Automated Experiments on Ad Privacy Settings

Total Page:16

File Type:pdf, Size:1020Kb

Automated Experiments on Ad Privacy Settings Proceedings on Privacy Enhancing Technologies 2015; 2015 (1):92–112 Amit Datta*, Michael Carl Tschantz, and Anupam Datta Automated Experiments on Ad Privacy Settings A Tale of Opacity, Choice, and Discrimination Abstract: To partly address people’s concerns over web serious privacy concern. Colossal amounts of collected tracking, Google has created the Ad Settings webpage data are used, sold, and resold for serving targeted to provide information about and some choice over the content, notably advertisements, on websites (e.g., [1]). profiles Google creates on users. We present AdFisher, Many websites providing content, such as news, out- an automated tool that explores how user behaviors, source their advertising operations to large third-party Google’s ads, and Ad Settings interact. AdFisher can ad networks, such as Google’s DoubleClick. These net- run browser-based experiments and analyze data using works embed tracking code into webpages across many machine learning and significance tests. Our tool uses a sites providing the network with a more global view of rigorous experimental design and statistical analysis to each user’s behaviors. ensure the statistical soundness of our results. We use People are concerned about behavioral marketing AdFisher to find that the Ad Settings was opaque about on the web (e.g., [2]). To increase transparency and con- some features of a user’s profile, that it does provide trol, Google provides Ad Settings, which is “a Google some choice on ads, and that these choices can lead to tool that helps you control the ads you see on Google seemingly discriminatory ads. In particular, we found services and on websites that partner with Google” [3]. that visiting webpages associated with substance abuse It displays inferences Google has made about a user’s changed the ads shown but not the settings page. We demographics and interests based on his browsing be- also found that setting the gender to female resulted in havior. Users can view and edit these settings at getting fewer instances of an ad related to high paying http://www.google.com/settings/ads jobs than setting it to male. We cannot determine who Yahoo [4] and Microsoft [5] also offer personalized ad caused these findings due to our limited visibility into settings. the ad ecosystem, which includes Google, advertisers, However, they provide little information about how websites, and users. Nevertheless, these results can form these pages operate, leaving open the question of how the starting point for deeper investigations by either the completely these settings describe the profile they have companies themselves or by regulatory bodies. about a user. In this study, we explore how a user’s be- haviors, either directly with the settings or with content Keywords: blackbox analysis, information flow, behav- providers, alter the ads and settings shown to the user ioral advertising, transparency, choice, discrimination and whether these changes are in harmony. In particu- DOI 10.1515/popets-2015-0007 lar, we study the degree to which the settings provides Received 11/22/2014; revised 2/18/2015; accepted 2/18/2015. transparency and choice as well as checking for the pres- ence of discrimination. Transparency is important for people to understand how the use of data about them 1 Introduction affects the ads they see. Choice allows users to control how this data gets used, enabling them to protect the information they find sensitive. Discrimination is an in- Problem and Overview. With the advancement of creasing concern about machine learning systems and tracking technologies and the growth of online data ag- one reason people like to keep information private [6, 7]. gregators, data collection on the Internet has become a To conduct these studies, we developed AdFisher, a tool for automating randomized, controlled experiments for studying online tracking. Our tool offers a combi- *Corresponding Author: Amit Datta: Carnegie Mellon nation of automation, statistical rigor, scalability, and University, E-mail: [email protected] Michael Carl Tschantz: International Computer Science explanation for determining the use of information by Institute, E-mail: [email protected] web advertising algorithms and by personalized ad set- Anupam Datta: Carnegie Mellon University, E-mail: danu- tings, such as Google Ad Settings. The tool can simulate [email protected] having a particular interest or attribute by visiting web- Automated Experiments on Ad Privacy Settings 93 pages associated with that interest or by altering the ad dict which group an agent belonged to, from the ads settings provided by Google. It collects ads served by shown to an agent. The classifier is trained on a subset Google and also the settings that Google provides to of the data. A separate test subset is used to deter- the simulated users. It automatically analyzes the data mine whether the classifier found a