An Empirical Study of Mobile Ad Targeting

Total Page:16

File Type:pdf, Size:1020Kb

An Empirical Study of Mobile Ad Targeting An Empirical Study of Mobile Ad Targeting Theodore Book Dan S. Wallach Rice University Rice University Abstract of Android advertising libraries to access permission- protected user data [15, 31, 22, 6] as well as the behavior Advertising, long the financial mainstay of the web of applications that directly pass user private information ecosystem, has become nearly ubiquitous in the world to their ad libraries [7]. What remains little understood of mobile apps. While ad targeting on the web is fairly is the way that information is used after it has been col- well understood, mobile ad targeting is much less stud- lected. ied. In this paper, we use empirical methods to collect In this work, we measure a more complex factor that a database of over 225,000 ads on 32 simulated devices is also critical to the understanding of user privacy—the hosting one of three distinct user profiles. We then ana- interaction between advertising libraries and their host lyze how the ads are targeted by correlating ads to poten- servers. Because we do not have direct access to the pro- tial targeting profiles using Bayes’ rule and Pearson’s chi prietary algorithms used in processing ad requests and squared test. This enables us to measure the prevalence serving advertisements, we choose to treat the data center of different forms of targeting. We find that nearly all ads as a black box, observing the relationship between inputs show the effects of application- and time-based targeting, (ad requests) and outputs (provided ads). This resembles while we are able to identify location-based targeting in the methodology used by other researchers in measuring 43% of the ads and user-based targeting in 39%. the targeting of web applications [21, 3, 8, 26]. In-app mobile ads present interesting opportunities for 1 Introduction ad targeting, and bring related concerns regarding user privacy. Advertisers face the task of delivering their ads 1.3 million of the 1.5 million apps available on Google’s to a receptive audience. Some forms of Internet advertis- Play Store are available for free, including 99% of the ing, such as search advertising, allow effective targeting apps with at least 50,000 downloads [2]. This is largely without any user profile at all—search keywords, alone, made possible by advertising, which accounts for the ma- can indicate products and services for which a user might jority of mobile app revenue in the United States, and be shopping. Other forms of advertising, such as on so- reached USD 19.3B world-wide in 2013 [19, 18]. Other cial networks, rely on extensive profiles that the user has arXiv:1502.06577v1 [cs.CR] 23 Feb 2015 forms of app revenue, such as paid app sales and in-app entrusted to the service, giving the service provider the purchases, make up the rest of the mobile app monetiza- responsibility of using the data for ad targeting without tion space. This huge market depends on delivering ads revealing its contents to third parties [11, 20]. to people who are likely to respond to them. In-app mobile ads, by contrast, present relatively lit- Mobile ads are delivered through advertising libraries tle information that advertisers can use for targeting. At which are embedded in the application at compile time. their most basic level, they provide a prospective adver- These libraries generally use an embedded web browser, tiser with little more than the name of a host application Android’s WebView, to display the ads and handle user and an IP address that can be used for rough geographical interaction. (These WebViews are subject to many of targeting. Because of this limitation, advertising libraries the same security concerns that impact other dated web have long used some form of unique identifier to identify browsers [34].) These libraries then handle the work of the device, and hence, the user [6]. When unique identi- requesting the ad from a central server, displaying it to fiers are correlated with other data—passed by the appli- the user, and tracking the user’s interaction with the ad. cation or obtained from other sources—opportunities for In prior work, researchers have measured the ability more precise ad targeting begin to emerge. Our goal is to 1 measure and quantify the targeting that takes place, with stock applications on physical devices. This allowed us an eye to elucidating the privacy implications that stem the freedom of manipulating various parameters and ob- from that targeting. serving the results. We began by capturing traces of the In order to maintain a reasonable scope for our work, AdMob library’s communications on a number of real we chose to focus on a single platform (Android), and a and emulated devices. Because these exchanges are un- single ad library (Google’s AdMob.) Android represents encrypted, it was easy for us to analyze them and identify 84.4% of current mobile device shipments, making it a critical components. 