Breakthrough (PDF)

Total Page:16

File Type:pdf, Size:1020Kb

Breakthrough (PDF) Breakthrough: The Scanning Tunneling Microscope In 1981, Gerd Binnig and Heinrich Rohrer at the IBM Zurich Research Laboratory in Switzerland developed a significantly superior tool for observing surfaces atom by atom: the scanning tunneling microscope (STM). (Binnig and Rohrer would share the 1986 Nobel Prize in Physics with Ernst Ruska, designer of the electron microscope.) Here’s the basic concept: The STM has a metal needle that scans a sample by moving back and forth over it, gathering information about the details of the surface. Imagine closing your eyes and running your finger along the top of a row of books—you could easily identify the changes in height. Now imagine replacing your finger with a needle that has a tip tapering down to a single atom, and you can understand how the tip can follow the smallest changes in the contours of a sample. The needle doesn’t touch the sample, however, but stays about the width of two atoms above it. The STM takes advantage of what’s called the tunnel effect: If a voltage is applied to the tiny distance between the needle and the sample, electrons are able to tunnel, or jump, between the needle and the sample, creating an electric current. A computer receives the electrical signal and directs the needle to move up or down to keep the current constant— which keeps the distance between needle and sample constant. The path of the needle is recorded, and the computer can display that information as a grayscale image or topographical map. Scientists can add color to make the image easier to interpret. (See the Quantum Corral for more about creating images.) [IBM in Xenon Atoms: In 1989, Eigler and Schweizer spelled “IBM” by positioning thirty- five Xenon atoms on a nickel surface.] The result is a visual way to learn about the sample—but it’s not a picture, in the traditional sense, of the atoms on the surface. For eXample, the atoms appear to have solid surfaces in STM images, but in reality they don’t. The nucleus of an atom is surrounded by electrons that are in constant motion. What appears to be a solid surface is actually a haze of electrons. The STM shows the positions of atoms—or more precisely, the positions of some of the electrons. It doesn’t show the atoms themselves. .
Recommended publications
  • 30 Years of Moving Individual Atoms
    FEATURES 30 YEARS OF MOVING INDIVIDUAL ATOMS 1 2 l Christopher Lutz and Leo Gross – DOI: https://doi.org/10.1051/epn/2020205 l 1 IBM Research – Almaden, San Jose, California, USA l 2 IBM Research – Zurich,¨ 8803 Ruschlikon,¨ Switzerland In the thirty years since atoms were first positioned individually, the atom-moving capability of scanning probe microscopes has grown to employ a wide variety of atoms and small molecules, yielding custom nanostructures that show unique electronic, magnetic and chemical properties. his year marks the thirtieth anniversary of the publication by IBM researchers Don Eigler and Erhard Schweizer showing that individ- Tual atoms can be positioned precisely into chosen patterns [1]. Tapping the keyboard of a personal computer for 22 continuous hours, they controlled the movement of a sharp tungsten needle to pull 35 individ- ual xenon atoms into place on a surface to spell the letters “IBM” (Figure 1). Eigler and Schweitzer’s demonstration set in motion the use of a newly invented tool, called the scanning tunneling microscope (STM), as the workhorse for nanoscience research. But this achievement did even more than that: it changed the way we think of atoms. m FIG. 2: The STM that Don Eigler and coworkers used to position atoms. The It led us to view them as building blocks that can be tip is seen touching its reflection in the sample’s surface. (Credit: IBM) arranged the way we choose, no longer being limited by the feeling that atoms are inaccessibly small. with just one electron or atom or (small) molecule. FIG.
    [Show full text]
  • The Evolution of Ibm Research Looking Back at 50 Years of Scientific Achievements and Innovations
    FEATURES THE EVOLUTION OF IBM RESEARCH LOOKING BACK AT 50 YEARS OF SCIENTIFIC ACHIEVEMENTS AND INNOVATIONS l Chris Sciacca and Christophe Rossel – IBM Research – Zurich, Switzerland – DOI: 10.1051/epn/2014201 By the mid-1950s IBM had established laboratories in New York City and in San Jose, California, with San Jose being the first one apart from headquarters. This provided considerable freedom to the scientists and with its success IBM executives gained the confidence they needed to look beyond the United States for a third lab. The choice wasn’t easy, but Switzerland was eventually selected based on the same blend of talent, skills and academia that IBM uses today — most recently for its decision to open new labs in Ireland, Brazil and Australia. 16 EPN 45/2 Article available at http://www.europhysicsnews.org or http://dx.doi.org/10.1051/epn/2014201 THE evolution OF IBM RESEARCH FEATURES he Computing-Tabulating-Recording Com- sorting and disseminating information was going to pany (C-T-R), the precursor to IBM, was be a big business, requiring investment in research founded on 16 June 1911. It was initially a and development. Tmerger of three manufacturing businesses, He began hiring the country’s top engineers, led which were eventually molded into the $100 billion in- by one of world’s most prolific inventors at the time: novator in technology, science, management and culture James Wares Bryce. Bryce was given the task to in- known as IBM. vent and build the best tabulating, sorting and key- With the success of C-T-R after World War I came punch machines.
