Overwintering Habitat Selection of Asiatic Toad, Bufo Gargarizans in Southwestern China

Total Page:16

File Type:pdf, Size:1020Kb

Overwintering Habitat Selection of Asiatic Toad, Bufo Gargarizans in Southwestern China Biharean Biologist (2010) Vol. 4, No.1, Pp.: 15-18 P-ISSN: 1843-5637, E-ISSN: 2065-1155 Article No.: 041103 Overwintering habitat selection of Asiatic toad, Bufo gargarizans in southwestern China Tong Lei YU1 and Yan Shu GUO2 1. Department of Zoology, College of Life Sciences, Wuhan University, Wuhan 430072 Hubei Province, China. E-mail: [email protected] 2. College of Life Sciences, China West Normal University, Sichuan, China. E-mail: [email protected] Abstract. We studied overwintering habitats selection of Bufo gargarizans during 2005-2008 in southwestern China. Our results showed most toads buried themselves in the ground. By comparing hibernation and post-reproductive dormancy sites, we found that the latter was closer to ponds with higher vegetable cover and shallower than hibernation sites. It indirect proves that toads consume large energy in the breeding season and a small quantity remains for the dormancy period. Keywords: Bufo gargarizans; hibernation site; post-reproductive dormancy site. Introduction snout-to-vent length (SVL) of 98.22 ± 1.43 mm (range 73.6 - 137 mm), and the males have 87.32 ± 0.94 mm Anurans are haematocryal animals without body (range 66 - 117 mm). The body mass of females can temperature regulative capability (Pinder et al. 1992), so reach 160.72 ± 18.73 g (range 112 - 315 g), males have they are vulnerable to freezing conditions and must 83.12 ± 4.2 g (range 52.1 - 138.59 g) in the breeding select suitable habitats unlikely to freeze. Some species period (Yu & Lu 2010). B. gargarizans is mainly of toads are known to burrow into loose soils or under- insectivorous and rarely feeds on vegetation (Yu et al. water silt to depths that are below the frost line 2009). Due to medicinal and edible value, some people (Breckenridge & Tester 1961, Kelleher & Tester 1969, are capturing them during the breeding period. Sinsch 1988, Kuyt 1991). Most ranids have limited Moreover, some favourable spawning sites were excavating abilities and are assumed to avoid freezing changed into agricultural fields or superhighways (e.g. by remaining in aquatic habitats (Pinder et al. 1992). For eight breeding sites were destroyed to construct example, Rana kukunoris, Rana chensinensis, and Bufo bufo superhighway in 2008), so the number of toads has have been found to hibernate in swamps and reservoirs significantly decreased in recent years. Thus, the (Yu unpubl. data, and also see in: Wu et al. 2007, knowledge of overwintering site selection can be Laitinen & Pasanen 1998). applied towards conservation strategies, enhancing Hibernation sites selection is influenced by multiple their breeding success. factors. Firstly, in the case of anurans overwintering in water, the hibernation sites remain unfrozen throughout the winter because of either water flow or warmer Materials and methods groundwater flowing out at the surface (Lamoureux & Madison 1999). Secondly, all sites should have higher Field study was carried out in the farmland on the west coast of Jialing River during 2005-2008 (30°35N, 105°45W, 300 m a.s.l.), oxygen content than breeding ponds have (Barica & Nanchong, Southwest China. There were four large swamps Mathias 1979). Concerning amphibians that hibernate (150 × 35 m) and one branch of Jialing River which were on land, the characteristics of temperature, humidity, breeding sites of Asiatic toads. Besides those, one pond of our colour, texture, structure, consistency and effervescence university also breeding sites, as well as overwintering habitat. of soil, distance to water and vegetable cover influence Soil texture was mostly sandy, only submersed lands near to selection of hibernation sites (Breckenridge & Tester river were clayey. Based on previous investigations, we knew 1961). that hibernation of toads begins in mid- November. Because Asiatic toad (Bufo gargarizans) is a terrestrial anuran, the number of toads was high in our study area, we could find them by means of burrow soil without