Royle Safaris Sichuan Mammals Tour Trip Report
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Habitat Preference of Himalayan Musk Deer (Moschus Leucogaster Hodgson, 1839) at Lapchi of Bigu Rural Municipality, Gaurishankar Conservation Area
21 Nep J Environ Sci (2021), 9(1), 21-28 ISSN 2350-8647 (Print) 2542-2901 (Online) https://doi.org/10.3126/njes.v9i1.37844 Research Article Habitat preference of Himalayan musk deer (Moschus leucogaster Hodgson, 1839) at Lapchi of Bigu Rural Municipality, Gaurishankar Conservation Area Narayan Prasad Koju1,2,*, Bijay Bashyal3, Satya Narayan Shah1,4 1 Center for Post Graduate Studies, Nepal Engineering College, Pokhara University, Nepal 2 Department of Psychology, University of Washington, Seattle, USA 3 Central Department of Environmental Science, Tribhuvan University, Kathmandu 4 Gaurishankar Conservation Area Project, National Trust of Nature Conservation (Received: 06 June 2021; Revised: 02 July 2021; Accepted: 03 July 2021) Abstract The Himalayan musk deer (Moschus leucogaster) is an endangered species listed in the IUCN Red List and Appendix I of CITES. It is widely but discontinuously distributed in Nepal. A Pellet sign survey was carried in April 2019 in Lapchi valley of Gaurishankar Conservation Area (GCA) in Nepal to assess the habitat preference of Himalayan musk deer. A total of 11 transects of 16348 m length and 10 m wide was surveyed. Seven Parameters: Elevation, Aspect, ground cover, distance from the water source, crown cover, rock exposure, and distance from settlement/cow sheds were recorded from the location where pellet (toilet) of musk deer were recorded to extrapolate the probable habitat map. We recorded a total of 157 musk deer pellet groups in the study area14.27 ± 2.91. The study concluded that the 38.4% (26.5 km2) area of Lapchi valley is the probable habitat of musk deer. The 2 – test suggested that the distribution of musk deer is significantly associated with elevation and aspect of the location. -
Review of Asian Species/Country Combinations Subject to Long-Standing Import Suspensions
Review of Asian species/country combinations subject to long-standing import suspensions (Version edited for public release) SRG 54 Prepared for the European Commission Directorate General Environment ENV.E.2. – Environmental Agreements and Trade by the United Nations Environment Programme World Conservation Monitoring Centre November, 2010 UNEP World Conservation Monitoring PREPARED FOR Centre 219 Huntingdon Road The European Commission, Brussels, Belgium Cambridge CB3 0DL DISCLAIMER United Kingdom Tel: +44 (0) 1223 277314 The contents of this report do not necessarily Fax: +44 (0) 1223 277136 reflect the views or policies of UNEP or Email: [email protected] Website: www.unep-wcmc.org contributory organisations. The designations employed and the presentations do not imply ABOUT UNEP-WORLD CONSERVATION the expressions of any opinion whatsoever on MONITORING CENTRE the part of UNEP, the European Commission or contributory organisations concerning the The UNEP World Conservation Monitoring legal status of any country, territory, city or Centre (UNEP-WCMC), based in Cambridge, area or its authority, or concerning the UK, is the specialist biodiversity information delimitation of its frontiers or boundaries. and assessment centre of the United Nations Environment Programme (UNEP), run cooperatively with WCMC, a UK charity. The © Copyright: 2010, European Commission Centre's mission is to evaluate and highlight the many values of biodiversity and put authoritative biodiversity knowledge at the centre of decision-making. Through the analysis and synthesis of global biodiversity knowledge the Centre provides authoritative, strategic and timely information for conventions, countries and organisations to use in the development and implementation of their policies and decisions. The UNEP-WCMC provides objective and scientifically rigorous procedures and services. -