1 good proxy for the entire mobiles space [17]. Likewise, By using a variety of applications in generating our AdMob represents 35% of the install-weighted ad library requests, we were able to capture the behavior of various market on the Android platform, making it a reasonable versions of the AdMob Android library, and thus build proxy for the entire mobile ad space [7]. It is worth not- a fairly complete understanding of its behavior. While ing that AdMob is one of the more conservative advertis- the AdMob library makes a variety of HTTP requests in ing libraries in regard to the amount of user data that it the course of its operation, we found that all of the data collects [6]. Other libraries, with access to more personal necessary to request an ad is passed in a single HTTP data, may engage in additional forms of targeting. GET request [33]. In studying AdMob, we are not only studying the be- We analyzed our request dataset and identified 88 dif- havior of the Google’s proprietary systems. Rather, we ferent parameters set by the AdMob library. Our next are studying the entire AdMob ecosystem, which in- task was to determine the significance of each of those cludes not only Google, with its engineers and systems, parameters in order to emulate the library’s behavior. We but also the advertisers that make use of those systems to proceeded by decompiling the AdMob library and exam- place ads based on various criteria. This includes many ining the code used to generate the request. In this way, third parties that use ad exchanges, such as Google’s we were able to identify the code used to set the param- DoubleClick, to place ads on the AdMob network. In eter, and identify the sources of the information that was this way, our research represents an attempt to yield an encoded. end-to-end understand of a complex multi-vendor sys- While most of the parameters related to the mechan- tem. ics of requesting and serving ads, some parameters with significance for user privacy are listed in Table 1. As Ad- 2 Methodology Mob uses ordinary HTTP to make requests and serve ads, the content of most of these parameters is sent in clear Measuring mobile ads presents methodological chal- text. The one exception is the UULE parameter, which lenges due to the need to measure an ever changing data transmits the device location, and is encrypted with a key set without the ability to take random samples [16]. New embedded in the AdMob library. ad campaigns are constantly being introduced, old ones retired, and ads targeting affects each request. We sought 2.2 Building an AdMob Emulator to overcome these factors by focusing on narrow seg- ments of mobile ads, with a limited number of profiles, After reverse engineering the AdMob request syntax it over a restricted time period. In order to generate re- became possible to develop an AdMob emulator, which quests, collect ads, and correlate responses to the re- would build requests that would be interpreted as legit- quests, we first reverse engineered the AdMob ad request imate by AdMob servers. We constructed the emulator protocol. Following this, we built an AdMob emulator in Python, taking application characteristics as inputs, that would request ads based on app parameters that we and generating syntactically valid AdMob requests. The supplied. We then developed a collection of user profiles completed emulator allowed us to vary parameters re- that would enable us to measure ad targeting. We next lated to ad targeting while continuing to generate cor- rolled out a collection infrastructure consisting of numer- rect values for the built-in checksum and other changing ous collection stations that reported ads back to our cen- parameters. We tested our emulator to verify that it re- tral server. Finally we analyzed the data we collected trieved valid ads from the AdMob network. to determine the correlation between possible targeting Of course, the URL parameters are not the only pieces methodologies and the ads that we received. of information that AdMob servers are able to gather from a request. The request timing and IP address are also significant. Because of this, it was necessary to 2.1 Reverse Engineering AdMob develop an infrastructure that would enable us to send In order to give ourselves maximal flexibility in prob- 1It also makes it easy for attackers to make use of identifying in- ing AdMob’s behavior, we chose to reverse engineer the formation in the request to profile individuals. Indeed, it is known that AdMob ad request API rather than send requests from nation-state attackers have made use of this information in the past [29].