the need of radio- widely distributed in China, also in Russia and Korea tracking. In late December 2005, we selected 20 (10 × 10 m) (Fei & Ye 2001). The adult females can reach an average sandy and 20 clayey quadrats along four large water bodies. ©Biharean Biologist, Oradea, Romania, 2010 Biharean Biol. 4, 2010 http://biologie-oradea.xhost.ro/BihBiol/index.html Oradea, Romania 16 Yu, T. & Guo, Y. We dug holes of 20 cm depth in soil and recorded the number reproductive dormancy sites (mid- January), but males of toads in every large quadrat. The point where a toad was did not left the ponds until females were not present at found was taken as centre and a 1×1 m small quadrat was spawning sites. made. We measured its distance to residence (buildings close to ponds, where human reside), distance to small road (only Types of hibernation and post-reproductive dormancy used by passers, as no vehicles were near the ponds), vegetable cover, burying depth and distance to water body. At the same sites time, we surveyed all possible existing places as overwintering A total number of 100 toads was found in different habitats of toads in 2006-2008. The same method was applied hibernation sites. 34% of toads rested on the bottom of for studying post-reproductive dormancy sites. Besides one pond, 58 % buried themselves in sandy or clayey farmland, we surveyed other possible overwintering places of toads e.g. natural holes, crab holes, artificial holes, buffalo soil, and 8% found shelter under bamboo leaves. Mann- footprints and natural cracks along water body, and the Whitney U-test revealed a significant difference substrate of bamboo forest around residence. concerning the selection between sandy and clayey We applied the Mann-Whitney U-test to compare the data hibernation sites (Z = -3.423, P < 0.05). sets between hibernation and post-reproductive dormancy Regarding the post-reproductive dormancy sites, sites, sandy and clayey soils. Chi-square test was applied to besides those mentioned above, toads also used natural detect differences between types of post-reproductive holes, crab holes, artificial holes, buffalo footprints and dormancy sites. All values given was shown as mean SE. natural cracks. Even so, there were some individuals around spawning sites, which did not seek or find shelter. The results showed that toads preferred sandy Results soil for post-reproductive dormancy sites as we found 67 adult toads buried in sandy soil and none in clayey Time of hibernation and post-reproductive dormancy soil. 41 adults were found in the other five types of post- B. gargarizans began to hibernate in mid-November and reproductive dormancy sites, the differences between bred in late-December. The breeding period lasted about the percentage of number of toads in these habitats two weeks (7 to 20 days). When adult females finished being significant (Chi-square test: H2 = 24.6, df = 4, P < spawning, they went ashore and moved on to post- 0.001, Fig. 1). Figure 1. The percentage of number of toads in five types of post-reproductive dormancy sites (NH, natural holes; CH, crab holes; AH, artificial holes; BF, Buffalo footprints; NC, natural cracks) (Number of post-reproductive dormancy sites is shown in parentheses) Behaviour during hibernation and post-reproductive As for the post-reproductive dormancy behaviour, dormancy there were some differences compared with that of hi- bernation. When a toad was taken out from a dorman- During hibernation, toads’ body was shrunk and slight- cy site (e.g. in sandy soil), it opened eyes shortly, ly arched, the four limbs contracted under the abdomen, actively moved back into dormancy site, and with hind the mandible stuck to curved forelimb, and the eyes wed-toes unfolded, rapidly spaded sand to back, closed. When the toads were taken out from hibernation formed a small sand pit after 5 minutes, buried its lower site and put on the ground, they did not react for 5 half after 12 minutes and disappeared in the sand after minutes. Moreover, adults usually were alone in the 30 minutes. Sometimes, we saw two or more toads in hibernation sites. Two subadults were seen by chance. one site (e.g. 9 toads: 2 females