Overwintering Habitat Selection of Asiatic Toad, Bufo Gargarizans in Southwestern China
Biharean Biologist (2010) Vol. 4, No.1, Pp.: 15-18 P-ISSN: 1843-5637, E-ISSN: 2065-1155 Article No.: 041103 Overwintering habitat selection of Asiatic toad, Bufo gargarizans in southwestern China Tong Lei YU1 and Yan Shu GUO2 1. Department of Zoology, College of Life Sciences, Wuhan University, Wuhan 430072 Hubei Province, China. E-mail: [email protected] 2. College of Life Sciences, China West Normal University, Sichuan, China. E-mail: [email protected] Abstract. We studied overwintering habitats selection of Bufo gargarizans during 2005-2008 in southwestern China. Our results showed most toads buried themselves in the ground. By comparing hibernation and post-reproductive dormancy sites, we found that the latter was closer to ponds with higher vegetable cover and shallower than hibernation sites. It indirect proves that toads consume large energy in the breeding season and a small quantity remains for the dormancy period. Keywords: Bufo gargarizans; hibernation site; post-reproductive dormancy site. Introduction snout-to-vent length (SVL) of 98.22 ± 1.43 mm (range 73.6 - 137 mm), and the males have 87.32 ± 0.94 mm Anurans are haematocryal animals without body (range 66 - 117 mm). The body mass of females can temperature regulative capability (Pinder et al. 1992), so reach 160.72 ± 18.73 g (range 112 - 315 g), males have they are vulnerable to freezing conditions and must 83.12 ± 4.2 g (range 52.1 - 138.59 g) in the breeding select suitable habitats unlikely to freeze. Some species period (Yu & Lu 2010). B. gargarizans is mainly of toads are known to burrow into loose soils or under- insectivorous and rarely feeds on vegetation (Yu et al. -
Towards Snow Leopard Prey Recovery: Understanding the Resource Use Strategies and Demographic Responses of Bharal Pseudois Nayaur to Livestock Grazing and Removal
Towards snow leopard prey recovery: understanding the resource use strategies and demographic responses of bharal Pseudois nayaur to livestock grazing and removal Final project report submitted by Kulbhushansingh Suryawanshi Nature Conservation Foundation, Mysore Post-graduate Program in Wildlife Biology and Conservation, National Centre for Biological Sciences, Wildlife Conservation Society –India program, Bangalore, India To Snow Leopard Conservation Grant Program January 2009 Towards snow leopard prey recovery: understanding the resource use strategies and demographic responses of bharal Pseudois nayaur to livestock grazing and removal. 1. Executive Summary: Decline of wild prey populations in the Himalayan region, largely due to competition with livestock, has been identified as one of the main threats to the snow leopard Uncia uncia. Studies show that bharal Pseudois nayaur diet is dominated by graminoids during summer, but the proportion of graminoids declines in winter. We explore the causes for the decline of graminoids from bharal winter diet and resulting implications for bharal conservation. We test the predictions generated by two alternative hypotheses, (H1) low graminoid availability caused by livestock grazing during winter causes bharal to include browse in their diet, and, (H2) bharal include browse, with relatively higher nutrition, to compensate for the poor quality of graminoids during winter. Graminoid availability was highest in areas without livestock grazing, followed by areas with moderate and intense livestock grazing. Graminoid quality in winter was relatively lower than that of browse, but the difference was not statistically significant. Bharal diet was dominated by graminoids in areas with highest graminoid availability. Graminoid contribution to bharal diet declined monotonically with a decline in graminoid availability. -