Recommended publications
  • Adscape: Harvesting and Analyzing Online Display Ads
    Adscape: Harvesting and Analyzing Online Display Ads Paul Barford Igor Canadi Darja Krushevskaja University of University of Rutgers University Wisconsin-Madison Wisconsin-Madison [email protected] [email protected] [email protected] Qiang Ma S. Muthukrishnan Rutgers University Rutgers University [email protected] [email protected] ABSTRACT online users and the increasing amount of time that peo- Over the past decade, advertising has emerged as the pri- ple spend online has led to an estimated $36B in online ad mary source of revenue for many web sites and apps. In spending in the US for FY2012, which represents an 15% this paper we report a first-of-its-kind study that seeks to increase over the previous year [2]. The majority of this broadly understand the features, mechanisms and dynamics spending is on advertising that most commonly appears in of display advertising on the web - i.e., the Adscape. Our search results as text ads. There is, however, a growing pref- study takes the perspective of users who are the targets of erence for display ads | typically image and video ads that display ads shown on web sites. We develop a scalable crawl- appear in response to users' browsing and other activities ing capability that enables us to gather the details of dis- on the web | that can convey more robust and visual mes- play ads including creatives and landing pages. Our crawling sages to users. A recent report by Forrester estimates that strategy is focused on maximizing the number of unique ads $12.7B was spent in the US on display and video advertising harvested.
    [Show full text]
  • Privacy Leakage in Personalized Mobile In-App Ads
    The Price of Free: Privacy Leakage in Personalized Mobile In-App Ads Wei Meng, Ren Ding, Simon P. Chung, Steven Han, and Wenke Lee College of Computing Georgia Institute of Technology {wei, rding, pchung34, s.han}@gatech.edu, [email protected] Abstract—In-app advertising is an essential part of the ecosys- always a concern. While ad personalization has been well tem of free mobile applications. On the surface, this creates a studied for web, relatively little research explores mobile ad win-win situation where app developers can profit from their personalization in terms of what user information is being work without charging the users. However, as in the case of collected. We believe research focused on mobile ad personal- web advertising, ad-networks behind in-app advertising employ ization is a significant pursuit for the following reasons: 1) personalization to improve the effectiveness/profitability of their Mobile devices are a lot more intimate to users; they are ad-placement. This need for serving personalized advertisements in turn motivates ad-networks to collect data about users and carried around at all times and are being used more and more profile them. As such, “free” apps are only free in monetary for sensitive operations like personal communications, dating, terms; they come with the price of potential privacy concerns. banking, etc. Therefore, privacy concerns regarding what infor- The question is, how much data are users giving away to pay for mation is collected for ad personalization are more serious. 2) “free apps”? Unlike in-browser advertising, where the advertisement content is strictly isolated from the rest of the displayed page by the In this paper, we study how much of the user’s interest and demographic information is known to these major ad networks well-known “same origin policy”, in-app advertising operates on the mobile platform.
    [Show full text]
  • Microsoft Acquires Massive, Inc
    S T A N F O R D U N I V E R S I T Y! 2 0 0 7 - 3 5 3 - 1! W W W . C A S E W I K I . O R G! R e v . M a y 2 9 , 2 0 0 7 MICROSOFT ACQUIRES MASSIVE, INC. May 4th, 2006 T A B L E O F C O N T E N T S 1. Introduction 2. Industry Overview 2.1. The Advertising Opportunity Within Video Games 2.2. Market Size and Demographics 2.3. Video Games and Advertising 2.4. Market Dynamics 3. Massive, Inc. ! Company Background 3.1. Founding of Massive 3.2. The Financing of Massive 3.3. Product Launch / Technology 3.4. The Massive / Microsoft Deal 4. Microsoft, Inc. within the Video Game Industry 4.1. Role as a Game Publisher / Developer 4.2. Acquisitions 4.3. Role as an Electronic Advertising Network 4.4. Statements Regarding the Acquisition of Massive, Inc. 5. Exhibits 5.1. Table of Exhibits 6. References ! 2 0 0 7 - 3 5 3 - 1! M i c r o s o f t A c q u i s i t i o n o f M a s s i v e , I n c .! I N T R O D U C T I O N In May 2007, Microsoft Corporation was a company in transition. Despite decades of dominance in its core markets of operating systems and desktop productivity software, Mi! crosoft was under tremendous pressure to create strongholds in new market spaces.