and 7 males in a cave in Biharean Biol. 4, 2010 Overwintering habitat selection of Asiatic toad 17 2008). Discussion Comparison of hibernation and post-reproductive The toads preferred sandy soil for hibernation and post- dormancy sites reproductive dormancy sites. Preference for areas with sand is easily explained by its venting quality, The Mann-Whitney U-test showed that there are signi- temperature, and humidity, which were better than ficant differences between the characteristics of hiberna- those of clayey soil, and other anurans were also found tion and post-reproductive dormancy sites. B. garga- in sandy soil (e.g. Rana limnocharis, Wang 2007). In the rizans preferred for dormancy, sites with higher vege- wintering habitats, buried toads were deeper than in the table cover and closer to breeding sites (vegetable cover, dormancy sites, this being beneficial in order to avoid Z = -4.037, P < 0.001; distance to ponds, Z = -2.216, P < freezing. However, Rana clamitans and Rana pipiens 0.05). At the same time, toads buried themselves at chose flowing wate of streams and icebound ponds as lower depths than in hibernation sites (Z = -7.515, P < hibernation sites, respectively (Lamoureux & Madison 0.001; Table 1). 1999, Ultsch 2004). Table 1. Comparison of 58 hibernation sites and 67 post-reproductive dormancy sites of Bufo gargarizans in the farmland (HS, hibernation sites; PRDS, post-reproductive dormancy sites). Variables HS PRDS Z P Mean (SE) Mean (SE) Distance to water body (m) 24.88 (4.34) 13.30 (0.86) -2.216 < 0.05 Distance to residence (m) 150.81 (14.63) 226.20 (8.29) -1.057 0.290 Distance to small road (m) 15.36 (0.97) 17.04 (0.36) -0.201 0.841 Vegetable cover (%) 28.26 (5.49) 57.53 (4.30) -4.037 < 0.001 Burying depth (cm) 4.37 (0.26) 1.67 (0.12) -7.515 < 0.001 Due to large energy consumption during breeding, spawning sites, because the temperatures were some toads could not return to former hibernation sites relatively higher than in 2007.
Recommended publications
  • Comparative Transcriptome Analyses Reveal the Genetic Basis Underlying the Immune Function of Three Amphibians’ Skin
    RESEARCH ARTICLE Comparative transcriptome analyses reveal the genetic basis underlying the immune function of three amphibians' skin Wenqiao Fan1,2,3☯, Yusong Jiang1☯, Meixia Zhang1, Donglin Yang1,2,3, Zhongzhu Chen1,2,3, Hanchang Sun1*, Xuelian Lan1,2,3, Fan Yan1, Jingming Xu1, Wanan Yuan1 1 Chongqing Research Center of Conservation and Development on Rare and Endangered Aquatic Resources, Chongqing University of Arts and Sciences, Yongchuan, Chongqing, China, 2 Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Yongchuan, Chongqing, China, 3 Chongqing a1111111111 Engineering Laboratory of Targeted and Innovative Therapeutics, Yongchuan, Chongqing, China a1111111111 a1111111111 ☯ These authors contributed equally to this work. a1111111111 * [email protected] a1111111111 Abstract Skin as the first barrier against external invasions plays an essential role for the survival of OPEN ACCESS amphibians on land. Understanding the genetic basis of skin function is significant in reveal- Citation: Fan W, Jiang Y, Zhang M, Yang D, Chen ing the mechanisms underlying immunity of amphibians. In this study, we de novo Z, Sun H, et al. (2017) Comparative transcriptome sequenced and comparatively analyzed skin transcriptomes from three different amphibian analyses reveal the genetic basis underlying the immune function of three amphibians' skin. PLoS species, Andrias davidianus, Bufo gargarizans, and Rana nigromaculata Hallowell. Func- ONE 12(12): e0190023. https://doi.org/10.1371/ tional classification of unigenes in each amphibian showed high accordance, with the most journal.pone.0190023 represented GO terms and KEGG pathways related to basic biological processes, such as Editor: Zhong-Jian Liu, The National Orchid binding and metabolism and immune system. As for the unigenes, GO and KEGG distribu- Conservation Center of China; The Orchid tions of conserved orthologs in each species were similar, with the predominantly enriched Conservation & Research Center of Shenzhen, CHINA pathways including RNA polymerase, nucleotide metabolism, and defense.
