Manoj Kumar Valluru.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Manoj Kumar Valluru.Pdf ARGONAUTE10 inhibits INDEHISCENT to regulate shoot apical meristem and replum development in Arabidopsis thaliana A thesis submitted for the degree of Doctor of Philosophy Manoj Kumar Valluru December 2017 Department of Molecular Biology and Biotechnology University of Sheffield i Acknowledgments गु셁 ब्र륍हा गु셁 विष्णू Guru Brahmaa Guru Vishnu गु셁ԃ देिो महेश्िरा Gurur Devo Maheshwarah गु셁 शाक्षात परब्र륍हा Guru Saakshaata Parabrahma तस्मै श्री गु셁िे नमԃ Tasmai Shri Guruve Namah This verse from Skanda Purana translates as: The true teacher is Brahma (God as Creator), The true teacher is Vishnu (God as Sustenance), The true teacher is Shiva (God as the destroyer of the ego or ignorance), My Salutation to such a teacher, who is verily united with God. I would like to thank my supervisor Dr Karim Sorefan for all of his help, advice and understanding throughout my PhD. A great deal of help has also come from lab members both past and present, for which I am deeply grateful. This includes Peter Venn, Matthew Parker, James Thackery, Giulia Arsuffi, Colette L Baxter, Dr Nicholas Zoulias and colleagues from Dr Stuart Casson’s lab. I am grateful to the researchers who have contributed seeds and transgenic material to this study. The pIND::IND-YFP was kindly provided by Professor Lars Østergaard at John Innes Centre, United Kingdom. The 35S:LhGR>>PHB was kindly provided by Professor Miltos Tsiantis at Max Planck Institute for Plant Breeding Research, Germany. The pMDC32-GR plasmid was kindly provided by Dr Stuart Casson at Department of Molecular Biology and Biotechnology, The University of Sheffield, United Kingdom. Many thanks to Marion Bauch for advice on histological work, Dr Svetlana Sedelnikova for protein work, Dr Paul Heath for microarray work and Dr Chris Hill for Electron Microscopy work. I gratefully acknowledge the funding provided by the University of Sheffield studentship. I would also like to thank my parents and my family. Finally, I would like to dedicate this thesis to my loving wife, Judith Valluru. ii Abstract ARGONAUTE10 (AGO10) regulates shoot apical meristem (SAM) and gynoecium development by controlling Class III HOMEODOMAIN-LEUCINE ZIPPER (HD-ZIP III) transcription factor expression. The ago10zwl-3 mutant failed to establish SAM, leaf adaxial identity, and carpel margin meristems (CMMs). However, the factors that act downstream of AGO10 and HD-ZIP III genes to regulate development are not known. This work has identified that the INDEHISCENT (IND) bHLH transcription factor functions downstream of AGO10 and HD-ZIP III genes to ensure proper SAM and replum development. IND overexpression causes SAM defects similar to ago10zwl-3 mutants, and the ind mutation partially rescues ago10 mutant phenotypes. IND overexpression negatively regulates tissue bilateral symmetry by repressing polar auxin transport (PAT), AGO10 and probably CUC1 expression. However, HD-ZIP III transcription factors PHB and REV indirectly repress IND and promote CUC1 expression. AGO10 and IND regulate each other antagonistically. AGO10 repression of IND is essential for SAM and replum development because overexpression of IND impairs tissue bilateral symmetry. This is the first study to demonstrate a role for IND in SAM development and that the main function of AGO10 is to maintain proper IND expression. iii Table of Contents Acknowledgments--------------------------------------------------------------------------------------- ii Abstract ---------------------------------------------------------------------------------------------------- iii List of tables and figures ------------------------------------------------------------------------------ xii List of abbreviations --------------------------------------------------------------------------------- xvii CHAPTER 1. General Introduction ------------------------------------------------------------------- 2 1.1 Shoot apical meristem and leaf primordia ------------------------------------------------- 2 1.1.1 Hormonal regulation ----------------------------------------------------------------------- 3 1.1.1.1 Auxins regulate SAM and leaf development ------------------------------------ 5 1.1.1.2 Cytokinins regulate SAM and leaf development ------------------------------- 8 1.1.2 CLAVATA/WUSCHEL loop ---------------------------------------------------------------- 10 1.1.3 Adaxial, abaxial and boundary genes ------------------------------------------------- 13 1.2 ARGONAUTE proteins -------------------------------------------------------------------------- 15 1.2.1 ARGONAUTE proteins control SAM and leaf development ---------------------- 16 1.3 Similar genes regulate SAM and floral to fruit transition ------------------------------ 19 1.4 Hypothesis and Objectives -------------------------------------------------------------------- 24 CHAPTER 2. Materials and Methods --------------------------------------------------------------- 27 2.1 Materials ------------------------------------------------------------------------------------------ 27 2.1.1 General laboratory materials ----------------------------------------------------------- 27 2.1.2 Plant materials ----------------------------------------------------------------------------- 27 iv 2.2 Plant methods ----------------------------------------------------------------------------------- 28 2.2.1 Plant growth conditions ------------------------------------------------------------------ 28 2.2.2 Hormone and chemical treatments --------------------------------------------------- 29 2.2.3 Shoot apical meristem phenotype analysis ------------------------------------------ 29 2.3 Nucleic acid techniques ----------------------------------------------------------------------- 30 2.3.1 Plant genomic DNA extraction --------------------------------------------------------- 30 2.3.2 Plant total RNA extraction --------------------------------------------------------------- 30 2.3.3 cDNA synthesis ----------------------------------------------------------------------------- 31 2.3.4 Primer design ------------------------------------------------------------------------------- 32 2.3.5 Polymerase chain reaction (PCR) ------------------------------------------------------ 33 2.3.6 Quantitative reverse transcriptase PCR (qRT-PCR) -------------------------------- 34 2.3.7 Agarose gel electrophoresis ------------------------------------------------------------- 35 2.3.8 DNA gel extraction ------------------------------------------------------------------------ 35 2.4 Chromatin immunoprecipitation (ChIP) methods --------------------------------------- 36 2.4.1 Chromatin immunoprecipitation ------------------------------------------------------ 36 2.4.2 ChIP qPCR and ChIP-Seq analysis ------------------------------------------------------ 37 2.5 Microarray methods --------------------------------------------------------------------------- 38 2.5.1 Microarray ---------------------------------------------------------------------------------- 38 2.5.2 Microarray analysis ----------------------------------------------------------------------- 38 2.6 Bioinformatics ----------------------------------------------------------------------------------- 39 2.6.1 Sequence alignments --------------------------------------------------------------------- 39 v 2.6.2 GSEA analysis ------------------------------------------------------------------------------- 39 2.6.3 Library files for GSEA ---------------------------------------------------------------------- 40 2.6.4 MOTIF and DAP-Seq analysis ------------------------------------------------------------ 40 2.6.5 Protein structure modelling ------------------------------------------------------------- 41 2.7 Imaging techniques ----------------------------------------------------------------------------- 42 2.7.1 β-Glucuronidase (GUS) assay ----------------------------------------------------------- 42 2.7.2 Sample fixation, clearing, and preparation ------------------------------------------ 42 2.7.3 Embryo dissection and light microscopy --------------------------------------------- 43 2.7.4 Confocal Microscopy ---------------------------------------------------------------------- 44 2.7.5 Scanning Electron Microscopy (SEM) ------------------------------------------------- 45 2.8 Statistical analysis ------------------------------------------------------------------------------- 45 CHAPTER 3. AGO10 and HD-ZIP III transcription factors regulate IND -------------------- 47 3.1 Introduction -------------------------------------------------------------------------------------- 47 3.2 Results --------------------------------------------------------------------------------------------- 49 3.2.1 Characterisation of AGO family gene expression in SAM and other tissues - 50 3.2.2 Characterisation of AGO10 -------------------------------------------------------------- 53 3.2.2.1 AGO10 expression -------------------------------------------------------------------- 53 3.2.2.2 Genotyping ago10 mutant zwl-3 ------------------------------------------------- 53 3.2.2.3 zwl-3 developmental phenotypes ------------------------------------------------ 54 3.2.2.4 Summary ------------------------------------------------------------------------------- 55 3.2.3 Characterisation of IND ------------------------------------------------------------------- 59 vi 3.2.3.1 IND expression ------------------------------------------------------------------------ 59 3.2.3.2 Loss of ind developmental phenotypes ----------------------------------------- 59 3.2.3.3 Overexpression