Comparative Transcriptome Analyses Reveal the Genetic Basis Underlying the Immune Function of Three Amphibians’ Skin
RESEARCH ARTICLE Comparative transcriptome analyses reveal the genetic basis underlying the immune function of three amphibians' skin Wenqiao Fan1,2,3☯, Yusong Jiang1☯, Meixia Zhang1, Donglin Yang1,2,3, Zhongzhu Chen1,2,3, Hanchang Sun1*, Xuelian Lan1,2,3, Fan Yan1, Jingming Xu1, Wanan Yuan1 1 Chongqing Research Center of Conservation and Development on Rare and Endangered Aquatic Resources, Chongqing University of Arts and Sciences, Yongchuan, Chongqing, China, 2 Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Yongchuan, Chongqing, China, 3 Chongqing a1111111111 Engineering Laboratory of Targeted and Innovative Therapeutics, Yongchuan, Chongqing, China a1111111111 a1111111111 ☯ These authors contributed equally to this work. a1111111111 * [email protected] a1111111111 Abstract Skin as the first barrier against external invasions plays an essential role for the survival of OPEN ACCESS amphibians on land. Understanding the genetic basis of skin function is significant in reveal- Citation: Fan W, Jiang Y, Zhang M, Yang D, Chen ing the mechanisms underlying immunity of amphibians. In this study, we de novo Z, Sun H, et al. (2017) Comparative transcriptome sequenced and comparatively analyzed skin transcriptomes from three different amphibian analyses reveal the genetic basis underlying the immune function of three amphibians' skin. PLoS species, Andrias davidianus, Bufo gargarizans, and Rana nigromaculata Hallowell. Func- ONE 12(12): e0190023. https://doi.org/10.1371/ tional classification of unigenes in each amphibian showed high accordance, with the most journal.pone.0190023 represented GO terms and KEGG pathways related to basic biological processes, such as Editor: Zhong-Jian Liu, The National Orchid binding and metabolism and immune system. As for the unigenes, GO and KEGG distribu- Conservation Center of China; The Orchid tions of conserved orthologs in each species were similar, with the predominantly enriched Conservation & Research Center of Shenzhen, CHINA pathways including RNA polymerase, nucleotide metabolism, and defense. -
Field Guide Mammals of Ladakh ¾-Hðgå-ÅÛ-Hýh-ºiô-;Ým-Mû-Ç+Ô¼-¾-Zçàz-Çeômü
Field Guide Mammals of Ladakh ¾-hÐGÅ-ÅÛ-hÝh-ºIô-;Ým-mÛ-Ç+ô¼-¾-zÇÀz-Çeômü Tahir Shawl Jigmet Takpa Phuntsog Tashi Yamini Panchaksharam 2 FOREWORD Ladakh is one of the most wonderful places on earth with unique biodiversity. I have the privilege of forwarding the fi eld guide on mammals of Ladakh which is part of a series of bilingual (English and Ladakhi) fi eld guides developed by WWF-India. It is not just because of my involvement in the conservation issues of the state of Jammu & Kashmir, but I am impressed with the Ladakhi version of the Field Guide. As the Field Guide has been specially produced for the local youth, I hope that the Guide will help in conserving the unique mammal species of Ladakh. I also hope that the Guide will become a companion for every nature lover visiting Ladakh. I commend the efforts of the authors in bringing out this unique publication. A K Srivastava, IFS Chief Wildlife Warden, Govt. of Jammu & Kashmir 3 ÇSôm-zXôhü ¾-hÐGÅ-mÛ-ºWÛG-dïm-mP-¾-ÆôG-VGÅ-Ço-±ôGÅ-»ôh-źÛ-GmÅ-Å-h¤ÛGÅ-zž-ŸÛG-»Ûm-môGü ¾-hÐGÅ-ÅÛ-Å-GmÅ-;Ým-¾-»ôh-qºÛ-Åï¤Å-Tm-±P-¤ºÛ-MãÅ-‚Å-q-ºhÛ-¾-ÇSôm-zXôh-‚ô-‚Å- qôºÛ-PºÛ-¾Å-ºGm-»Ûm-môGü ºÛ-zô-P-¼P-W¤-¤Þ-;-ÁÛ-¤Û¼-¼Û-¼P-zŸÛm-D¤-ÆâP-Bôz-hP- ºƒï¾-»ôh-¤Dm-qôÅ-‚Å-¼ï-¤m-q-ºÛ-zô-¾-hÐGÅ-ÅÛ-Ç+h-hï-mP-P-»ôh-‚Å-qôº-È-¾Å-bï-»P- zÁh- »ôPÅü Åï¤Å-Tm-±P-¤ºÛ-MãÅ-‚ô-‚Å-qô-h¤ÛGÅ-zž-¾ÛÅ-GŸôm-mÝ-;Ým-¾-wm-‚Å-¾-ºwÛP-yï-»Ûm- môG ºô-zôºÛ-;-mÅ-¾-hÐGÅ-ÅÛ-h¤ÛGÅ-zž-Tm-mÛ-Åï¤Å-Tm-ÆâP-BôzÅ-¾-wm-qºÛ-¼Û-zô-»Ûm- hôm-m-®ôGÅ-¾ü ¼P-zŸÛm-D¤Å-¾-ºfh-qô-»ôh-¤Dm-±P-¤-¾ºP-wm-fôGÅ-qºÛ-¼ï-z-»Ûmü ºhÛ-®ßGÅ-ºô-zM¾-¤²h-hï-ºƒÛ-¤Dm-mÛ-ºhÛ-hqï-V-zô-q¼-¾-zMz-Çeï-Çtï¾-hGôÅ-»Ûm-môG Íï-;ï-ÁÙÛ-¶Å-b-z-ͺÛ-Íïw-ÍôÅ- mGÅ-±ôGÅ-Åï¤Å-Tm-ÆâP-Bôz-Çkï-DG-GÛ-hqôm-qô-G®ô-zô-W¤- ¤Þ-;ÁÛ-¤Û¼-GŸÝP.ü 4 5 ACKNOWLEDGEMENTS The fi eld guide is the result of exhaustive work by a large number of people. -