statistically signif- to determine whether statistically significant differences icant difference between the ads shown to each group between groups of agents exist. AdFisher uses machine of agents. In this experiment, AdFisher found a clas- learning to automatically detect differences and then ex- sifier that could distinguish between the two groups of ecutes a test of significance specialized for the difference agents by using the fact that only the agents that visited it found. the substance abuse websites received ads for Watershed Someone using AdFisher to study behavioral tar- Rehab. geting only has to provide the behaviors the two groups We also measured the settings that Google provided are to perform (e.g., visiting websites) and the measure- to each agent on its Ad Settings page after the experi- ments (e.g., which ads) to collect afterwards. AdFisher mental group of agents visited the webpages associated can easily run multiple experiments exploring the causal with substance abuse. We found no differences (signif- connections between users’ browsing activities, and the icant or otherwise) between the pages for the agents. ads and settings that Google shows. Thus, information about visits to these websites is in- The advertising ecosystem is a vast, distributed, and deed being used to serve ads, but the Ad Settings page decentralized system with several players including the does not reflect this use in this case. Rather than provid- users consuming content, the advertisers, the publishers ing transparency, in this instance, the ad settings were of web content, and ad networks. With the exception of opaque as to the impact of this factor. the user, we treat the entire ecosystem as a blackbox. We In another experiment, we examined whether the measure simulated users’ interactions with this black- settings provide choice to users. We found that removing box including page views, ads, and ad settings. With- interests from the Google Ad Settings page changes the out knowledge of the internal workings of the ecosystem, ads that a user sees. In particular, we had both groups we cannot assign responsibility for our findings to any of agents visit a site related to online dating. Then, only single player within it nor rule out that they are un- one of the groups removed the interest related to online intended consequences of interactions between players. dating. Thereafter, the top ads shown to the group that However, our results show the presence of concerning kept the interest were related to dating but not the top effects illustrating the existence of issues that could be ads shown to the other group. Thus, the ad settings do investigated more deeply by either the players them- offer the users a degree of choice over the ads they see. selves or by regulatory bodies with the power to see the We also found evidence suggestive of discrimina- internal dynamics of the ecosystem. tion from another experiment. We set the agents’ gen- Motivating Experiments. In one experiment, we ex- der to female or male on Google’s Ad Settings page. We plored whether visiting websites related to substance then had both the female and male groups of agents abuse has an impact on Google’s ads or settings. We visit webpages associated with employment. We estab- created an experimental group and a control group of lished that Google used this gender information to se- agents. The browser agents in the experimental group lect ads, as one might expect. The interesting result was visited websites on substance abuse while the agents in how the ads differed between the groups: during this ex- the control group simply waited. Then, both groups of periment, Google showed the simulated males ads from agents collected ads served by Google on a news website. a certain career coaching agency that promised large Having run the experiment and collected the data, salaries more frequently than the simulated females, a we had to determine whether any difference existed in finding suggestive of discrimination. Ours is the first the outputs shown to the agents. One way would be to study that provides statistically significant evidence of intuit what the difference could be (e.g. more ads con- an instance of discrimination in online advertising when taining the word “alcohol”) and test for that difference. demographic information is supplied via a transparency- However, developing this intuition can take consider- control mechanism (i.e., the Ad Settings page). able effort. Moreover, it does not help find unexpected While neither of our findings of opacity or discrimi- differences. Thus, we instead used machine learning to nation are clear violations of Google’s privacy policy [8] automatically find differentiating patterns in the data. and we do not claim these findings to generalize or im- Specifically, AdFisher finds a classifier that can pre- ply widespread issues, we find them concerning and war- ranting further investigation by those with visibility into Automated Experiments on Ad Privacy Settings 94 the ad ecosystem.
