The Evolution of Ibm Research Looking Back at 50 Years of Scientific Achievements and Innovations
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Terms and Conditions for Vmware on IBM Cloud Services
Terms and Conditions for VMware on IBM Cloud Services These Terms and Conditions for VMware on IBM Cloud Services (the “Terms”) are a legal agreement between you, the customer (“Customer” or “you”), and Dell. For purposes of these Terms, “Dell” means Dell Marketing L.P., on behalf of itself and its suppliers and licensors, or the Dell entity identified on your Order Form (if applicable) and includes any Dell affiliate with which you place an order for the Services. Your purchase of the Services is solely for your internal business use and may not be resold. 1. Your use of the Services reflected on your VMware on IBM Cloud with Dell account and any changes or additions to the VMware on IBM Cloud Services that you purchase from Dell are subject to these Terms, including the Customer Support terms attached hereto as Exhibit A, as well as the Dell Cloud Solutions Agreement located at http://www.dell.com/cloudterms (the “Cloud Agreement”), which is incorporated by reference in its entirety herein. 2. You are purchasing a Subscription to the Services which may include VMware vCenter Server on IBM Cloud or VMware Cloud Foundation on IBM Cloud (individually or collectively, the “Services”). “Subscription” means an order for a quantity of Services for a defined Term. The “Term” is one (1) year from the start date of your Services, and will thereafter automatically renew for successive month to month terms for the duration of your Subscription. 3. The Services will be billed on a monthly basis, with payment due and payable in accordance with the payment terms set forth in the Cloud Agreement. -
New Dell Models Added to the IBM Integrated Multivendor Support (IMS)
New Dell models added to the IBM Integrated Multivendor Support (IMS) On March 22nd, IBM announced the addition of Dell X86 Generation 14 server models to help your clients optimize the performance of their Dell x86 servers for better return on investment. Dell x86 servers are central components of an IT infrastructure. Keeping them running at peak efficiency is vital to meeting your client's availability requirements. Robust technical support from an experienced vendor with extensive resources can optimize the performance of the servers--regardless of their age--while better controlling support costs. This new offering covers the following: Warranty pass-thru for machine type 1510--this allows clients to be able to use a single source to handle all their service needs and IBM will take care of the call placement to Dell "NEW" - Clients now can request IBM Hardware maintenance during the Dell warranty period using machine type 7069 for select Gen 14 models. IBM will provide hardware maintenance support for those clients who wish to have a this coverage model during the warranty period. IBM Hardware maintenance for machine type 0138--this is post warranty coverage, so the client can be sure to have coverage post warranty Battery maintenance is available on all these models. Your clients expect coverage for Battery maintenance, please be sure to add to your Dell model quotes. What are the benefits of IMS to your client? Receive pricing immediately, as these products are all in ISAT IBM SSR provides the labor Does not require machine -
30 Years of Moving Individual Atoms
FEATURES 30 YEARS OF MOVING INDIVIDUAL ATOMS 1 2 l Christopher Lutz and Leo Gross – DOI: https://doi.org/10.1051/epn/2020205 l 1 IBM Research – Almaden, San Jose, California, USA l 2 IBM Research – Zurich,¨ 8803 Ruschlikon,¨ Switzerland In the thirty years since atoms were first positioned individually, the atom-moving capability of scanning probe microscopes has grown to employ a wide variety of atoms and small molecules, yielding custom nanostructures that show unique electronic, magnetic and chemical properties. his year marks the thirtieth anniversary of the publication by IBM researchers Don Eigler and Erhard Schweizer showing that individ- Tual atoms can be positioned precisely into chosen patterns [1]. Tapping the keyboard of a personal computer for 22 continuous hours, they controlled the movement of a sharp tungsten needle to pull 35 individ- ual xenon atoms into place on a surface to spell the letters “IBM” (Figure 1). Eigler and Schweitzer’s demonstration set in motion the use of a newly invented tool, called the scanning tunneling microscope (STM), as the workhorse for nanoscience research. But this achievement did even more than that: it changed the way we think of atoms. m FIG. 2: The STM that Don Eigler and coworkers used to position atoms. The It led us to view them as building blocks that can be tip is seen touching its reflection in the sample’s surface. (Credit: IBM) arranged the way we choose, no longer being limited by the feeling that atoms are inaccessibly small. with just one electron or atom or (small) molecule. FIG. -
History of AI at IBM and How IBM Is Leveraging Watson for Intellectual Property