    [Show full text]
  • Royle Safaris Sichuan Mammals Tour Trip Report
    In March 2019 Royle Safaris ran our second specialist Sichuan Mammals Tour with a focus on a particularly special species. The trip was run with Martin Royle, Roland Zeidler & Sid Francis as our guides. We visited 3 different locations (covering the rugged bamboo forests of the greater Wolong ecosystem, the high altitude grasslands of Rouergai and the wonderful forests of Tangjiahe. We were very successful with sightings of 44 different species of mammals and over 100 species of birds including Giant Panda, Red Panda, Pallas’s Cat, Chinese Mountain Cat, Indochinese Leopard Cat, Particoloured Flying Squirrel, Golden Snub-nosed Monkey, Chinese Ferret Badger, Eurasian Otter and Chinese Pipistrelle. We ran a second Sichuan’s Mammals Tour (back to back with this one) in April 2019 and we had even more success in some areas. The sightings log for that trip will follow in a few days. We have started to promote our 2020 Sichuan Mammals Tour (with special focus on a particular special species for half of the trip); we have already received many bookings on these two trips. Our first tour for 2020 (9th – 22nd March 2020) has just one place remaining and our second tour for 2020 (25th April – 8th May 2020) which also has only one place remaining. We have also started offering places on another specialist mammal tour of China, visiting Qinghai and the wonderful Valley of the Cats. This tour is for July 2020 (1st – 15th July 2020) and focuses on Snow leopards, Eurasian lynx, Himalayan wolf, Himalayan brown bear, Tibetan antelope, Wild Yak, White-lipped deer, Alpine musk deer, Glover’s pika, Bharal, McNeil’s deer and many more species.
    [Show full text]
  • Summary Conservation Action Plans for Mongolian Reptiles and Amphibians
    Summary Conservation Action Plans for Mongolian Reptiles and Amphibians Compiled by Terbish, Kh., Munkhbayar, Kh., Clark, E.L., Munkhbat, J. and Monks, E.M. Edited by Munkhbaatar, M., Baillie, J.E.M., Borkin, L., Batsaikhan, N., Samiya, R. and Semenov, D.V. ERSITY O IV F N E U D U E T C A A T T S I O E N H T M ONGOLIA THE WORLD BANK i ii This publication has been funded by the World Bank’s Netherlands-Mongolia Trust Fund for Environmental Reform. The fi ndings, interpretations, and conclusions expressed herein are those of the author(s) and do not necessarily refl ect the views of the Executive Directors of the International Bank for Reconstruction and Development / the World Bank or the governments they represent. The World Bank does not guarantee the accuracy of the data included in this work. The boundaries, colours, denominations, and other information shown on any map in this work do not imply any judgement on the part of the World Bank concerning the legal status of any territory or the endorsement or acceptance of such boundaries. The World Conservation Union (IUCN) have contributed to the production of the Summary Conservation Action Plans for Mongolian Reptiles and Amphibians, providing technical support, staff time, and data. IUCN supports the production of the Summary Conservation Action Plans for Mongolian Reptiles and Amphibians, but the information contained in this document does not necessarily represent the views of IUCN. Published by: Zoological Society of London, Regent’s Park, London, NW1 4RY Copyright: © Zoological Society of London and contributors 2006.