    [Show full text]
  • Copyrighted Material
    The Composition of Matter 1 “Everything existing in the universe is the fruit of chance and necessity.” —Democritus 1.1 EARLY DESCRIPTIONS OF MATTER Chemistry has been defined as the study of matter and its interconversions. Thus, ina sense, chemistry is a study of the physical world in which we live. But how much do we really know about the fundamental structure of matter and its relationship to the larger macroscopic world? I have in my rock collection, which I have had since I was a boy, a sample of the mineral cinnabar, which is several centimeters across and weighs about 10 g. Cinnabar is a reddish granular solid with a density about eight times that of water and the chemical composition mercuric sulfide. Now suppose that some primal instinct suddenly overcame me and I were inclined to demolish this precious talisman from my childhood. I could take a hammer to it and smash it into a billion little pieces. Choosing the smallest of these chunks, I could further disintegrate the material in a mortar and pestle, grinding it into ever finer and finer grains until Iwas left with nothing but a red powder (in fact, this powder is known as vermilion and has been used as a red pigment in artwork dating back to the fourteenth century). Having satisfied my destructive tendencies, I would nonetheless still have exactly the same material that I started with—that is, it would have precisely the same chemical and physical properties as the original. I might therefore wonder to myself if there is some inherent limitation as to how finely I can divide the substance or if this is simply limited by the tools at my disposal.
    [Show full text]
  • Twenty Five Hundred Years of Small Science What’S Next?
    Twenty Five Hundred Years of Small Science What’s Next? Lloyd Whitman Assistant Director for Nanotechnology White House Office of Science and Technology Policy Workshop on Integrated Nanosystems for Atomically Precise Manufacturing Berkeley, CA, August 5, 2015 Democritus (ca. 460 – 370 BC) Everything is composed of “atoms” Atomos (ἄτομος): that which can not be cut www.phil-fak.uni- duesseldorf.de/philo/galerie/antike/ demokrit.html Quantum Mechanics (1920s) Max Planck 1918* Albert Einstein 1921 Niels Bohr 1922 Louis de Broglie 1929 Max Born 1954 Paul Dirac 1933 On the Theory of Quanta Louis-Victor de Broglie Werner Heisenberg 1932 Wolfgang Pauli 1945 Erwin Schrödinger 1933 *Nobel Prizes in Physics https://tel.archives-ouvertes.fr/tel- 00006807 Ernst Ruska (1906 – 1988) Electron Microscopy Magnifying higher than the light microscope - 1933 Nobel Prize in Physics 1986 www.nobelprize.org/nobel_prizes/physics/laureates /1986/ruska-lecture.pdf Richard Feynman (1918-1988) There's Plenty of Room at the Bottom, An Invitation to Enter a New Field of Physics What would happen if we could arrange the atoms one by one the way we want them…? December 29, 1959 richard-feynman.net Heinrich Rohrer (1933 – 2013) Gerd Binnig Atomic resolution Scanning Tunneling Microscopy - 1981 1983 I could not stop looking at the images. It was like entering a new world. Gerd Binnig, Nobel lecture Binnig, et al., PRL 50, 120 (1983) Nobel Prize in Physics 1986 C60: Buckminsterfullerene Kroto, Heath, O‘Brien, Curl and September 1985 Smalley - 1985 …a remarkably stable cluster consisting of 60 carbon atoms…a truncated icosahedron. Nature 318, 162 (1985) http://www.acs.org/content/acs/en/education/whatis chemistry/landmarks/fullerenes.html Nobel Prize in Chemistry 1996 Curl, Kroto, and Smalley Positioning Single Atoms with a Scanning Tunnelling Microscope Eigler and Schweizer - 1990 …fabricate rudimentary structures of our own design, atom by atom.