History of AI at IBM and How IBM is Leveraging Watson for Intellectual Property 2019 ECC Conference June 9-11 at Marist College IBM Intellectual Property Management Solutions 1 IBM Intellectual Property Management Solutions © 2017-2019 IBM Corporation Who are We? At IBM for 37 years I currently work in the Technology and Intellectual Property organization, a combination of CHQ and Research. I have worked as an engineer in Procurement, Testing, MLC Packaging, and now T&IP. Currently Lead Architect on IP Advisor with Watson, a Watson based Patent and Intellectual Property Analytics tool. • Master Inventor • Number of patents filed ~ 24+ • Number of submissions in progress ~ 4+ • Consult/Educate outside companies on all things IP (from strategy to commercialization, including IP 101) • Technical background: Semiconductors, Computers, Programming/Software, Tom Fleischman Intellectual Property and Analytics [email protected] Is the manager of the Intellectual Property Management Solutions team in CHQ under the Technology and Intellectual Property group. Current OM for IP Advisor with Watson application, used internally and externally. Past Global Business Services in the PLM and Supply Chain practices. • Number of patents filed – 2 (2018) • Number of submissions in progress - 2 • Consult/Educate outside companies on all things IP (from strategy to commercialization, including IP 101) • Schaumburg SLE Sue Hallen • Technical background: Registered Professional Engineer in Illinois, Structural Engineer by [email protected] degree, lots of software development and implementation for PLM clients 2 IBM Intellectual Property Management Solutions © 2017-2019 IBM Corporation How does IBM define AI? IBM refers to it as Augmented Intelligence…. • Not artificial or meant to replace Human Thinking…augments your work AI Terminology Machine Learning • Provides computers with the ability to continuing learning without being pre-programmed. -
Big Blue in the Bottomless Pit: the Early Years of IBM Chile
Big Blue in the Bottomless Pit: The Early Years of IBM Chile Eden Medina Indiana University In examining the history of IBM in Chile, this article asks how IBM came to dominate Chile’s computer market and, to address this question, emphasizes the importance of studying both IBM corporate strategy and Chilean national history. The article also examines how IBM reproduced its corporate culture in Latin America and used it to accommodate the region’s political and economic changes. Thomas J. Watson Jr. was skeptical when he The history of IBM has been documented first heard his father’s plan to create an from a number of perspectives. Former em- international subsidiary. ‘‘We had endless ployees, management experts, journalists, and opportunityandlittleriskintheUS,’’he historians of business, technology, and com- wrote, ‘‘while it was hard to imagine us getting puting have all made important contributions anywhere abroad. Latin America, for example to our understanding of IBM’s past.3 Some seemed like a bottomless pit.’’1 However, the works have explored company operations senior Watson had a different sense of the outside the US in detail.4 However, most of potential for profit within the world market these studies do not address company activi- and believed that one day IBM’s sales abroad ties in regions of the developing world, such as would surpass its growing domestic business. Latin America.5 Chile, a slender South Amer- In 1949, he created the IBM World Trade ican country bordered by the Pacific Ocean on Corporation to coordinate the company’s one side and the Andean cordillera on the activities outside the US and appointed his other, offers a rich site for studying IBM younger son, Arthur K. -
IBM Research AI Residency Program
IBM Research AI Residency Program The IBM Research™ AI Residency Program is a 13-month program Topics of focus include: that provides opportunity for scientists, engineers, domain experts – Trust in AI (Causal modeling, fairness, explainability, and entrepreneurs to conduct innovative research and development robustness, transparency, AI ethics) on important and emerging topics in Artificial Intelligence (AI). The program aims at creating and investigating novel approaches – Natural Language Processing and Understanding in AI that progress capabilities towards significant technical (Question and answering, reading comprehension, and real-world challenges. AI Residents work closely with IBM language embeddings, dialog, multi-lingual NLP) Research scientists and are expected to fully complete a project – Knowledge and Reasoning (Knowledge/graph embeddings, within the 13-month residency. The results of the project may neuro-symbolic reasoning) include publications in top AI conferences and journals, development of prototypes demonstrating important new AI functionality – AI Automation, Scaling, and Management (Automated data and fielding of working AI systems. science, neural architecture search, AutoML, transfer learning, few-shot/one-shot/meta learning, active learning, AI planning, As part of the selection process, candidates must submit parallel and distributed learning) a 500-word statement of research interest and goals. – AI and Software Engineering (Big code analysis and understanding, software life cycle including modernize, build, debug, test and manage, software synthesis including refactoring and automated programming) – Human-Centered AI (HCI of AI, human-AI collaboration, AI interaction models and modalities, conversational AI, novel AI experiences, visual AI and data visualization) Deadline to apply: January 31, 2021 Earliest start date: June 1, 2021 Duration: 13 months Locations: IBM Thomas J. -
Robust Architectural Support for Transactional Memory in the Power Architecture