    [Show full text]
  • Cfreptiles & Amphibians
    HTTPS://JOURNALS.KU.EDU/REPTILESANDAMPHIBIANSTABLE OF CONTENTS IRCF REPTILES & AMPHIBIANSREPTILES • VOL & AMPHIBIANS15, NO 4 • DEC 2008 • 28(2):189 270–273 • AUG 2021 IRCF REPTILES & AMPHIBIANS CONSERVATION AND NATURAL HISTORY TABLE OF CONTENTS FirstFEATURE ARTICLESRecord of Interspecific Amplexus . Chasing Bullsnakes (Pituophis catenifer sayi) in Wisconsin: betweenOn the Road to Understandinga Himalayan the Ecology and Conservation of the Toad, Midwest’s Giant Serpent Duttaphrynus ...................... Joshua M. Kapfer 190 . The Shared History of Treeboas (Corallus grenadensis) and Humans on Grenada: himalayanusA Hypothetical Excursion ............................................................................................................................ (Bufonidae), and a RobertHimalayan W. Henderson 198 RESEARCH ARTICLES Paa. TheFrog, Texas Horned Lizard Nanorana in Central and Western Texas ....................... vicina Emily Henry, Jason(Dicroglossidae), Brewer, Krista Mougey, and Gad Perry 204 . The Knight Anole (Anolis equestris) in Florida from ............................................. the BrianWestern J. Camposano, Kenneth L. Krysko, Himalaya Kevin M. Enge, Ellen M. Donlan, andof Michael India Granatosky 212 CONSERVATION ALERT . World’s Mammals in Crisis ...............................................................................................................................V. Jithin, Sanul Kumar, and Abhijit Das .............................. 220 . More Than Mammals .....................................................................................................................................................................
    [Show full text]
  • A Guide to the Amphibians of Beijing Compiled by R Nicolas LOU, ZHANG Junduo and Ben WIELSTRA
    A Guide to the Amphibians of Beijing Compiled by R Nicolas LOU, ZHANG Junduo and Ben WIELSTRA Last update 28 March 2018 Cover photo: Boreal Digging Frog (Kaloula borealis), 11 June 2016 (Xing Chao) A GUIDE TO THE AMPHIBIANS OF BEIJING !1 Introduction This guide is one of a series about the wildlife that can be found in China’s capital city. It has been compiled by R Nicolas LOU, ZHANG Junduo and Ben WIELSTRA for Birding Beijing. The format follows the other guides in providing the English name, scientific name, Chinese name and the pinyin (pronunciation of the Chinese) and follows the order and taxonomy of “Amphibian Species of the World 6.0, an online reference” by Darrel R Frost (see http://research.amnh.org/vz/herpetology/amphibia/). Photos of different stages of the life-cycle are included where available. If you have any information that can help to improve this guide, please contact Birding Beijing on email - [email protected]. Thank you. A GUIDE TO THE AMPHIBIANS OF BEIJING !2 The Amphibians Frogs and Toads 1. Asiatic Toad - Bufo gargarizan - 中华⼤蟾蜍 - Zhong Hua Da Chan Chu Asiatic Toad, 16 August 2016 (Chen Wei) Asiatic Toad, amplexus, 23 March 2018 (Ben Wielstra) A GUIDE TO THE AMPHIBIANS OF BEIJING !3 Asiatic Toad, spawn, 24 March 2018 (Ben Wielstra) Asiatic Toad, tadpoles, 21 April 2017 (Yu Yalun) A GUIDE TO THE AMPHIBIANS OF BEIJING !4 2. Mongolian Toad - Strauchbufo raddei - 花背蟾蜍 - Hua Bei Chan Chu Mongolian Toad, 20 April 2014 (Chen Wei) Mongolian Toad, 21 July 2015 (Zhang Junduo) A GUIDE TO THE AMPHIBIANS OF BEIJING !5 3.