Recommended publications
  • Replace This with the Actual Title Using All Caps
    UNDERSTANDING THE GENETICS UNDERLYING MASTITIS USING A MULTI-PRONGED APPROACH A Dissertation Presented to the Faculty of the Graduate School of Cornell University In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Asha Marie Miles December 2019 © 2019 Asha Marie Miles UNDERSTANDING THE GENETICS UNDERLYING MASTITIS USING A MULTI-PRONGED APPROACH Asha Marie Miles, Ph. D. Cornell University 2019 This dissertation addresses deficiencies in the existing genetic characterization of mastitis due to granddaughter study designs and selection strategies based primarily on lactation average somatic cell score (SCS). Composite milk samples were collected across 6 sampling periods representing key lactation stages: 0-1 day in milk (DIM), 3- 5 DIM, 10-14 DIM, 50-60 DIM, 90-110 DIM, and 210-230 DIM. Cows were scored for front and rear teat length, width, end shape, and placement, fore udder attachment, udder cleft, udder depth, rear udder height, and rear udder width. Independent multivariable logistic regression models were used to generate odds ratios for elevated SCC (≥ 200,000 cells/ml) and farm-diagnosed clinical mastitis. Within our study cohort, loose fore udder attachment, flat teat ends, low rear udder height, and wide rear teats were associated with increased odds of mastitis. Principal component analysis was performed on these traits to create a single new phenotype describing mastitis susceptibility based on these high-risk phenotypes. Cows (N = 471) were genotyped on the Illumina BovineHD 777K SNP chip and considering all 14 traits of interest, a total of 56 genome-wide associations (GWA) were performed and 28 significantly associated quantitative trait loci (QTL) were identified.
    [Show full text]
  • Spermatozoa Protein Alterations in Infertile Men with Bilateral Varicocele
    Asian Journal of Andrology (2016) 18, 43–53 © 2016 AJA, SIMM & SJTU. All rights reserved 1008-682X www.asiaandro.com; www.ajandrology.com Open Access ORIGINAL ARTICLE Spermatozoa protein alterations in infertile men with bilateral varicocele Male Infertility Ashok Agarwal1,*, Rakesh Sharma1,*, Damayanthi Durairajanayagam1,2, Zhihong Cui1, Ahmet Ayaz1, Sajal Gupta1, Belinda Willard3, Banu Gopalan3, Edmund Sabanegh1 Among infertile men, a diagnosis of unilateral varicocele is made in 90% of varicocele cases and bilateral in the remaining varicocele cases. However, there are reports of under‑diagnosis of bilateral varicocele among infertile men and that its prevalence is greater than 10%. In this prospective study, we aimed to examine the differentially expressed proteins (DEP) extracted from spermatozoa cells of patients with bilateral varicocele and fertile donors. Subjects consisted of 17 men diagnosed with bilateral varicocele and 10 proven fertile men as healthy controls. Using the LTQ‑orbitrap elite hybrid mass spectrometry system, proteomic analysis was done on pooled samples from 3 patients with bilateral varicocele and 5 fertile men. From these samples, 73 DEP were identified of which 58 proteins were differentially expressed, with 7 proteins unique to the bilateral varicocele group and 8 proteins to the fertile control group. Majority of the DEPs were observed to be associated with metabolic processes, stress responses, oxidoreductase activity, enzyme regulation, and immune system processes. Seven DEP were involved in sperm function such as capacitation, motility, and sperm‑zona binding. Proteins TEKT3 and TCP11 were validated by Western blot analysis and may serve as potential biomarkers for bilateral varicocele. In this study, we have demonstrated for the first time the presence of DEP and identified proteins with distinct reproductive functions which are altered in infertile men with bilateral varicocele.