Cic Pheonotype List Caprinae©
v. 5.25.12 CIC PHEONOTYPE LIST CAPRINAE © ARGALI 1. Altai Argali Ovis ammon ammon (aka Altay Argali) 2. Khangai Argali Ovis ammon darwini (aka Hangai & Mid Altai Argali) 3. Gobi Argali Ovis ammon darwini 4. Northern Chinese Argali - extinct Ovis ammon jubata (aka Shansi & Jubata Argali) 5. Northern Tibetan Argali Ovis ammon hodgsonii (aka Gansu & Altun Shan Argali) 6. Tibetan Argali Ovis ammon hodgsonii (aka Himalaya Argali) 7. Kuruk Tagh Argali Ovis ammon adametzi (aka Kuruktag Argali) 8. Karaganda Argali Ovis ammon collium (aka Kazakhstan & Semipalatinsk Argali) 9. Sair Argali Ovis ammon sairensis 10. Dzungarian Argali Ovis ammon littledalei (aka Littledale’s Argali) 11. Tian Shan Argali Ovis ammon karelini (aka Karelini Argali) 12. Kyrgyz Argali Ovis ammon humei (aka Kashgarian & Hume’s Argali) 13. Pamir Argali Ovis ammon polii (aka Marco Polo Argali) 14. Kara Tau Argali Ovis ammon nigrimontana (aka Bukharan & Turkestan Argali) 15. Nura Tau Argali Ovis ammon severtzovi (aka Kyzyl Kum & Severtzov Argali) MOUFLON 16. Tyrrhenian Mouflon Ovis aries musimon (aka Sardinian & Corsican Mouflon) 17. Introd. European Mouflon Ovis aries musimon (aka European Mouflon) 18. Cyprus Mouflon Ovis aries ophion (aka Cyprian Mouflon) 19. Konya Mouflon Ovis gmelini anatolica (aka Anatolian & Turkish Mouflon) 20. Armenian Mouflon Ovis gmelini gmelinii (aka Transcaucasus or Asiatic Mouflon, regionally as Arak Sheep) 21. Esfahan Mouflon Ovis gmelini isphahanica (aka Isfahan Mouflon) 22. Larestan Mouflon Ovis gmelini laristanica (aka Laristan Mouflon) URIALS 23. Transcaspian Urial Ovis vignei arkal (Depending on locality aka Kopet Dagh, Ustyurt & Turkmen Urial) 24. Bukhara Urial Ovis vignei bocharensis 25. Afghan Urial Ovis vignei cycloceros 26. -
Reproductive Seasonality in Captive Wild Ruminants: Implications for Biogeographical Adaptation, Photoperiodic Control, and Life History
Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2012 Reproductive seasonality in captive wild ruminants: implications for biogeographical adaptation, photoperiodic control, and life history Zerbe, Philipp Abstract: Zur quantitativen Beschreibung der Reproduktionsmuster wurden Daten von 110 Wildwiederkäuer- arten aus Zoos der gemässigten Zone verwendet (dabei wurde die Anzahl Tage, an denen 80% aller Geburten stattfanden, als Geburtenpeak-Breite [BPB] definiert). Diese Muster wurden mit verschiede- nen biologischen Charakteristika verknüpft und mit denen von freilebenden Tieren verglichen. Der Bre- itengrad des natürlichen Verbreitungsgebietes korreliert stark mit dem in Menschenobhut beobachteten BPB. Nur 11% der Spezies wechselten ihr reproduktives Muster zwischen Wildnis und Gefangenschaft, wobei für saisonale Spezies die errechnete Tageslichtlänge zum Zeitpunkt der Konzeption für freilebende und in Menschenobhut gehaltene Populationen gleich war. Reproduktive Saisonalität erklärt zusätzliche Varianzen im Verhältnis von Körpergewicht und Tragzeit, wobei saisonalere Spezies für ihr Körpergewicht eine kürzere Tragzeit aufweisen. Rückschliessend ist festzuhalten, dass Photoperiodik, speziell die abso- lute Tageslichtlänge, genetisch fixierter Auslöser für die Fortpflanzung ist, und dass die Plastizität der Tragzeit unterstützend auf die erfolgreiche Verbreitung der Wiederkäuer in höheren Breitengraden wirkte. A dataset on 110 wild ruminant species kept in captivity in temperate-zone zoos was used to describe their reproductive patterns quantitatively (determining the birth peak breadth BPB as the number of days in which 80% of all births occur); then this pattern was linked to various biological characteristics, and compared with free-ranging animals. Globally, latitude of natural origin highly correlates with BPB observed in captivity, with species being more seasonal originating from higher latitudes. -