    [Show full text]
  • Asian Spined Toad Risk Assessment
    Invasive animal risk assessment Biosecurity Queensland Agriculture Fisheries and Department of Asian spined toad Bufo melanostictus Steve Csurhes First published 2010 Updated 2016 © State of Queensland, 2016. The Queensland Government supports and encourages the dissemination and exchange of its information. The copyright in this publication is licensed under a Creative Commons Attribution 3.0 Australia (CC BY) licence. You must keep intact the copyright notice and attribute the State of Queensland as the source of the publication. Note: Some content in this publication may have different licence terms as indicated. For more information on this licence visit http://creativecommons.org/licenses/ by/3.0/au/deed.en" http://creativecommons.org/licenses/by/3.0/au/deed.en Invasive animal risk assessment: Asian spined toad (Bufo melanostictus) 2 Contents Summary 4 Identity and taxonomy 5 Description 6 Biology 7 Preferred habitat 8 Global distribution 8 Distribution in Australia 9 Conservation status 9 Threat to human safety 9 History as a pest overseas 9 Potential distribution and impact in Queensland 10 The ‘Bomford numerical risk assessment’ 11 References 11 Attachment 14 Invasive animal risk assessment: Asian spined toad (Bufo melanostictus) 3 Summary The Asian spined toad (Bufo melanostictus) is closely related to one of Queensland’s most infamous pests, the cane toad (Bufo marinus). While the cane toad is native to South America, the Asian spined toad is native to Asia. Much like the cane toad, the Asian spined toad is highly fecund, producing up to 40,000 eggs per clutch. It is also poisonous, has a generalist diet and is well adapted for life in urban areas.
    [Show full text]
  • World Competition Fip
    FFÉÉDDÉÉRRAATTIIOONN IINNTTEERRNNAATTIIOONNAALLEE DDEE PPHHIILLAATTÉÉLLIIEE CHAIRMAN: GEORGE CONSTANTOURAKIS 2115 GIROUARD MONTREAL QC, H4A 3C4 CANADA TEL: +5144822764 [email protected] TH 11 FIP MAXIMAPHILY WORLD COMPETITION FOR THE BEST MAXIMUM CARD CREATED IN 2013 RESULTS MONTREAL – PARIS, JUNE 4, 2016 The 11th World Competition for the three Best Maximum Cards created in 2013' was posted on our Website www.maximafily.info and was open for Voting to all our official Delegates. The Voting period was from May 1st to May 31st, 2016. The Delegates sent by email their Voting Papers with their Choices to both the Chairman and the Bureau Member Mme Anny Boyard. If a Country Vote was sent only to me as Chairman, I forwarded that Vote to Mme A. Boyard to ensure the integrity and security of the Vote. Mme Anny Boyard was in charge of verifying the Vote Results and she did a thorough verification by checking every single Vote received. Forty three 43 countries received a Vote out of a total of 52 participating countries. There were 42 Votes cast by the Delegates of the following 42 FIP Countries Armenia; Australia; Austria; Belgium; Brazil; Bulgaria; Canada; China; Croatia; Cyprus; Czech Rep.; Finland; France; Germany; Great Britain; Greece; Hong Kong; Iceland; India; Iran; Israel; Italy; Korea Rep.; Luxembourg; Malaysia; Mexico; Netherlands; New Zealand; Pakistan; Philippines; Poland; Portugal; Romania; Russia; Singapore; Slovenia; Spain; Thailand; Turkey; Ukraine; U.S.A. and Venezuela. The RESULTS of the three (3) Best Maximum Cards created in 2013 are the following: 1 1st Prize: ITALY (63 points) TITLE: MOLE ANTONELLIANA, TORINO This Maximum Card was created by A.I.M.