Robust Architectural Support for Transactional Memory in the Power Architecture Harold W. Cain∗ Brad Frey Derek Williams IBM Research IBM STG IBM STG Yorktown Heights, NY, USA Austin, TX, USA Austin, TX, USA [email protected] [email protected] [email protected] Maged M. Michael Cathy May Hung Le IBM Research IBM Research (retired) IBM STG Yorktown Heights, NY, USA Yorktown Heights, NY, USA Austin, TX, USA [email protected] [email protected] [email protected] ABSTRACT in current p795 systems, with 8 TB of DRAM), as well as On the twentieth anniversary of the original publication [10], strengths in RAS that differentiate it in the market, adding following ten years of intense activity in the research lit- TM must not compromise any of these virtues. A robust erature, hardware support for transactional memory (TM) system is one that is sturdy in construction, a trait that has finally become a commercial reality, with HTM-enabled does not usually come to mind in respect to HTM systems. chips currently or soon-to-be available from many hardware We structured TM to work in harmony with features that vendors. In this paper we describe architectural support for support the architecture's scalability. Our goal has been to TM provide a comprehensive programming environment includ- TM added to a future version of the Power ISA . Two im- ing support for simple system calls and debug aids, while peratives drove the development: the desire to complement providing a robust (in the sense of "no surprises") execu- our weakly-consistent memory model with a more friendly tion environment with reasonably consistent performance interface to simplify the development and porting of multi- and without unexpected transaction failures.2 TM must be threaded applications, and the need for robustness beyond usable throughout the system stack: in hypervisors, oper- that of some early implementations. -
Apple at Work Compatibility
Apple at Work Compatibility Compatible with your existing systems. Apple devices work with most enterprise systems and apps that your company already uses—mail and messaging, network connectivity, file sharing, collaboration, and more—giving your employees access to everything they need to do their jobs. Connect to your infrastructure iPhone, iPad, and Mac support WPA2 Enterprise to provide secure access to your enterprise Wi-Fi network. With the integration of iOS, macOS, and the latest technology from Cisco, businesses everywhere can seamlessly connect to networks, optimize the performance of business-critical apps, and collaborate using voice and video—all with the security that businesses need. Secure access to private corporate networks is available in iOS, iPadOS, and macOS using established industry-standard virtual private network protocols. Out of the box, iOS, iPadOS, and macOS support IKEv2, Cisco IPSec, and L2TP over IPSec. Work with your existing enterprise systems Apple devices work with key corporate services including Microsoft Exchange, giving your employees full access to their business email, calendar, and contacts, across all their Apple devices. Your employees can use the built-in Apple apps including Mail, Calendar, Contacts, Reminders, and Notes to connect, and use Microsoft Outlook on Mac for working with Microsoft Exchange. iPhone, iPad, and Mac devices support a wide range of connectivity options including standards-based systems like IMAP and CalDAV. Popular productivity and collaboration tools like Microsoft Office, Google G Suite, Slack, Cisco Webex, and Skype are all available on the App Store, and deliver the functionality you know and expect. Access all your documents and files The Files app in iOS and iPadOS lets you access your Box, DropBox, OneDrive, and Google Drive files all from one place. -
DONALD J. ROSENBERG Executive Vice President, General Counsel and Corporate Secretary Qualcomm Incorporated
Qualcomm Incorporated 5775 Morehouse Drive (858) 587-1121 San Diego, CA 92121-1714 www.qualcomm.com DONALD J. ROSENBERG Executive Vice President, General Counsel and Corporate Secretary Qualcomm Incorporated Donald J. Rosenberg is executive vice president, general counsel and corporate secretary of Qualcomm Incorporated. Mr. Rosenberg reports directly to CEO Steve Mollenkopf and is a member of the company's Executive Committee. In his role as chief legal officer, he is responsible for overseeing Qualcomm's worldwide legal affairs including litigation, intellectual property and corporate matters. Qualcomm's Government Affairs, Strategic Intellectual Property, Internal Audit and Compliance organizations also report to him. Prior to joining Qualcomm, Mr. Rosenberg served as senior vice president, general counsel and corporate secretary of Apple Inc. Prior to that, he was senior vice president and general counsel of IBM Corporation where he had also held numerous positions including vice president and assistant general counsel for litigation and counsel to IBM's mainframe division. Mr. Rosenberg has had extensive experience in corporate governance, compliance, law department management, litigation, securities regulation, intellectual property and competition issues. He has served as an adjunct professor of law at New York's Pace University School of Law, where he taught courses in intellectual property and antitrust law. Mr. Rosenberg is Co-Chair of the Lawyers’ Committee for Civil Rights under Law and a board member of the Corporate Directors Forum as well as the La Jolla Playhouse. Mr. Rosenberg received a Bachelor of Science degree in mathematics from the State University of New York at Stony Brook and his juris doctor from St. -