Toc 56(6).Indd
10.1071/ANv56n6toc ANIMAL PRODUCTION SCIENCE CONTENTS Volume 56, Issue 6, 2016, 941–1015 8th INTERNATIONAL DEER BIOLOGY CONGRESS Foreword i The efforts to re-establish the Chinese water deer population in Shanghai, China Min Chen, Chaofei Liu, Xin He, Enle Pei, Xiao Yuan and Endi Zhang 941–945 Deer antler: a unique model for studying mammalian organ morphogenesis Zhao Haiping, Chu Wenhui, Liu Zhen and Li Chunyi 946–952 The tale of two deer: management of Père David’s deer and sika deer in anthropogenic landscape of eastern Asia Zhigang Jiang, Koichi Kaji and Xiaoge Ping 953–961 Nutrition of antler growth in deer G. McL. Dryden 962–970 Bioacoustic cues and their relations to dominance rank in Père David’s deer stags Ni Liu, Zhigang Jiang, Linyuan Zhang, Zhenyu Zhong, Xiaoge Ping, Huailiang Xu and Chunwang Li 971–977 Habitat preference and feeding ecology of alpine musk deer (Moschus chrysogaster) in Kedarnath Wildlife Sanctuary, Uttarakhand, India Zarreen Syed and Orus Ilyas 978–987 Home range of reintroduced Chinese water deer in Nanhui East Shoal Wildlife Sanctuary of Shanghai, China Xin He, Min Chen and Endi Zhang 988–996 Effects of dietary zinc supplementation on nutrient digestibility, haematological biochemical parameters and production performance in male sika deer (Cervus nippon) Bao Kun, Sun Weili, Li Chunyi, Wang Kaiying, Li Zhipeng, Bi Shidan and Li Guangyu 997–1001 Effects of DL-methionine supplement on growth performance and amino acid digestion and plasma concentrations in sika deer calves (Cervus nippon) Jian Huang, Wei-Li Sun, Chun-Yi Li, Han-Lu Liu, Tie-Tao Zhang, Kun Bao, Yan-Yan Fan, Guang-Yu Li and Kai-Ying Wang 1002–1007 Total velvet-antler polypeptide extract from Cervus nippon Temminck induces cell proliferation and activation of the PI3K–Akt signalling pathway in human peripheral blood lymphocytes Min Zhang, Na Li, Xiao Bo Qu, Su Luo and Gregor P. -
Summary Conservation Action Plans for Mongolian Reptiles and Amphibians
Summary Conservation Action Plans for Mongolian Reptiles and Amphibians Compiled by Terbish, Kh., Munkhbayar, Kh., Clark, E.L., Munkhbat, J. and Monks, E.M. Edited by Munkhbaatar, M., Baillie, J.E.M., Borkin, L., Batsaikhan, N., Samiya, R. and Semenov, D.V. ERSITY O IV F N E U D U E T C A A T T S I O E N H T M ONGOLIA THE WORLD BANK i ii This publication has been funded by the World Bank’s Netherlands-Mongolia Trust Fund for Environmental Reform. The fi ndings, interpretations, and conclusions expressed herein are those of the author(s) and do not necessarily refl ect the views of the Executive Directors of the International Bank for Reconstruction and Development / the World Bank or the governments they represent. The World Bank does not guarantee the accuracy of the data included in this work. The boundaries, colours, denominations, and other information shown on any map in this work do not imply any judgement on the part of the World Bank concerning the legal status of any territory or the endorsement or acceptance of such boundaries. The World Conservation Union (IUCN) have contributed to the production of the Summary Conservation Action Plans for Mongolian Reptiles and Amphibians, providing technical support, staff time, and data. IUCN supports the production of the Summary Conservation Action Plans for Mongolian Reptiles and Amphibians, but the information contained in this document does not necessarily represent the views of IUCN. Published by: Zoological Society of London, Regent’s Park, London, NW1 4RY Copyright: © Zoological Society of London and contributors 2006. -