    [Show full text]
  • Date: To: September 22, 1 997 Mr Ian Johnston©
    22-SEP-1997 16:36 NOBELSTIFTELSEN 4& 8 6603847 SID 01 NOBELSTIFTELSEN The Nobel Foundation TELEFAX Date: September 22, 1 997 To: Mr Ian Johnston© Company: Executive Office of the Secretary-General Fax no: 0091-2129633511 From: The Nobel Foundation Total number of pages: olO MESSAGE DearMrJohnstone, With reference to your fax and to our telephone conversation, I am enclosing the address list of all Nobel Prize laureates. Yours sincerely, Ingr BergstrSm Mailing address: Bos StU S-102 45 Stockholm. Sweden Strat itddrtSMi Suircfatan 14 Teleptelrtts: (-MB S) 663 » 20 Fsuc (*-«>!) «W Jg 47 22-SEP-1997 16:36 NOBELSTIFTELSEN 46 B S603847 SID 02 22-SEP-1997 16:35 NOBELSTIFTELSEN 46 8 6603847 SID 03 Professor Willis E, Lamb Jr Prof. Aleksandre M. Prokhorov Dr. Leo EsaJki 848 North Norris Avenue Russian Academy of Sciences University of Tsukuba TUCSON, AZ 857 19 Leninskii Prospect 14 Tsukuba USA MSOCOWV71 Ibaraki Ru s s I a 305 Japan 59* c>io Dr. Tsung Dao Lee Professor Hans A. Bethe Professor Antony Hewlsh Department of Physics Cornell University Cavendish Laboratory Columbia University ITHACA, NY 14853 University of Cambridge 538 West I20th Street USA CAMBRIDGE CB3 OHE NEW YORK, NY 10027 England USA S96 014 S ' Dr. Chen Ning Yang Professor Murray Gell-Mann ^ Professor Aage Bohr The Institute for Department of Physics Niels Bohr Institutet Theoretical Physics California Institute of Technology Blegdamsvej 17 State University of New York PASADENA, CA91125 DK-2100 KOPENHAMN 0 STONY BROOK, NY 11794 USA D anni ark USA 595 600 613 Professor Owen Chamberlain Professor Louis Neel ' Professor Ben Mottelson 6068 Margarldo Drive Membre de rinstitute Nordita OAKLAND, CA 946 IS 15 Rue Marcel-Allegot Blegdamsvej 17 USA F-92190 MEUDON-BELLEVUE DK-2100 KOPENHAMN 0 Frankrike D an m ar k 599 615 Professor Donald A.
    [Show full text]
  • The Story of the Invention of the Scanning Tunnelling Microscope (STM)
    ANNALS OF SCIENCE, Vol. 65, No. 1, January 2008, 101Á125 Searching for Asses, Finding a Kingdom: The Story of the Invention of the Scanning Tunnelling Microscope (STM) GALINA GRANEK and GIORA HON Department of Philosophy, University of Haifa, Haifa 31905, Israel. Email: [email protected]; [email protected] Received 25 October 2006. Revised paper accepted 17 May 2007 Summary We offer a novel historical-philosophical framework for discussing experimental practice which we call ‘Generating Experimental Knowledge’. It combines three different perspectives: experimental systems, concept formation, and the pivotal role of error. We then present an historical account of the invention of the Scanning Tunnelling Microscope (STM), or Raster-Tunnelmikroskop,and interpret it within the proposed framework. We show that at the outset of the STM project, Binnig and Rohrer*the inventors of the machine*filed two patent disclosures; the first is dated 22 December 1978 (Switzerland), and the second, two years later, 12 September 1980 (US). By studying closely these patent disclosures, the attempts to realize them, and the subsequent development of the machine, we present, within the framework of generating experimental knowledge, a new account of the invention of the STM. While the realization of the STM was still a long way off, the patent disclosures served as blueprints, marking the changes that had to be introduced on the way from the initial idea to its realization. Contents 1. Introduction: accounts of the invention of STM ..................102 2. A novel methodological framework: ‘Generating Experimental Knowledge’ . .........................................104 3. A new account: the three phases .............................106 3.1 Phase one: the blueprint*patent disclosures of STM.