Recommended publications
  • Adscape: Harvesting and Analyzing Online Display Ads
    Adscape: Harvesting and Analyzing Online Display Ads Paul Barford Igor Canadi Darja Krushevskaja University of University of Rutgers University Wisconsin-Madison Wisconsin-Madison [email protected] [email protected] [email protected] Qiang Ma S. Muthukrishnan Rutgers University Rutgers University [email protected] [email protected] ABSTRACT online users and the increasing amount of time that peo- Over the past decade, advertising has emerged as the pri- ple spend online has led to an estimated $36B in online ad mary source of revenue for many web sites and apps. In spending in the US for FY2012, which represents an 15% this paper we report a first-of-its-kind study that seeks to increase over the previous year [2]. The majority of this broadly understand the features, mechanisms and dynamics spending is on advertising that most commonly appears in of display advertising on the web - i.e., the Adscape. Our search results as text ads. There is, however, a growing pref- study takes the perspective of users who are the targets of erence for display ads | typically image and video ads that display ads shown on web sites. We develop a scalable crawl- appear in response to users' browsing and other activities ing capability that enables us to gather the details of dis- on the web | that can convey more robust and visual mes- play ads including creatives and landing pages. Our crawling sages to users. A recent report by Forrester estimates that strategy is focused on maximizing the number of unique ads $12.7B was spent in the US on display and video advertising harvested.
    [Show full text]
  • Privacy Leakage in Personalized Mobile In-App Ads
    The Price of Free: Privacy Leakage in Personalized Mobile In-App Ads Wei Meng, Ren Ding, Simon P. Chung, Steven Han, and Wenke Lee College of Computing Georgia Institute of Technology {wei, rding, pchung34, s.han}@gatech.edu, [email protected] Abstract—In-app advertising is an essential part of the ecosys- always a concern. While ad personalization has been well tem of free mobile applications. On the surface, this creates a studied for web, relatively little research explores mobile ad win-win situation where app developers can profit from their personalization in terms of what user information is being work without charging the users. However, as in the case of collected. We believe research focused on mobile ad personal- web advertising, ad-networks behind in-app advertising employ ization is a significant pursuit for the following reasons: 1) personalization to improve the effectiveness/profitability of their Mobile devices are a lot more intimate to users; they are ad-placement. This need for serving personalized advertisements in turn motivates ad-networks to collect data about users and carried around at all times and are being used more and more profile them. As such, “free” apps are only free in monetary for sensitive operations like personal communications, dating, terms; they come with the price of potential privacy concerns. banking, etc. Therefore, privacy concerns regarding what infor- The question is, how much data are users giving away to pay for mation is collected for ad personalization are more serious. 2) “free apps”? Unlike in-browser advertising, where the advertisement content is strictly isolated from the rest of the displayed page by the In this paper, we study how much of the user’s interest and demographic information is known to these major ad networks well-known “same origin policy”, in-app advertising operates on the mobile platform.
    [Show full text]
  • Microsoft Acquires Massive, Inc
    S T A N F O R D U N I V E R S I T Y! 2 0 0 7 - 3 5 3 - 1! W W W . C A S E W I K I . O R G! R e v . M a y 2 9 , 2 0 0 7 MICROSOFT ACQUIRES MASSIVE, INC. May 4th, 2006 T A B L E O F C O N T E N T S 1. Introduction 2. Industry Overview 2.1. The Advertising Opportunity Within Video Games 2.2. Market Size and Demographics 2.3. Video Games and Advertising 2.4. Market Dynamics 3. Massive, Inc. ! Company Background 3.1. Founding of Massive 3.2. The Financing of Massive 3.3. Product Launch / Technology 3.4. The Massive / Microsoft Deal 4. Microsoft, Inc. within the Video Game Industry 4.1. Role as a Game Publisher / Developer 4.2. Acquisitions 4.3. Role as an Electronic Advertising Network 4.4. Statements Regarding the Acquisition of Massive, Inc. 5. Exhibits 5.1. Table of Exhibits 6. References ! 2 0 0 7 - 3 5 3 - 1! M i c r o s o f t A c q u i s i t i o n o f M a s s i v e , I n c .! I N T R O D U C T I O N In May 2007, Microsoft Corporation was a company in transition. Despite decades of dominance in its core markets of operating systems and desktop productivity software, Mi! crosoft was under tremendous pressure to create strongholds in new market spaces.