High Altitude Survival
High altitude survival Conflicts between pastoralism andwildlif e in the Trans-Himalaya Charudutt Mishra CENTRALE LANDBOUWCATALOGUS 0000 0873 6775 Promotor Prof.Dr .H .H .T .Prin s Hoogleraar inhe tNatuurbehee r ind eTrope n enEcologi eva n Vertebraten Co-promotor : Dr.S .E .Va nWiere n Universitair Docent, Leerstoelgroep Natuurbeheer in de Tropen enEcologi eva nVertebrate n Promotie Prof.Dr .Ir .A .J .Va n DerZijp p commissie Wageningen Universiteit Prof.Dr .J .H . Koeman Wageningen Universiteit Prof.Dr . J.P .Bakke r Rijksuniversiteit Groningen Prof.Dr .A .K .Skidmor e International Institute forAerospac e Survey and Earth Sciences, Enschede High altitude survival: conflicts between pastoralism and wildlife inth e Trans-Himalaya Charudutt Mishra Proefschrift ter verkrijging van degraa d van doctor opgeza g van derecto r magnificus van Wageningen Universiteit prof. dr. ir. L. Speelman, inhe t openbaar te verdedigen opvrijda g 14decembe r200 1 des namiddags te 13:30uu r in deAul a -\ •> Mishra, C. High altitude survival:conflict s between pastoralism andwildlif e inth e Trans-Himalaya Wageningen University, The Netherlands. Doctoral Thesis (2001); ISBN 90-5808-542-2 A^ofZC , "SMO Propositions 1. Classical nature conservation measures will not suffice, because the new and additional measures that have to be taken must be especially designed for those areas where people live and use resources (Herbert Prins, The Malawi principles: clarification of thoughts that underlaythe ecosystem approach). 2. The ability tomak e informed decisions on conservation policy remains handicapped due to poor understanding of the way people use natural resources, and the impacts of such resource use onwildlif e (This thesis). -
Cfreptiles & Amphibians
HTTPS://JOURNALS.KU.EDU/REPTILESANDAMPHIBIANSTABLE OF CONTENTS IRCF REPTILES & AMPHIBIANSREPTILES • VOL & AMPHIBIANS15, NO 4 • DEC 2008 • 28(2):189 270–273 • AUG 2021 IRCF REPTILES & AMPHIBIANS CONSERVATION AND NATURAL HISTORY TABLE OF CONTENTS FirstFEATURE ARTICLESRecord of Interspecific Amplexus . Chasing Bullsnakes (Pituophis catenifer sayi) in Wisconsin: betweenOn the Road to Understandinga Himalayan the Ecology and Conservation of the Toad, Midwest’s Giant Serpent Duttaphrynus ...................... Joshua M. Kapfer 190 . The Shared History of Treeboas (Corallus grenadensis) and Humans on Grenada: himalayanusA Hypothetical Excursion ............................................................................................................................ (Bufonidae), and a RobertHimalayan W. Henderson 198 RESEARCH ARTICLES Paa. TheFrog, Texas Horned Lizard Nanorana in Central and Western Texas ....................... vicina Emily Henry, Jason(Dicroglossidae), Brewer, Krista Mougey, and Gad Perry 204 . The Knight Anole (Anolis equestris) in Florida from ............................................. the BrianWestern J. Camposano, Kenneth L. Krysko, Himalaya Kevin M. Enge, Ellen M. Donlan, andof Michael India Granatosky 212 CONSERVATION ALERT . World’s Mammals in Crisis ...............................................................................................................................V. Jithin, Sanul Kumar, and Abhijit Das .............................. 220 . More Than Mammals .....................................................................................................................................................................