is a Camel a Mammal?
    IS A CAMEL A MAMMAL? PDF, EPUB, EBOOK Tish Rabe,Jim Durk | 48 pages | 04 Jun 2001 | HarperCollins Publishers | 9780007111077 | English | London, United Kingdom Is a Camel a Mammal? PDF Book Ano ang katangian ng salawikain? Retrieved 5 December Camel is an animal and is not an egg laying mammal. So we had what amounted to two pounds or more of rubber for dinner that night. Is camel a marsupial mammal? What rhymes with mammal? Center for Muslim-Jewish Engagement. Collared peccary P. The Oxford Companion to Food 2nd ed. Both the dromedary the seven-humped camel of Arabia and the Bactrian camel the two-humped camel of Central Asia had been domesticated since before BC. Red brocket M. In addition to providing the Roman Army with its best archers, the Easterners largely Arabs but generally known as 'Syrians' served as Rome's most effective dromedarii or camel-mounted troops. Even salty water can be tolerated, and between drinks it forages far from oases to find food unavailable to other livestock. Somalia a Country Study. White-tailed deer O. Namespaces Article Talk. Do camels lay eggs? Greenwood Publishing Group. View 1 comment. The reason why Cyrus opposed his camels to the enemy's horse was because the horse has a natural dread of the camel, and cannot abide either the sight or the smell of that animal. Archived from the original on 4 August Melissa Stewart. Camel Corps experiment. Is the word camel a short vowel word? ABC News. Consequently, these schools hold that Muslims must perform wudhu ablution before the next time they pray after eating camel meat.
    [Show full text]