    [Show full text]
  • Observing and Optimizing Online Ad Assignments
    OBSERVING AND OPTIMIZING ONLINE AD ASSIGNMENTS BY DARJA KRUŠEVSKAJA A dissertation submitted to the Graduate School—New Brunswick Rutgers, The State University of New Jersey in partial fulfillment of the requirements for the degree of Doctor of Philosophy Graduate Program in Computer Science Written under the direction of S. Muthukrishnan and approved by New Brunswick, New Jersey October, 2015 ABSTRACT OF THE DISSERTATION Observing and Optimizing Online Ad Assignments by Darja Kruševskaja Dissertation Director: S. Muthukrishnan The main focus of this thesis work is on optimization and observation of ad assignments in online ad markets. Online ad markets allocate billions of impressions to advertisers while satisfying an array of constraints. Their revenues support the Internet ecosystem. They highlight theory problems and inspire systems research. In this thesis work we initiate the study that seeks to understand mechanisms and dynamics of advertising markets. We develop a scalable crawling capability that allows us to harvest a corpus of ads across a large number of websites and user profiles. We establish that user profile is essential in display ad markets: 50% of observed websites have at least 80% of their ads targeted at profiles. Further, we introduce cardinal auctions for selling multiple copies of a good, in which bidders specify not only their bid or how much they are willing to pay for the good, but also a cardinality constraint on the maximum size of the allocation in which they are willing to participate. We perform the first known analyses of Price of Anarchy and revenue of cardinal auctions. Finally, we introduce a new class of online allocation problems with secondary metrics, in which the goal is to optimize one metric (e.g., revenue), while meeting another (e.g., cost of user conversion).
    [Show full text]
  • An Empirical Study of Mobile Ad Targeting
    An Empirical Study of Mobile Ad Targeting Theodore Book Dan S. Wallach Rice University Rice University Abstract of Android advertising libraries to access permission- protected user data [15, 31, 22, 6] as well as the behavior Advertising, long the financial mainstay of the web of applications that directly pass user private information ecosystem, has become nearly ubiquitous in the world to their ad libraries [7]. What remains little understood of mobile apps. While ad targeting on the web is fairly is the way that information is used after it has been col- well understood, mobile ad targeting is much less stud- lected. ied. In this paper, we use empirical methods to collect In this work, we measure a more complex factor that a database of over 225,000 ads on 32 simulated devices is also critical to the understanding of user privacy—the hosting one of three distinct user profiles. We then ana- interaction between advertising libraries and their host lyze how the ads are targeted by correlating ads to poten- servers. Because we do not have direct access to the pro- tial targeting profiles using Bayes’ rule and Pearson’s chi prietary algorithms used in processing ad requests and squared test. This enables us to measure the prevalence serving advertisements, we choose to treat the data center of different forms of targeting. We find that nearly all ads as a black box, observing the relationship between inputs show the effects of application- and time-based targeting, (ad requests) and outputs (provided ads). This resembles while we are able to identify location-based targeting in the methodology used by other researchers in measuring 43% of the ads and user-based targeting in 39%.