    [Show full text]
  • Observing and Optimizing Online Ad Assignments
    OBSERVING AND OPTIMIZING ONLINE AD ASSIGNMENTS BY DARJA KRUŠEVSKAJA A dissertation submitted to the Graduate School—New Brunswick Rutgers, The State University of New Jersey in partial fulfillment of the requirements for the degree of Doctor of Philosophy Graduate Program in Computer Science Written under the direction of S. Muthukrishnan and approved by New Brunswick, New Jersey October, 2015 ABSTRACT OF THE DISSERTATION Observing and Optimizing Online Ad Assignments by Darja Kruševskaja Dissertation Director: S. Muthukrishnan The main focus of this thesis work is on optimization and observation of ad assignments in online ad markets. Online ad markets allocate billions of impressions to advertisers while satisfying an array of constraints. Their revenues support the Internet ecosystem. They highlight theory problems and inspire systems research. In this thesis work we initiate the study that seeks to understand mechanisms and dynamics of advertising markets. We develop a scalable crawling capability that allows us to harvest a corpus of ads across a large number of websites and user profiles. We establish that user profile is essential in display ad markets: 50% of observed websites have at least 80% of their ads targeted at profiles. Further, we introduce cardinal auctions for selling multiple copies of a good, in which bidders specify not only their bid or how much they are willing to pay for the good, but also a cardinality constraint on the maximum size of the allocation in which they are willing to participate. We perform the first known analyses of Price of Anarchy and revenue of cardinal auctions. Finally, we introduce a new class of online allocation problems with secondary metrics, in which the goal is to optimize one metric (e.g., revenue), while meeting another (e.g., cost of user conversion).
    [Show full text]
  • Urban Screens Reader and Sabine Niederer 2 Urban Screens Reader 3
    EDITED BY SCOTT MCQUIRE, MEREDITH MARTIN URBAN SCREENS Reader AND SABINE NIEDERER 2 URBAN SCREENS Reader 3 Urban Screens Reader Editors: Scott McQuire, Meredith Martin and Sabine Niederer Editorial Assistance: Geert Lovink and Elena Tiis Copy Editing: Michael Dieter and Isabelle de Solier Design: Katja van Stiphout Printer: Raamwerken Printing & Design, Enkhuizen Publisher: Institute of Network Cultures, Amsterdam 2009 ISBN: 978-90-78146-10-0 Contact Institute of Network Cultures Phone: +3120 5951866 EDITED BY Fax: +3120 5951840 SCOTT MCQUIRE, Email: info@networkcultures MEREDITH MARTIN Web: http://www.networkcultures.org AND SABINE NIEDERER INC READer #5 Order a copy of this book by sending an email to: [email protected] A pdf of this publication can be downloaded freely at: http://www.networkcultures.org/publications Join the Urban Screens mailing list at: http://www.listcultures.org Join the International Urban Screens Association at: http://www.urbanscreensassoc.org Supported by: the Dutch Ministry of Education, Culture and Science in collaboration with Virtueel Platform, the Faculty of Arts, University of Melbourne, the School for Com- munication and Design at the Amsterdam University of Applied Sciences, MediaLAB Amsterdam and the International Urban Screens Association. The editors would also like to acknowledge the assistance of the Australian Research Council LP0989302 in supporting this research. Special thanks to all the authors for their contributions, and to Michael Dieter for his careful copy-editing. This publication is licensed under the Creative Commons Attribution Noncommercial No Derivative Works 2.5 Netherlands License. To view a copy of this license, visit: http://creativecommons.org/licenses/by-nc-nd/2.5/nl/deed.en No article in this reader may be reproduced in any form by any electronic or mechanical means without permission in writing from the author.