    [Show full text]
  • Nº Ref Uniprot Proteína Péptidos Identificados Por MS/MS 1 P01024
    Document downloaded from http://www.elsevier.es, day 26/09/2021. This copy is for personal use. Any transmission of this document by any media or format is strictly prohibited. Nº Ref Uniprot Proteína Péptidos identificados 1 P01024 CO3_HUMAN Complement C3 OS=Homo sapiens GN=C3 PE=1 SV=2 por 162MS/MS 2 P02751 FINC_HUMAN Fibronectin OS=Homo sapiens GN=FN1 PE=1 SV=4 131 3 P01023 A2MG_HUMAN Alpha-2-macroglobulin OS=Homo sapiens GN=A2M PE=1 SV=3 128 4 P0C0L4 CO4A_HUMAN Complement C4-A OS=Homo sapiens GN=C4A PE=1 SV=1 95 5 P04275 VWF_HUMAN von Willebrand factor OS=Homo sapiens GN=VWF PE=1 SV=4 81 6 P02675 FIBB_HUMAN Fibrinogen beta chain OS=Homo sapiens GN=FGB PE=1 SV=2 78 7 P01031 CO5_HUMAN Complement C5 OS=Homo sapiens GN=C5 PE=1 SV=4 66 8 P02768 ALBU_HUMAN Serum albumin OS=Homo sapiens GN=ALB PE=1 SV=2 66 9 P00450 CERU_HUMAN Ceruloplasmin OS=Homo sapiens GN=CP PE=1 SV=1 64 10 P02671 FIBA_HUMAN Fibrinogen alpha chain OS=Homo sapiens GN=FGA PE=1 SV=2 58 11 P08603 CFAH_HUMAN Complement factor H OS=Homo sapiens GN=CFH PE=1 SV=4 56 12 P02787 TRFE_HUMAN Serotransferrin OS=Homo sapiens GN=TF PE=1 SV=3 54 13 P00747 PLMN_HUMAN Plasminogen OS=Homo sapiens GN=PLG PE=1 SV=2 48 14 P02679 FIBG_HUMAN Fibrinogen gamma chain OS=Homo sapiens GN=FGG PE=1 SV=3 47 15 P01871 IGHM_HUMAN Ig mu chain C region OS=Homo sapiens GN=IGHM PE=1 SV=3 41 16 P04003 C4BPA_HUMAN C4b-binding protein alpha chain OS=Homo sapiens GN=C4BPA PE=1 SV=2 37 17 Q9Y6R7 FCGBP_HUMAN IgGFc-binding protein OS=Homo sapiens GN=FCGBP PE=1 SV=3 30 18 O43866 CD5L_HUMAN CD5 antigen-like OS=Homo
    [Show full text]
  • The ZNF76 Rs10947540 Polymorphism Associated With
    www.nature.com/scientificreports OPEN The ZNF76 rs10947540 polymorphism associated with systemic lupus erythematosus risk in Chinese populations Yuan‑yuan Qi1,4, Yan Cui1,4, Hui Lang2, Ya‑ling Zhai1, Xiao‑xue Zhang1, Xiao‑yang Wang1, Xin‑ran Liu1, Ya‑fei Zhao1, Xiang‑hui Ning3 & Zhan‑zheng Zhao1* Systemic lupus erythematosus (SLE) is a typical autoimmune disease with a strong genetic disposition. Genetic studies have revealed that single‑nucleotide polymorphisms (SNPs) in zinc fnger protein (ZNF)‑coding genes are associated with susceptibility to autoimmune diseases, including SLE. The objective of the current study was to evaluate the correlation between ZNF76 gene polymorphisms and SLE risk in Chinese populations. A total of 2801 individuals (1493 cases and 1308 controls) of Chinese Han origin were included in this two‑stage genetic association study. The expression of ZNF76 was evaluated, and integrated bioinformatic analysis was also conducted. The results showed that 28 SNPs were associated with SLE susceptibility in the GWAS cohort, and the association of rs10947540 was successfully replicated in the independent replication cohort −2 (Preplication = 1.60 × 10 , OR 1.19, 95% CI 1.03–1.37). After meta‑analysis, the association between −6 rs10947540 and SLE was pronounced (Pmeta = 9.62 × 10 , OR 1.29, 95% CI 1.15–1.44). Stratifed analysis suggested that ZNF76 rs10947540 C carriers were more likely to develop relatively high levels of serum creatinine (Scr) than noncarriers (CC + CT vs. TT, p = 9.94 × 10−4). The bioinformatic analysis revealed that ZNF76 rs10947540 was annotated as an eQTL and that rs10947540 was correlated with decreased expression of ZNF76.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 7,671,085 B2 Downes Et Al