    [Show full text]
  • Urban Screens Reader and Sabine Niederer 2 Urban Screens Reader 3
    EDITED BY SCOTT MCQUIRE, MEREDITH MARTIN URBAN SCREENS Reader AND SABINE NIEDERER 2 URBAN SCREENS Reader 3 Urban Screens Reader Editors: Scott McQuire, Meredith Martin and Sabine Niederer Editorial Assistance: Geert Lovink and Elena Tiis Copy Editing: Michael Dieter and Isabelle de Solier Design: Katja van Stiphout Printer: Raamwerken Printing & Design, Enkhuizen Publisher: Institute of Network Cultures, Amsterdam 2009 ISBN: 978-90-78146-10-0 Contact Institute of Network Cultures Phone: +3120 5951866 EDITED BY Fax: +3120 5951840 SCOTT MCQUIRE, Email: info@networkcultures MEREDITH MARTIN Web: http://www.networkcultures.org AND SABINE NIEDERER INC READer #5 Order a copy of this book by sending an email to: [email protected] A pdf of this publication can be downloaded freely at: http://www.networkcultures.org/publications Join the Urban Screens mailing list at: http://www.listcultures.org Join the International Urban Screens Association at: http://www.urbanscreensassoc.org Supported by: the Dutch Ministry of Education, Culture and Science in collaboration with Virtueel Platform, the Faculty of Arts, University of Melbourne, the School for Com- munication and Design at the Amsterdam University of Applied Sciences, MediaLAB Amsterdam and the International Urban Screens Association. The editors would also like to acknowledge the assistance of the Australian Research Council LP0989302 in supporting this research. Special thanks to all the authors for their contributions, and to Michael Dieter for his careful copy-editing. This publication is licensed under the Creative Commons Attribution Noncommercial No Derivative Works 2.5 Netherlands License. To view a copy of this license, visit: http://creativecommons.org/licenses/by-nc-nd/2.5/nl/deed.en No article in this reader may be reproduced in any form by any electronic or mechanical means without permission in writing from the author.
    [Show full text]
  • Kober V. Google
    Case 5:20-cv-08336 Document 1-1 Filed 11/25/20 Page 1 of 35 EXHIBIT A Case 5:20-cv-08336 Document 1-1 Filed 11/25/20 Page 2 of 35 1 BOTTINI & BOTTINI, INC. 2 Anne B. Beste (SBN 326881) 3 [email protected] Albert Y. Chang (SBN 296065) 4 [email protected] 5 Yury A. Kolesnikov (SBN 271173) [email protected] 6 7817 Ivanhoe Avenue, Suite 102 7 La Jolla, California 92037 Telephone: (858) 914-2001 8 Facsimile: (858) 914-2002 9 Attorneys for Plaintiff and the Class 10 11 SUPERIOR COURT FOR THE STATE OF CALIFORNIA 12 COUNTY OF SANTA CLARA 13 14 AMOS KOBER, on behalf of himself Case No. 15 and all others similarly situated, CLASS ACTION COMPLAINT: 16 Plaintiff, (1) THE CARTWRIGHT ACT 17 (CAL. BUS. & PROF. CODE § v. 16720); 18 GOOGLE LLC, ALPHABET, INC., (2) UNFAIR COMPETITION 19 and DOES 1-100, LAW (CAL. BUS. & PROF. CODE § 17200 ET SEQ.); AND 20 Defendants. (3) UNJUST ENRICHMENT 21 DEMAND FOR JURY TRIAL 22 23 24 25 26 27 28 CLASS ACTION COMPLAINT Case 5:20-cv-08336 Document 1-1 Filed 11/25/20 Page 3 of 35 1 Plaintiff, individually and on behalf of all others similarly situated (the “Class,” as 2 defined below), files this class-action complaint against Google LLC and Alphabet, Inc. 3 (“Defendants”) for violations of the Cartwright Act and Cal. Bus. & Prof. Code. Plaintiff 4 alleges the following (a) upon personal knowledge with respect to the matters pertaining 5 to Plaintiff; and (b) upon information and belief with respect to all other matters, based 6 upon, among other things, the investigations undertaken by Plaintiff’s counsel.