    [Show full text]
  • IBM Kenexa Assessments Solutions Brief and Catalog
    IBM Kenexa Solutions Brief and Catalog IBM Kenexa Assessments Solutions Brief and Catalog Choosing the right person for the right job, and assessing traits, skills and fit for individuals, managers, and leaders is crucial to your success. IBM Kenexa Assessments Catalog IBM Kenexa offers an expansive portfolio of assessments • A multiple-choice format and newer formats of that assess personality traits, problem solving, learned skills, simulation and computer-adaptive testing for job and job/organizational fit. Our assessments are designed for evaluation. all levels of an organization, including individual • Capacity and capability assessments including natural contributors, managers, and leaders. IBM Kenexa Assess on talent in a specific area, work style preferences, acquired Cloud is one of the industry’s largest and most powerful experience, and a combination of cognition and global and mobile capable content solutions available in the knowledge; organizational fit assessments that measure marketplace today. IBM Kenexa Assessments provide you fit in terms of company culture, values, and preferences with industry-leading content and support to find quality for job characteristics; and onboarding assessments to candidates and maximize their performance. help accelerate time-to-productivity of new hires and understand their learning styles. At IBM Kenexa, we know that people differentiate great • Each result includes a detailed candidate profile that companies. We believe empowering companies to hire the reveals strengths and developmental needs as compared right people yields the best business results. IBM Kenexa to the job evaluation; follow-up interview questions employs Ph.D. or licensed Industrial/Organizational (I/O) tailored to the role and the candidate’s specific results; psychologists worldwide.
    [Show full text]
  • IBM Storage Suite for IBM Cloud Paks Data Sheet
    IBM Storage Suite for IBM Cloud Paks Data Sheet IBM Storage Suite for IBM Cloud Paks IBM Storage Suite for Cloud Paks offers Highlights a faster, more reliable way to modernize and move to the cloud • Flexible sofware-defined data resources for easy Today, 85% of enterprises around the world are already container deployments operating in a hybrid cloud environment.1 At the same time, • Reduce risk and complexity more than three-quarters of all business-critical workloads when moving mission- have yet to make the transition to the cloud.2 These metrics critical apps to the cloud suggest that for all the benefits conveyed by cloud • Market-leading Red Hat and computing, many organizations still face plenty of challenges award-winning IBM ahead to fully incorporate cloud-native solutions into their Spectrum Storage software core business environments. Containerization is a key enabling technology for flexibly delivering workloads to private and public clouds and DevOps. Among their many benefits, containers allow legacy applications to run in almost any host environment without being rewritten – an enormous advantage for enterprises with numerous applications, each composed of thousands of lines of code. To facilitate deployment of containerized workloads and development of new cloud-native applications, companies large and small are modernizing around platforms such as Red Hat OpenShift. IBM has developed a series of middleware tools called IBM Cloud Pak solutions designed to enhance and extend the functionality and capabilities of Red Hat OpenShift. The solutions include Cloud Pak for Data, Business Automation, Watson AIOps, Integration, Network Application, and Security, and give enterprises the fully modular and easy-to- consume capabilities they need to bring the next 80% of their workloads into modern, cloud-based environments.
    [Show full text]
  • STM Single Atom/Molecule Manipulation and Its Application to Nanoscience and Technology
    Critical Review article, J. Vac. Sci. Tech. in press (2005). STM Single Atom/Molecule Manipulation and Its Application to Nanoscience and Technology Saw-Wai Hla Department of Physics and Astronomy, Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, OH-45701, USA; email: [email protected] Key Words: STM, atom, molecule, manipulation, nanoscience, nanotechnology. Abstract: Single atom/molecule manipulation with a scanning-tunneling-microscope (STM) tip is an innovative experimental technique of nanoscience. Using STM-tip as an engineering or analytical tool, artificial atomic-scale structures can be fabricated, novel quantum phenomena can be probed, and properties of single atoms and molecules can be studied at an atomic level. The STM manipulations can be performed by precisely controlling tip-sample interactions, by using tunneling electrons, or electric field between the tip and sample. In this article, various STM manipulation techniques and some of their applications based on the author’s experience are described, and the impact of this research area on nanoscience and technology is discussed. * Correspondence to; Saw-Wai Hla, Physics and Astronomy Dept., Ohio University, Clippinger 252 C, Athens, OH-45701, USA. Tel: 740 593 1727, Fax: 740 593 0433. 1 I. INTRODUCTION for a long period of time. Electrochemically etched polycrystalline tungsten wires are used as the tips in most In the mid 20th century, the possibility to image or to see an experiments described here. The tip-apex is usually atom was a matter of great debate. Only after the Nobel- prepared by using in-situ tip formation procedure36 award winning invention of Scanning Tunneling described in the next section.