    [Show full text]
  • Kober V. Google
    Case 5:20-cv-08336 Document 1-1 Filed 11/25/20 Page 1 of 35 EXHIBIT A Case 5:20-cv-08336 Document 1-1 Filed 11/25/20 Page 2 of 35 1 BOTTINI & BOTTINI, INC. 2 Anne B. Beste (SBN 326881) 3 [email protected] Albert Y. Chang (SBN 296065) 4 [email protected] 5 Yury A. Kolesnikov (SBN 271173) [email protected] 6 7817 Ivanhoe Avenue, Suite 102 7 La Jolla, California 92037 Telephone: (858) 914-2001 8 Facsimile: (858) 914-2002 9 Attorneys for Plaintiff and the Class 10 11 SUPERIOR COURT FOR THE STATE OF CALIFORNIA 12 COUNTY OF SANTA CLARA 13 14 AMOS KOBER, on behalf of himself Case No. 15 and all others similarly situated, CLASS ACTION COMPLAINT: 16 Plaintiff, (1) THE CARTWRIGHT ACT 17 (CAL. BUS. & PROF. CODE § v. 16720); 18 GOOGLE LLC, ALPHABET, INC., (2) UNFAIR COMPETITION 19 and DOES 1-100, LAW (CAL. BUS. & PROF. CODE § 17200 ET SEQ.); AND 20 Defendants. (3) UNJUST ENRICHMENT 21 DEMAND FOR JURY TRIAL 22 23 24 25 26 27 28 CLASS ACTION COMPLAINT Case 5:20-cv-08336 Document 1-1 Filed 11/25/20 Page 3 of 35 1 Plaintiff, individually and on behalf of all others similarly situated (the “Class,” as 2 defined below), files this class-action complaint against Google LLC and Alphabet, Inc. 3 (“Defendants”) for violations of the Cartwright Act and Cal. Bus. & Prof. Code. Plaintiff 4 alleges the following (a) upon personal knowledge with respect to the matters pertaining 5 to Plaintiff; and (b) upon information and belief with respect to all other matters, based 6 upon, among other things, the investigations undertaken by Plaintiff’s counsel.
    [Show full text]
  • A Natural Attitude
    A Natural Attitude A Naturalista’s Hair Journal Spoken from a Salon Owner’s Perspective By Schatzi Hawthorne McCarthy A publication of Schatzi's Design Gallery & Day Spa, LLC A Natural Attitude: A Naturalista’s Hair Journal Spoken from a Salon Owner’s Perspective By Schatzi Hawthorne McCarthy Copyright © 2014-2021, Schatzi Hawthorne McCarthy; cover photo by Varick Taylor of one12images.com. Embrace the beauty of you. This book is dedicated to God, the Creator, for Your grace, mercy and omniscience: “Oh lord, though hast searched me and known me…” (Psalm 139) Thank you for guiding me, naturally and super-naturally, to this path of self-discovery that was your vision for my life. To the beautiful women in my life who have loved me unconditionally and have inspired me to be a natural woman: Grandma Mabel McMillan Aunt Joyce McCullom Woodbury Dear Mother Greta Lois McCullom Hawthorne At the footstool of this matriarchy, my natural attitude was nurtured and grown. Prayerfully, the world can learn from your rich and wise example. To my Dad, the late Retired Maj. Arthur Earl Hawthorne. You were always proud of me. Without your unconditional love, I would never have had the confidence to be the natural woman that I am. My love for you is beyond all understanding! To my beautiful family--Lloyd, Jela-ni, Jamar, who have supported me in all of my lifetime endeavors. I am privileged to walk this journey of life with you and pray that we continue to grow and learn together with hearts full of love and understanding.
    [Show full text]
  • Advertisement
    ADVERTISEMENT ST.18237.NewAd.SoldCover.indd 1 03/11/10 4:35 PM REDESIGNED REINVENTED REIMAGINED The new Globe—superior, full-colour reproduction and a bold, clean design on a premium semi-gloss stock. With longer time spent and a deeper connection to the content, this will change the way readers engage with the newspaper and your ads. RELEVANT lifestyle content to an engaged audience— each month, Globe Media attracts 1,476,000 influential, affluent female readers, 808,000 of whom are the principal grocery shopper in their household.* Monday Tuesday Wednesday Thursday Friday DIGITAL enhancements offer integrated sponsorships across multiple platforms. COLOUR on every page. Visit GlobeLink.ca, call 1.800.387.9012 or email [email protected] Globe Media to reach Canada’s most influential consumers. where influence lives *Source: PMB Fall 2010, Age 12+ ST.18154.GlobeandMail.ad.indd 1 01/11/10 3:55 PM B!G LOVE FOR TAXI PHD’S PRESCRIPTION FOR MEDIA GOLD SALTY BARBIE & CELEBRATES AS SCOUTS DDB WINS GET FRESH WITH AGENCY JOE OF THE YEAR (AGAIN) CoverNov10.indd 1 02/11/10 4:13 PM REDESIGNED REINVENTED REIMAGINED The new Globe—superior, full-colour reproduction and a bold, clean design on a premium semi-gloss stock. With longer time spent and a deeper connection to the content, this will change the way readers engage with the newspaper and your ads. RELEVANT lifestyle content to an engaged audience— each month, Globe Media attracts 1,476,000 influential, affluent female readers, 808,000 of whom are the principal grocery shopper in their household.* Monday Tuesday Wednesday Thursday Friday DIGITAL enhancements offer integrated sponsorships across multiple platforms.