    [Show full text]
  • A Natural Attitude
    A Natural Attitude A Naturalista’s Hair Journal Spoken from a Salon Owner’s Perspective By Schatzi Hawthorne McCarthy A publication of Schatzi's Design Gallery & Day Spa, LLC A Natural Attitude: A Naturalista’s Hair Journal Spoken from a Salon Owner’s Perspective By Schatzi Hawthorne McCarthy Copyright © 2014-2021, Schatzi Hawthorne McCarthy; cover photo by Varick Taylor of one12images.com. Embrace the beauty of you. This book is dedicated to God, the Creator, for Your grace, mercy and omniscience: “Oh lord, though hast searched me and known me…” (Psalm 139) Thank you for guiding me, naturally and super-naturally, to this path of self-discovery that was your vision for my life. To the beautiful women in my life who have loved me unconditionally and have inspired me to be a natural woman: Grandma Mabel McMillan Aunt Joyce McCullom Woodbury Dear Mother Greta Lois McCullom Hawthorne At the footstool of this matriarchy, my natural attitude was nurtured and grown. Prayerfully, the world can learn from your rich and wise example. To my Dad, the late Retired Maj. Arthur Earl Hawthorne. You were always proud of me. Without your unconditional love, I would never have had the confidence to be the natural woman that I am. My love for you is beyond all understanding! To my beautiful family--Lloyd, Jela-ni, Jamar, who have supported me in all of my lifetime endeavors. I am privileged to walk this journey of life with you and pray that we continue to grow and learn together with hearts full of love and understanding.
    [Show full text]
  • Advertisement
    ADVERTISEMENT ST.18237.NewAd.SoldCover.indd 1 03/11/10 4:35 PM REDESIGNED REINVENTED REIMAGINED The new Globe—superior, full-colour reproduction and a bold, clean design on a premium semi-gloss stock. With longer time spent and a deeper connection to the content, this will change the way readers engage with the newspaper and your ads. RELEVANT lifestyle content to an engaged audience— each month, Globe Media attracts 1,476,000 influential, affluent female readers, 808,000 of whom are the principal grocery shopper in their household.* Monday Tuesday Wednesday Thursday Friday DIGITAL enhancements offer integrated sponsorships across multiple platforms. COLOUR on every page. Visit GlobeLink.ca, call 1.800.387.9012 or email [email protected] Globe Media to reach Canada’s most influential consumers. where influence lives *Source: PMB Fall 2010, Age 12+ ST.18154.GlobeandMail.ad.indd 1 01/11/10 3:55 PM B!G LOVE FOR TAXI PHD’S PRESCRIPTION FOR MEDIA GOLD SALTY BARBIE & CELEBRATES AS SCOUTS DDB WINS GET FRESH WITH AGENCY JOE OF THE YEAR (AGAIN) CoverNov10.indd 1 02/11/10 4:13 PM REDESIGNED REINVENTED REIMAGINED The new Globe—superior, full-colour reproduction and a bold, clean design on a premium semi-gloss stock. With longer time spent and a deeper connection to the content, this will change the way readers engage with the newspaper and your ads. RELEVANT lifestyle content to an engaged audience— each month, Globe Media attracts 1,476,000 influential, affluent female readers, 808,000 of whom are the principal grocery shopper in their household.* Monday Tuesday Wednesday Thursday Friday DIGITAL enhancements offer integrated sponsorships across multiple platforms.
    [Show full text]
  • Computational Advertising: Techniques for Targeting Relevant Ads
    Computational Advertising: Techniques for Targeting Relevant Ads Kushal Dave LTRC International Institute of Information Technology Hyderabad, India [email protected] Vasudeva Varma LTRC International Institute of Information Technology Hyderabad, India [email protected] Boston — Delft Foundations and TrendsR in Information Retrieval Published, sold and distributed by: now Publishers Inc. PO Box 1024 Hanover, MA 02339 United States Tel. +1-781-985-4510 www.nowpublishers.com [email protected] Outside North America: now Publishers Inc. PO Box 179 2600 AD Delft The Netherlands Tel. +31-6-51115274 The preferred citation for this publication is K. Dave and V. Varma. Computational Advertising: Techniques for Targeting Relevant Ads. Foundations and TrendsR in Information Retrieval, vol. 8, no. 4-5, pp. 263–418, 2014. R This Foundations and Trends issue was typeset in LATEX using a class file designed by Neal Parikh. Printed on acid-free paper. ISBN: 978-1-60198-833-1 c 2014 K. Dave and V. Varma All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, mechanical, photocopying, recording or otherwise, without prior written permission of the publishers. Photocopying. In the USA: This journal is registered at the Copyright Clearance Cen- ter, Inc., 222 Rosewood Drive, Danvers, MA 01923. Authorization to photocopy items for internal or personal use, or the internal or personal use of specific clients, is granted by now Publishers Inc for users registered with the Copyright Clearance Center (CCC). The ‘services’ for users can be found on the internet at: www.copyright.com For those organizations that have been granted a photocopy license, a separate system of payment has been arranged.