    [Show full text]
  • Support Document for UK Proposal to List “Chlorinated Paraffins With
    Support document for UK proposal to list “Chlorinated paraffins with carbon chain lengths in the range C14-17 and chlorination levels at or exceeding 45% chlorine by weight” in Annex A, B or C to the Stockholm Convention on Persistent Organic Pollutants 1. Introduction 1. Chlorinated paraffins (CPs) are manufactured substances consisting of predominantly linear chloroalkanes, with different degrees of chlorination and chain length distributions depending on the application and feedstock. This proposal is for any CP product that has constituents with 14 to 17 carbon atoms (C14-17) and a chlorination level at or exceeding 45% chlorine by weight (Cl wt.). These congeners are the principal constituents of substances called “medium-chain chlorinated paraffins” (MCCPs) in Europe, North America and Australia, and major constituents of several products manufactured in Asia (e.g. CP-52). Due to the possible confusion regarding different product names, the proposal for listing is based on specific chain lengths and degrees of chlorination. Nevertheless, most of the available hazard and monitoring information is available from assessments on the substance called MCCPs, and so the term “MCCPs” is used in these instances. 2. Regulatory status 2. “MCCPs” (alkanes, C14-17, chloro; CAS no. 85535-85-9) was assessed in Europe under the Existing Substances Regulation (EC) No. 793/93 (EC, 2005; EC, 2007; HSE 2008), and via a transitional Annex XV dossier under the Registration, Evaluation and Authorisation of Chemicals (REACH) Regulation (Environment Agency, 2010). Subsequently “MCCPs” underwent Substance Evaluation under REACH, and the published report prepared by the UK concludes that it meets the REACH Annex XIII criteria for Persistent, Bioaccumulative and Toxic (PBT) and very Persistent, very Bioaccumulative (vPvB) properties (Environment Agency, 2019).
    [Show full text]
  • Of Turkmenistan
    MINISTRY OF NATURE PROTECTION OF TURKMENISTAN COUNTRY STUDY ON THE STATUS OF BIODIVERSITY OF TURKMENISTAN ASHGABAT 2002 The wonderful beauty of our beloved Fatherland’s nature has been preserved until today. To pass on this beauty, such a pleasure to the eye, to succeeding generations is the task of those living at present. Saparmurat TURKMENBASHI Published by: Ministry of Nature Protection, Ashgabat, Turkmenistan Citation: Ministry of Nature Protection (2002). Country Study on the Status of Biodiversity of Turkmenistan. MNP, Ashgabat, Turkmenistan. Note about the English version The English version of the Country Study was translated from the original Russian version. Compilation and editing was carried out by Fauna & Flora International. In case of any discrepancy between this document and the Russian Country Study, readers are referred to the Russian version, which is the officially approved text. 4 CONTENT FOREWORD ............................................................................................................................. 8 INTRODUCTION ................................................................................................................... 11 EXECUTIVE SUMMARY ..................................................................................................... 12 1. COUNTRY CONTEXT ...................................................................................................... 13 1.1. Geographical Location and Borders ................................................................................
    [Show full text]
  • Summary Conservation Action Plans for Mongolian Reptiles and Amphibians
    Public Disclosure Authorized Summary Conservation Action Plans for Mongolian Reptiles and Amphibians Compiled by Terbish, Kh., Munkhbayar, Kh., Clark, E.L., Munkhbat, J. and Monks, E.M. Public Disclosure Authorized Edited by Munkhbaatar, M., Baillie, J.E.M., Borkin, L., Batsaikhan, N., Samiya, R. and Semenov, D.V. Public Disclosure Authorized ERSITY O IV F N E U D U E T C A A T T S I O E N H T Public Disclosure Authorized M ONGOLIA THE WORLD BANK i ii This publication has been funded by the World Bank’s Netherlands-Mongolia Trust Fund for Environmental Reform. The ſ ndings, interpretations, and conclusions expressed herein are those of the author(s) and do not necessarily reƀ ect the views of the Executive Directors of the International Bank for Reconstruction and Development / the World Bank or the governments they represent. The World Bank does not guarantee the accuracy of the data included in this work. The boundaries, colours, denominations, and other information shown on any map in this work do not imply any judgement on the part of the World Bank concerning the legal status of any territory or the endorsement or acceptance of such boundaries. The World Conservation Union (IUCN) have contributed to the production of the Summary Conservation Action Plans for Mongolian Reptiles and Amphibians, providing technical support, staff time, and data. IUCN supports the production of the Summary Conservation Action Plans for Mongolian Reptiles and Amphibians, but the information contained in this document does not necessarily represent the views of IUCN. Published by: Zoological Society of London, Regent’s Park, London, NW1 4RY Copyright: © Zoological Society of London and contributors 2006.