    [Show full text]
  • Computational Advertising: Techniques for Targeting Relevant Ads
    Computational Advertising: Techniques for Targeting Relevant Ads Kushal Dave LTRC International Institute of Information Technology Hyderabad, India [email protected] Vasudeva Varma LTRC International Institute of Information Technology Hyderabad, India [email protected] Boston — Delft Foundations and TrendsR in Information Retrieval Published, sold and distributed by: now Publishers Inc. PO Box 1024 Hanover, MA 02339 United States Tel. +1-781-985-4510 www.nowpublishers.com [email protected] Outside North America: now Publishers Inc. PO Box 179 2600 AD Delft The Netherlands Tel. +31-6-51115274 The preferred citation for this publication is K. Dave and V. Varma. Computational Advertising: Techniques for Targeting Relevant Ads. Foundations and TrendsR in Information Retrieval, vol. 8, no. 4-5, pp. 263–418, 2014. R This Foundations and Trends issue was typeset in LATEX using a class file designed by Neal Parikh. Printed on acid-free paper. ISBN: 978-1-60198-833-1 c 2014 K. Dave and V. Varma All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, mechanical, photocopying, recording or otherwise, without prior written permission of the publishers. Photocopying. In the USA: This journal is registered at the Copyright Clearance Cen- ter, Inc., 222 Rosewood Drive, Danvers, MA 01923. Authorization to photocopy items for internal or personal use, or the internal or personal use of specific clients, is granted by now Publishers Inc for users registered with the Copyright Clearance Center (CCC). The ‘services’ for users can be found on the internet at: www.copyright.com For those organizations that have been granted a photocopy license, a separate system of payment has been arranged.
    [Show full text]
  • IDENTIFYING and MITIGATING THREATS from EMBEDDING THIRD-PARTY CONTENT a Dissertation Presented to the Academic Faculty by Wei Me
    IDENTIFYING AND MITIGATING THREATS FROM EMBEDDING THIRD-PARTY CONTENT A Dissertation Presented to The Academic Faculty By Wei Meng In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the School of Computer Science Georgia Institute of Technology August 2017 Copyright © Wei Meng 2017 IDENTIFYING AND MITIGATING THREATS FROM EMBEDDING THIRD-PARTY CONTENT Approved by: Dr. Wenke Lee, Advisor Dr. Giovanni Vigna School of Computer Science Department of Computer Science Georgia Institute of Technology University of California, Santa Barbara Dr. Mustaque Ahamad Dr. Nick Feamster School of Computer Science Department of Computer Science Georgia Institute of Technology Princeton University Dr. Taesoo Kim Date Approved: July 20, 2017 School of Computer Science Georgia Institute of Technology To my parents, and those who have supported me. iii ACKNOWLEDGEMENTS This Ph.D. dissertation would not exist without the support from a number of people. I would like to take this opportunity to acknowledge them. First of all, I am very grateful to my advisor, Wenke Lee, for his guidance and support through the Ph.D. program. Wenke has been an amazing advisor, who has trained me to become an independent researcher and think critically. When I first started my Ph.D. I was a little bit disappointed that I did not receive much instructions on projects or concrete research topics from him. Instead, Wenke provided me with the freedom and necessary resources to explore my own interests. When I met difficulties in exploring new directions, his insightful feedback helped me overcome many challenges. I learned what top-quality research is through the many debates with him, which I enjoyed a lot.