    USOO7671085B2 (12) United States Patent (10) Patent No.: US 7,671,085 B2 DOWnes et al. (45) Date of Patent: Mar. 2, 2010 (54) NON-STEROIDAL FARNESOIDX RECEPTOR 4,265,874 A 5/1981 Bonsen et al. MODULATORS AND METHODS FOR THE 5,151,442 A 9, 1992 Garcia et al. USE THEREOF FOREIGN PATENT DOCUMENTS (75) Inventors: Michael R. Downes, San Diego, CA WO WOOO/37077 6, 2000 (US); Ronald M. Evans, La Jolla, CA WO WOOOf 76.523 12/2000 (US) WO WO 2004/046.162 6, 2004 OTHER PUBLICATIONS (73) Assignee: The Salk Institute for Biological Fi1Orucci iS. S, RizzoRIZZO (J,G. DoniniJonini A,A. DistruttiJS 1 E.E, and SanlucciSantucci L.L, “Targetilargeting Studies, La Jolla, CA (US) farnesoid X receptor for liver and metabolic disorders.” Trends in c - r Molecular Medicine, Jul. 2007. 13(7) 298–309.* (*) Notice: Subj ect to any disclaimer, the term of this Scotti E, Gilardi F. Godio C, Gers E, Krneta J. Mitro N. De Fabiani E. patent is extended or adjusted under 35 Caruso D, and Crestani M. "Bile acids and their signaling pathways: U.S.C. 154(b) by 907 days. eclectic regulators of diverse cellular functions.” Cellular and Molecular Life Sciences, Oct. 2007, 64(19-20), 2477-2491.* (21) Appl. No.: 10/535,043 Laffitte et al., “Identification of the DNA binding specificity and potential target genes for the farnesoid X-activated receptor.” Journal (22) PCT Filed: Nov. 14, 2003 of Biological Chemistry, 275: 10638-10647, 2000. Nicolaou et al., “Natural product-like combinatorial libraries based (86).
    [Show full text]
  • Abstracts 2019 Focus Sessions
    52nd ANNUAL CONFERENCE Beyond Possible: Remarkable Transformation of Reproductive Biology Abstracts 2019 Focus Sessions S1.1 - The maternal lactocrine continuum programming uterine capacity. Frank Bartol, Jeffrey Vallet, Carol Bagnell Lactocrine signaling describes a mechanism by which milk-borne bioactive factors (MbFs) are communicated from mother to offspring by consequence of nursing. Lactocrine communication is an element of the maternal environmental continuum of factors that define pre- and postnatal developmental conditions and, therefore, the trajectory of mammalian development and offspring phenotype. Lactocrine-active factors can include MbFs of maternal origin, as well as factors of environmental origin to which the lactating female is exposed. Ideally, lactocrine signals communicated to nursing offspring insure a smooth transition and adaptation to extrauterine life. Disruption of lactocrine communication occurs when the quality or quantity of colostrum (first milk) is compromised. This can have lasting consequences for the health and fitness of nursing young. In the pig (Sus domesticus), imposition of a lactocrine-null state from birth (postnatal day = PND 0) by feeding milk replacer altered global patterns of uterine gene expression by PND 2, and inhibited endometrial development by PND 14. Similarly, lactocrine deficiency, reflecting minimal colostrum consumption from birth, retarded endometrial development in neonates, altered endometrial gene expression on pregnancy day (PxD) 13, and reduced live litter size in adult, neonatally lactocrine-deficient gilts. Elements of the lactocrine-sensitive, adult endometrial transcriptome at PxD 13 included factors affecting conceptus-endometrial interactions. A window for lactocrine programming of porcine endometrial function and uterine capacity was defined during the first 24 h of postnatal life. Lactocrine effects on the neonatal uterine miRNA-mRNA interactome at PND 2 implicated miRNAs as elements of the maternal lactocrine programming mechanism.