    [Show full text]
  • IDENTIFYING and MITIGATING THREATS from EMBEDDING THIRD-PARTY CONTENT a Dissertation Presented to the Academic Faculty by Wei Me
    IDENTIFYING AND MITIGATING THREATS FROM EMBEDDING THIRD-PARTY CONTENT A Dissertation Presented to The Academic Faculty By Wei Meng In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the School of Computer Science Georgia Institute of Technology August 2017 Copyright © Wei Meng 2017 IDENTIFYING AND MITIGATING THREATS FROM EMBEDDING THIRD-PARTY CONTENT Approved by: Dr. Wenke Lee, Advisor Dr. Giovanni Vigna School of Computer Science Department of Computer Science Georgia Institute of Technology University of California, Santa Barbara Dr. Mustaque Ahamad Dr. Nick Feamster School of Computer Science Department of Computer Science Georgia Institute of Technology Princeton University Dr. Taesoo Kim Date Approved: July 20, 2017 School of Computer Science Georgia Institute of Technology To my parents, and those who have supported me. iii ACKNOWLEDGEMENTS This Ph.D. dissertation would not exist without the support from a number of people. I would like to take this opportunity to acknowledge them. First of all, I am very grateful to my advisor, Wenke Lee, for his guidance and support through the Ph.D. program. Wenke has been an amazing advisor, who has trained me to become an independent researcher and think critically. When I first started my Ph.D. I was a little bit disappointed that I did not receive much instructions on projects or concrete research topics from him. Instead, Wenke provided me with the freedom and necessary resources to explore my own interests. When I met difficulties in exploring new directions, his insightful feedback helped me overcome many challenges. I learned what top-quality research is through the many debates with him, which I enjoyed a lot.
    [Show full text]
  • Tracing Information Flows Between Ad Exchanges Using Retargeted
    Tracing Information Flows Between Ad Exchanges Using Retargeted Ads Muhammad Ahmad Bashir, Sajjad Arshad, William Robertson, and Christo Wilson, Northeastern University https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/bashir This paper is included in the Proceedings of the 25th USENIX Security Symposium August 10–12, 2016 • Austin, TX ISBN 978-1-931971-32-4 Open access to the Proceedings of the 25th USENIX Security Symposium is sponsored by USENIX Tracing Information Flows Between Ad Exchanges Using Retargeted Ads Muhammad Ahmad Bashir Sajjad Arshad William Robertson Northeastern University Northeastern University Northeastern University [email protected] [email protected] [email protected] Christo Wilson Northeastern University [email protected] Abstract geted based on sensitive Personally Identifiable Informa- tion (PII) [44, 4] or specific kinds of browsing history Numerous surveys have shown that Web users are con- (e.g., visiting medical websites) [41]. Furthermore, some cerned about the loss of privacy associated with online users are universally opposed to online tracking, regard- tracking. Alarmingly, these surveys also reveal that peo- less of circumstance [46, 60, 14]. ple are also unaware of the amount of data sharing that occurs between ad exchanges, and thus underestimate the One particular concern held by users is their digi- privacy risks associated with online tracking. tal footprint [33, 65, 58], i.e., which first- and third- In reality, the modern ad ecosystem is fueled by a flow parties are able to track their browsing history Large- of user data between trackers and ad exchanges. Al- scale web crawls have repeatedly shown that trackers are though recent work has shown that ad exchanges rou- ubiquitous [24, 19], with DoubleClick alone being able tinely perform cookie matching with other exchanges, to observe visitors on 40 of websites in the Alexa Top- these studies are based on brittle heuristics that cannot 100K [11].
    [Show full text]