    [Show full text]
  • The Weather Company, an IBM Business, Helps People Make Informed Expands Decisions and Take Action in the Face of Weather
    Business challenge The Weather Company’s websites serve millions of users per day. When extreme weather hits and usage peaks, the sites must be at their fastest and most reliable to provide the information people need to stay safe. Transformation To optimize for elasticity in handling extreme spikes in demand, The Weather Company worked with IBM to migrate Chris Hill, VP and its web platform quickly and seamlessly Chief Information and from its existing cloud provider to the Technology Officer for IBM Watson Media and IBM® Cloud™. Weather Business benefits: “IBM Cloud is the perfect The Weather Company, engine to power the world’s largest weather Unlocks an IBM Business websites and deliver the significant cost savings on fastest, most accurate cloud hosting and support Migrating the world’s top weather insight to millions of users around the globe.” weather web property to Chris Hill VP, CIO and CTO Accelerates IBM Watson Media and Weather deployment of new services a secure, scalable global with Kubernetes architecture in the IBM Cloud The Weather Company, an IBM Business, helps people make informed Expands decisions and take action in the face of weather. The company offers the most global reach with access accurate forecasts globally with personalized and actionable weather data to a larger number of data and insights to millions of consumers, as well as thousands of marketers and Share this centers in local markets businesses via Weather’s API, its business solutions division, and its own digital products from The Weather Channel
    [Show full text]
  • Download Chapter 64KB
    Memorial Tributes: Volume 20 Copyright National Academy of Sciences. All rights reserved. Memorial Tributes: Volume 20 JOHN A. SIMPSON 1923–2011 Elected in 1988 “For creativity and innovation in developing a unique computer-controlled research facility for studying fully automated manufacturing.” BY JOHN W. LYONS JOHN AROL SIMPSON, former director of the Manufactur- ing Engineering Laboratory at the National Institute of Stan- dards and Technology (NIST), died December 6, 2011, in Falls Church, Virginia. He was 88 years old. He is survived by his wife Arlene, a son, and three grandchildren. John was an electron physicist, a metrologist, and an expert in factory automation. He devoted most of his working life to these three areas while serving at the National Bureau of Standards (NBS)—later named the National Institute of Standards and Technology. Born in Toronto on March 30, 1923, he served in the US Army during World War II and then attended Lehigh University in Bethlehem, Pennsylvania, where he received BS (1946), MS (1948), and PhD (1953) degrees in physics. While working on his PhD degree he was also employed at NBS in the Electron Physics Section led by L.L. Marton. This group studied a number of electron analogs of optical sys- tems. His thesis was on an electron interferometer, work he described as very difficult both theoretically and experimen- tally. Subsequently he worked on a high-resolution electron spectrograph in association with Ugo Fano of the University of Chicago. The NBS group grew in size and became “one of 295 Copyright National Academy of Sciences. All rights reserved.
    [Show full text]
  • The First Awarding of the Heinrich Rohrer Medals
    The First Awarding of The Heinrich Rohrer Medals June 2014, The Surface Science Society of Japan Masaharu Oshima, President It is our great pleasure to announce the winners of the first awarding of The Heinrich Rohrer Medals. The Medal has been established after the name of Late Dr. Heinrich Rohrer, one of the Laureates of Nobel Prize in Physics in 1986, for recognizing researchers who have made the world-top level achievements in the fields of nanoscience and nanotechnology. The Heinrich Rohrer Medal –Grand Medal– - Roland Wiesendanger (born in 1961) Professor in University of Hamburg, Germany "For his pioneering and ground-breaking achievements on spin-resolved scanning tunneling microscopy and spectroscopy, bringing about very deep insights in spin-related properties of materials at atomic scale" The Heinrich Rohrer Medal –Rising Medal– - Yoshiaki Sugimoto (born in 1978) Associate Professor in Osaka University, Japan "For his outstanding contributions to manipulation and chemical identification of individual atoms using atomic force microscopy" The Heinrich Rohrer Medal –Rising Medal– - Jan Hugo Dil (born in 1977) SNSF Professor in Ecole Polytechnique Fédérale de Lausanne, Switzerland "For his leading and creative roles in identifying novel spin structures using synchrotron radiation-based spin- and angle-resolved photoemission spectroscopy" Award Committee Members - Masaru Tsukada (Tohoku University, Japan, Committee Chair,) - Heike E. Riel (IBM Zurich, Switzerland) - Wolf-Dieter Schneider (EPFL, Switzerland) - Patrick Soukiassian (University of Paris-Sud/Orsay, France) - Flemming Besenbacher (Aarhus University, Denmark) - Michel A. Van Hove (Hong Kong Baptist University, Hong Kong), - Matthias Scheffler (Fritz Haber Institute, Germany) - Kunio Takayanagi (Tokyo Institute of Technology, Japan) Award Ceremony The award ceremony will be held at The 7th International Symposium on Surface Science, ISSS-7 (http://www.sssj.org/isss7/), on 2-6 November, 2014, at Kunibiki Messe, Shimane, Japan, which is organized by The Surface Science Society of Japan.
    [Show full text]