    [Show full text]
  • Application of Genomic Technologies to Study Infertility Nicholas Rui Yuan Ho Washington University in St
    Washington University in St. Louis Washington University Open Scholarship Arts & Sciences Electronic Theses and Dissertations Arts & Sciences Spring 5-15-2016 Application of Genomic Technologies to Study Infertility Nicholas Rui Yuan Ho Washington University in St. Louis Follow this and additional works at: https://openscholarship.wustl.edu/art_sci_etds Part of the Bioinformatics Commons, Genetics Commons, and the Molecular Biology Commons Recommended Citation Yuan Ho, Nicholas Rui, "Application of Genomic Technologies to Study Infertility" (2016). Arts & Sciences Electronic Theses and Dissertations. 786. https://openscholarship.wustl.edu/art_sci_etds/786 This Dissertation is brought to you for free and open access by the Arts & Sciences at Washington University Open Scholarship. It has been accepted for inclusion in Arts & Sciences Electronic Theses and Dissertations by an authorized administrator of Washington University Open Scholarship. For more information, please contact [email protected]. WASHINGTON UNIVERSITY IN ST. LOUIS Division of Biology and Biomedical Sciences Computational and Systems Biology Dissertation Examination Committee: Donald Conrad, Chair Barak Cohen Joseph Dougherty John Edwards Liang Ma Application of Genomic Technologies to Study Infertility by Nicholas Rui Yuan Ho A dissertation presented to the Graduate School of Arts & Sciences of Washington University in partial fulfillment of the requirements for the degree of Doctor of Philosophy May 2016 St. Louis, Missouri © 2016, Nicholas Rui Yuan Ho Table of
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2006/0128764 A1 Downes Et Al
    US 2006O128764A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2006/0128764 A1 DOWnes et al. (43) Pub. Date: Jun. 15, 2006 (54) NON-STEROIDAL FARNESOD X Publication Classification RECEPTOR MODULATORS AND METHODS FOR THE USE THEREOF (51) Int. Cl. A61K 31/4433 (2006.01) (75) Inventors: Michael R Downes, San Diego, CA A6II 3/44 (2006.01) (US); Ronald M Evans, La Jolla, CA A6II 3 L/353 (2006.01) (US) A6II 3/16 (2006.01) (52) U.S. Cl. ........................... 514/357: 514/456; 514/625 Correspondence Address: FOLEY & LARDNER LLP P.O. BOX 80278 (57) ABSTRACT SAN DIEGO, CA 92138-0278 (US) The efficient regulation of cholesterol synthesis, metabo (73) Assignee: THE SALK INSTITUTE FOR BIO lism, acquisition, and transport is an essential component of LOGICAL STUDES lipid homeostasis. The farnesoid X receptor (FXR) is a transcriptional sensor for bile acids, the primary product of (21) Appl. No.: 10/535,043 cholesterol metabolism. Accordingly, the development of potent, selective, Small molecule agonists, partial agonists, (22) PCT Fed: Nov. 14, 2003 and antagonists of FXR would be an important step in PCT No.: PCT/USO3/36137 further deconvoluting FXR physiology. In accordance with (86) the present invention, the identification of novel potent FXR Related U.S. Application Data activators is described. Two derivatives of invention com pounds, bearing stilbene or biaryl moieties, contain mem (60) Provisional application No. 60/426,664, filed on Nov. bers that are the most potent FXR agonists reported to date 15, 2002. in cell-based assays. These compounds are useful as chemi cal tools to further define the physiological role of FXR as (30) Foreign Application Priority Data well as therapeutic leads for the treatment of diseases linked to cholesterol, bile acids and their metabolism and homeo Sep.