IBM Aspera for Microsoft Sharepoint Increasing the Value of Sharepoint with Fast, Secure Transfers of Very Large Files and Data Sets
IBM Software Data sheet IBM Aspera for Microsoft SharePoint Increasing the value of SharePoint with fast, secure transfers of very large files and data sets High-speed transfer for SharePoint Key benefits Microsoft SharePoint has been adopted by companies worldwide for knowledge capture, collaboration, and document storage. Many of • Fast uploads and downloads for files and these organizations have been unable to take full advantage of data sets of any type and size into SharePoint regardless of distance or SharePoint because of its file size and repository size limitations, and network conditions poor performance transferring large files and data sets over wide area networks. • Eliminates SharePoint 2GB file size limit and 4TB content repository limit IBM® Aspera® for Microsoft SharePoint is for organizations who need • Reliable and predictable transfers with to quickly, predictably, and securely store and access high volumes of resume in case of interruption large files in SharePoint. • Secure transfers with encryption over the wire and at rest This solution is designed to seamlessly integrate the patented FASP® • Flexible deployment, supports storing file transfer technology into SharePoint document upload and download data on-premises and in the cloud workflows. Using Aspera, customers can not only overcome the file size and repository size limitations of SharePoint, they also can transfer files into and out of SharePoint at much higher speeds with auditable and predictable results. Expanding the value of SharePoint Aspera for Microsoft SharePoint enables users to take advantage of SharePoint document management capabilities for files that may be distributed on multiple file systems. That means users can upload large video files, imagery files, laser scan data, and other large files leveraging SharePoint document library structures and metadata for organization and search. -
Treatment and Differential Diagnosis Insights for the Physician's
Treatment and differential diagnosis insights for the physician’s consideration in the moments that matter most The role of medical imaging in global health systems is literally fundamental. Like labs, medical images are used at one point or another in almost every high cost, high value episode of care. Echocardiograms, CT scans, mammograms, and x-rays, for example, “atlas” the body and help chart a course forward for a patient’s care team. Imaging precision has improved as a result of technological advancements and breakthroughs in related medical research. Those advancements also bring with them exponential growth in medical imaging data. The capabilities referenced throughout this document are in the research and development phase and are not available for any use, commercial or non-commercial. Any statements and claims related to the capabilities referenced are aspirational only. There were roughly 800 million multi-slice exams performed in the United States in 2015 alone. Those studies generated approximately 60 billion medical images. At those volumes, each of the roughly 31,000 radiologists in the U.S. would have to view an image every two seconds of every working day for an entire year in order to extract potentially life-saving information from a handful of images hidden in a sea of data. 31K 800MM 60B radiologists exams medical images What’s worse, medical images remain largely disconnected from the rest of the relevant data (lab results, patient-similar cases, medical research) inside medical records (and beyond them), making it difficult for physicians to place medical imaging in the context of patient histories that may unlock clues to previously unconsidered treatment pathways. -
Cell Broadband Engine Spencer Dennis Nicholas Barlow the Cell Processor
Cell Broadband Engine Spencer Dennis Nicholas Barlow The Cell Processor ◦ Objective: “[to bring] supercomputer power to everyday life” ◦ Bridge the gap between conventional CPU’s and high performance GPU’s History Original patent application in 2002 Generations ◦ 90 nm - 2005 ◦ 65 nm - 2007 (PowerXCell 8i) ◦ 45 nm - 2009 Cost $400 Million to develop Team of 400 engineers STI Design Center ◦ Sony ◦ Toshiba ◦ IBM Design PS3 Employed as CPU ◦ Clocked at 3.2 GHz ◦ theoretical maximum performance of 23.04 GFLOPS Utilized alongside NVIDIA RSX 'Reality Synthesizer' GPU ◦ Complimented graphical performance ◦ 8 Synergistic Processing Elements (SPE) ◦ Single Dual Issue Power Processing Element (PPE) ◦ Memory IO Controller (MIC) ◦ Element Interconnect Bus (EIB) ◦ Memory IO Controller (MIC) ◦ Bus Interface Controller (BIC) Architecture Overview SPU/SPE Synergistic Processing Unit/Element SXU - Synergistic Execution Unit LS - Local Store SMF - Synergistic Memory Frontend EIB - Element Interconnect Bus PPE - Power Processing Element MIC - Memory IO Controller BIC - Bus Interface Controller Synergistic Processing Element (SPE) 128-bit dual-issue SIMD dataflow ○ “Single Instruction Multiple Data” ○ Optimized for data-level parallelism ○ Designed for vectorized floating point calculations. ◦ Workhorses of the Processor ◦ Handle most of the computational workload ◦ Each contains its own Instruction + Data Memory ◦ “Local Store” ▫ Embedded SRAM SPE Continued Responsible for governing SPEs ◦ “Extensions” of the PPE Shares main memory with SPE ◦ can initiate