    [Show full text]
  • Tracing Information Flows Between Ad Exchanges Using Retargeted
    Tracing Information Flows Between Ad Exchanges Using Retargeted Ads Muhammad Ahmad Bashir, Sajjad Arshad, William Robertson, and Christo Wilson, Northeastern University https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/bashir This paper is included in the Proceedings of the 25th USENIX Security Symposium August 10–12, 2016 • Austin, TX ISBN 978-1-931971-32-4 Open access to the Proceedings of the 25th USENIX Security Symposium is sponsored by USENIX Tracing Information Flows Between Ad Exchanges Using Retargeted Ads Muhammad Ahmad Bashir Sajjad Arshad William Robertson Northeastern University Northeastern University Northeastern University [email protected] [email protected] [email protected] Christo Wilson Northeastern University [email protected] Abstract geted based on sensitive Personally Identifiable Informa- tion (PII) [44, 4] or specific kinds of browsing history Numerous surveys have shown that Web users are con- (e.g., visiting medical websites) [41]. Furthermore, some cerned about the loss of privacy associated with online users are universally opposed to online tracking, regard- tracking. Alarmingly, these surveys also reveal that peo- less of circumstance [46, 60, 14]. ple are also unaware of the amount of data sharing that occurs between ad exchanges, and thus underestimate the One particular concern held by users is their digi- privacy risks associated with online tracking. tal footprint [33, 65, 58], i.e., which first- and third- In reality, the modern ad ecosystem is fueled by a flow parties are able to track their browsing history Large- of user data between trackers and ad exchanges. Al- scale web crawls have repeatedly shown that trackers are though recent work has shown that ad exchanges rou- ubiquitous [24, 19], with DoubleClick alone being able tinely perform cookie matching with other exchanges, to observe visitors on 40 of websites in the Alexa Top- these studies are based on brittle heuristics that cannot 100K [11].
    [Show full text]
  • Diversification Strategy in Internet Industry: Google Inc. Example
    Afyon Kocatepe Üniversitesi Sosyal Bilimler Dergisi / Cilt: 20, Sayı: 3, Aralık 2018, 271-289 Afyon Kocatepe University Journal of Social Sciences / Volume: 20, No: 3, December 2018, 271-289 Yayın Geliş Tarihi (Submitted): Mart/March-2018 | Yayın Kabul Tarihi (Accepted): Aralık/December-2018 DOI: 10.32709/akusosbil.407405 Diversification Strategy in Internet Industry: Google Inc. Example İnternet Sektöründe Satın Alma Çeşitlendirme Stratejisi: Google Inc. Örneği Dr. Öğr. Üyesi Eyüp Bayram ŞEKERLİ 1, Doç. Dr. Eyüp AKÇETİN2 Abstract One of the growth strategies for firms is to buy other firms. Growth either may be related to main business area of firm or different fields from different sectors. This study examines the acquisition strategy of Google Inc. which is an important company in the oligopolistic internet industry with a limited number of operators (Amazon, Google, Microsoft, Facebook, etc.). Between the years of 2001-2017, 177 acquisitions were examined in this research,. As a result of this review, it appears that Google Inc. has acquired firms that manufacture in different technological areas. However, those acquisitions increased ability of generating revenues from its core business. Consequently, among 177 acquisitions, constrained-related diversification model is most frequently observed strategy which is aimed to increase performance of main business. Keywords: Acquisations, diversification strategy, internet sector, Google Inc. Özet İşletmelerin büyüme stratejilerinden birisi de diğer işletmeleri satın almaktır. Büyüme, işletmenin esas faaliyet alanı ile ilgili olabilirken, farklı sektörlerden farklı faaliyet alanlarını da içerebilmektedir. Bu çalışmada sınırlı sayıda işletmenin (Amazon, Google, Microsoft, Facebook gibi.) oluşturduğu oligopol bir yapıya sahip internet sektöründe önemli bir şirket olan Google Inc.’nin satın alma stratejisi incelenmiştir.
    [Show full text]