    [Show full text]
  • Agricultural University of Athens
    ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΩΝ ΖΩΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΖΩΙΚΗΣ ΠΑΡΑΓΩΓΗΣ ΕΡΓΑΣΤΗΡΙΟ ΓΕΝΙΚΗΣ ΚΑΙ ΕΙΔΙΚΗΣ ΖΩΟΤΕΧΝΙΑΣ ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ Εντοπισμός γονιδιωματικών περιοχών και δικτύων γονιδίων που επηρεάζουν παραγωγικές και αναπαραγωγικές ιδιότητες σε πληθυσμούς κρεοπαραγωγικών ορνιθίων ΕΙΡΗΝΗ Κ. ΤΑΡΣΑΝΗ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: ΑΝΤΩΝΙΟΣ ΚΟΜΙΝΑΚΗΣ ΑΘΗΝΑ 2020 ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ Εντοπισμός γονιδιωματικών περιοχών και δικτύων γονιδίων που επηρεάζουν παραγωγικές και αναπαραγωγικές ιδιότητες σε πληθυσμούς κρεοπαραγωγικών ορνιθίων Genome-wide association analysis and gene network analysis for (re)production traits in commercial broilers ΕΙΡΗΝΗ Κ. ΤΑΡΣΑΝΗ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: ΑΝΤΩΝΙΟΣ ΚΟΜΙΝΑΚΗΣ Τριμελής Επιτροπή: Aντώνιος Κομινάκης (Αν. Καθ. ΓΠΑ) Ανδρέας Κράνης (Eρευν. B, Παν. Εδιμβούργου) Αριάδνη Χάγερ (Επ. Καθ. ΓΠΑ) Επταμελής εξεταστική επιτροπή: Aντώνιος Κομινάκης (Αν. Καθ. ΓΠΑ) Ανδρέας Κράνης (Eρευν. B, Παν. Εδιμβούργου) Αριάδνη Χάγερ (Επ. Καθ. ΓΠΑ) Πηνελόπη Μπεμπέλη (Καθ. ΓΠΑ) Δημήτριος Βλαχάκης (Επ. Καθ. ΓΠΑ) Ευάγγελος Ζωίδης (Επ.Καθ. ΓΠΑ) Γεώργιος Θεοδώρου (Επ.Καθ. ΓΠΑ) 2 Εντοπισμός γονιδιωματικών περιοχών και δικτύων γονιδίων που επηρεάζουν παραγωγικές και αναπαραγωγικές ιδιότητες σε πληθυσμούς κρεοπαραγωγικών ορνιθίων Περίληψη Σκοπός της παρούσας διδακτορικής διατριβής ήταν ο εντοπισμός γενετικών δεικτών και υποψηφίων γονιδίων που εμπλέκονται στο γενετικό έλεγχο δύο τυπικών πολυγονιδιακών ιδιοτήτων σε κρεοπαραγωγικά ορνίθια. Μία ιδιότητα σχετίζεται με την ανάπτυξη (σωματικό βάρος στις 35 ημέρες, ΣΒ) και η άλλη με την αναπαραγωγική
    [Show full text]
  • Predict AID Targeting in Non-Ig Genes Multiple Transcription Factor
    Downloaded from http://www.jimmunol.org/ by guest on September 26, 2021 is online at: average * The Journal of Immunology published online 20 March 2013 from submission to initial decision 4 weeks from acceptance to publication Multiple Transcription Factor Binding Sites Predict AID Targeting in Non-Ig Genes Jamie L. Duke, Man Liu, Gur Yaari, Ashraf M. Khalil, Mary M. Tomayko, Mark J. Shlomchik, David G. Schatz and Steven H. Kleinstein J Immunol http://www.jimmunol.org/content/early/2013/03/20/jimmun ol.1202547 Submit online. Every submission reviewed by practicing scientists ? is published twice each month by http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://www.jimmunol.org/content/suppl/2013/03/20/jimmunol.120254 7.DC1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2013 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 26, 2021. Published March 20, 2013, doi:10.4049/jimmunol.1202547 The Journal of Immunology Multiple Transcription Factor Binding Sites Predict AID Targeting in Non-Ig Genes Jamie L. Duke,* Man Liu,†,1 Gur Yaari,‡ Ashraf M. Khalil,x Mary M. Tomayko,{ Mark J. Shlomchik,†,x David G.