    [Show full text]
  • Road Mortalities of Vertebrate Species on Ring Changbai Mountain Scenic Highway, Jilin Province, China
    NORTH-WESTERN JOURNAL OF ZOOLOGY 9 (2): 399-409 ©NwjZ, Oradea, Romania, 2013 Article No.: 131517 http://biozoojournals.3x.ro/nwjz/index.html Road mortalities of vertebrate species on Ring Changbai Mountain Scenic Highway, Jilin Province, China Yun WANG1,*, Zheng Ji PIAO2, Lei GUAN1, Xuan Ya WANG1, Ya Ping KONG1 and Jiding CHEN1 1. China Academy of Transportation Sciences, 240 Huixinli, Chaoyang District, Beijing, 100029, China. 2. Changbai Mountain Academy of Sciences, Erdaobaihe Town, Antu, Jilin Province, 133613, China. *Correspondence author, Y. Wang, E-mail: [email protected] Received: 17. October 2012 / Accepted: 27. May 2013 / Available online: 28. September 2013 / Printed: December 2013 Abstract. The incidence of wildlife mortality on roads is a widespread phenomenon reported in many countries; despite this, it has received limited attention in China. To address this issue, a field investigation was conducted to assess the magnitude, composition, and temporal patterns of road mortality of native vertebrates on Ring Changbai Mountain Scenic Highway in north-east China from 2009 to 2012. A total of 3.475 vertebrates, belonging to 63 species were recorded as road mortalities. Amphibians were the most abundant taxa recorded (86.21 %), followed by mammals (5.70 %), birds (5.24 %), and reptiles (2.85 %). Regarding the number of species affected by the incidence of road kills, birds were the most affected taxa (31 species), followed by mammals (16 species) and reptiles (10 species), while amphibians were the least affected taxa (6 species). Three vertebrate species that were recorded as road mortalities are under second class protection in China. There were no differences between seasons or months for road mortality or richness for bird and reptile taxa, while significant differences between months were observed for mammals and amphibians.
    [Show full text]
  • Determinants and Consequences of Dispersal in Vertebrates with Complex Life Cycles: a Review of Pond-Breeding Amphibians
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2020 Determinants and Consequences of Dispersal in Vertebrates with Complex Life Cycles: A Review of Pond-Breeding Amphibians Cayuela, Hugo ; Valenzuela-Sánchez, Andrés ; Teulier, Loïc ; Martínez-Solano, Íñigo ; Léna, Jean-Paul ; Merilä, Juha ; Muths, Erin ; Shine, Richard ; Quay, Ludivine ; Denoël, Mathieu ; Clobert, Jean ; Schmidt, Benedikt R Abstract: Dispersal is a central process in ecology and evolution. It strongly influences the dynamics of spatially structured populations and affects evolutionary processes by shaping patterns of gene flow. For these reasons, dispersal has received considerable attention from ecologists, evolutionary biologists, and conservationists. Although it has been studied extensively in taxa such as birds and mammals, much less is known about dispersal in vertebrates with complex life cycles such as pond-breeding amphibians. Over the past two decades, researchers have taken an ever-increasing interest in amphibian dispersal and initi- ated both basic and applied studies, using a broad range of experimental and observational approaches. This body of research reveals complex dispersal patterns, causations, and syndromes, with dramatic consequences for the demography and genetics of amphibian populations. In this review, our goals are to: redefine and clarify the concept of amphibian dispersal; review current knowledge about theeffects of individual (i.e., condition-dependent dispersal) and environmental (i.e., context-dependent dispersal) factors during the three stages of dispersal (i.e., emigration, transience, and immigration); identify the demographic and genetic consequences of dispersal in spatially structured amphibian populations; and propose new research avenues to extend our understanding of amphibian dispersal.
    [Show full text]