    [Show full text]
  • Reduced Selection and Accumulation of Deleterious Mutations in Genes Exclusively Expressed in Men
    ARTICLE Received 26 Mar 2014 | Accepted 18 Jun 2014 | Published 11 Jul 2014 DOI: 10.1038/ncomms5438 Reduced selection and accumulation of deleterious mutations in genes exclusively expressed in men Moran Gershoni1 & Shmuel Pietrokovski1 Sex-limited selection can moderate the elimination of deleterious mutations from the population and contribute to the high prevalence of common human diseases. Accordingly, deleterious mutations in autosomal genes that are exclusively expressed in only one of the sexes undergo sex-limited selection and can reach higher frequencies than mutations similarly selected in both sexes. Here we show that the number of deleterious SNPs in genes exclusively expressed in men is twofold higher than in genes that are selected in both sexes. Additional analyses suggest that the increased number of damaging mutations we found in male-specific genes is due to reduced selection in females. These results are noteworthy since many of these male-specific genes are known to be crucial for male reproduction, and are thus likely to be under strong purifying selection. We suggest that inheritance of male-infertility-causative mutations through unaffected female lineages contributes to the high incidence of male infertility. 1 Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel. Correspondence and requests for materials should be addressed to S.P. (email: [email protected]). NATURE COMMUNICATIONS | 5:4438 | DOI: 10.1038/ncomms5438 | www.nature.com/naturecommunications 1 & 2014 Macmillan Publishers Limited. All rights reserved. ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms5438 any common diseases have a strong genetic basis1. tissues, biochemical functions and biological processes. The Moreover, the common disease–common variant propagation of deleterious mutations in the human population Mhypothesis posits that common, disease-associated was computed for the identified gene groups and for random alleles affect the prevalence of most common diseases2,3.
    [Show full text]
  • Human T-Complex Protein 11 (TCP11), a Testis-Specific Gene Product, Is a Potential Determinant of the Sperm Morphology
    Tohoku J. Exp. Med., 2011, 224, 111-117 Interaction of TCP11 with ODF1 111 Human t-Complex Protein 11 (TCP11), a Testis-Specific Gene Product, Is a Potential Determinant of the Sperm Morphology Yanyan Liu,1 Min Jiang,2 Chao Li,1 Ping Yang,1 Huaqin Sun,1 Dachang Tao,1 Sizhong Zhang1 and Yongxin Ma1 1Department of Medical genetics & Division of Morbid Genomics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, P.R. China 2Human sperm bank, West China Second University Hospital, Sichuan University, Chengdu, P.R. China Fertilization promoting peptid (FPP) is essential for capacitation and acrosome reaction. The mouse t-complex protein 11 (Tcp11) gene, which encodes the receptor of FPP, plays an important role in fertilization. We had identified three alternative splicing products of its human homologous gene, TCP11, nominated as TCP11a, TCP11b and TCP11c. Their testis-specific expression had been noted, suggesting that TCP11 may play an important role in spermatogenesis and sperm function. In order to explore the function of TCP11, we investigated its expression, subcellular location and binding protein in the sperm. RT-PCR assay shows that all isoforms of TCP11 are present in both human testis and sperm. However, we could only detect the expression of 56-kDa protein, representing TCP11a and TCP11c, but not TCP11b, by western blot analysis. Furthermore, the expression level of 56-kDa TCP11 protein was lower by about threefold in sperm samples containing over 15% of coiled sperms than the level in sperm samples with normal morphology. The coiled sperm, which shows a coiling or bending back of the tail on itself, is associated with infertility.
    [Show full text]