(12) United States Patent (10) Patent No.: US 7,671,085 B2 Downes Et Al

Total Page:16

File Type:pdf, Size:1020Kb

(12) United States Patent (10) Patent No.: US 7,671,085 B2 Downes Et Al USOO7671085B2 (12) United States Patent (10) Patent No.: US 7,671,085 B2 DOWnes et al. (45) Date of Patent: Mar. 2, 2010 (54) NON-STEROIDAL FARNESOIDX RECEPTOR 4,265,874 A 5/1981 Bonsen et al. MODULATORS AND METHODS FOR THE 5,151,442 A 9, 1992 Garcia et al. USE THEREOF FOREIGN PATENT DOCUMENTS (75) Inventors: Michael R. Downes, San Diego, CA WO WOOO/37077 6, 2000 (US); Ronald M. Evans, La Jolla, CA WO WOOOf 76.523 12/2000 (US) WO WO 2004/046.162 6, 2004 OTHER PUBLICATIONS (73) Assignee: The Salk Institute for Biological Fi1Orucci iS. S, RizzoRIZZO (J,G. DoniniJonini A,A. DistruttiJS 1 E.E, and SanlucciSantucci L.L, “Targetilargeting Studies, La Jolla, CA (US) farnesoid X receptor for liver and metabolic disorders.” Trends in c - r Molecular Medicine, Jul. 2007. 13(7) 298–309.* (*) Notice: Subj ect to any disclaimer, the term of this Scotti E, Gilardi F. Godio C, Gers E, Krneta J. Mitro N. De Fabiani E. patent is extended or adjusted under 35 Caruso D, and Crestani M. "Bile acids and their signaling pathways: U.S.C. 154(b) by 907 days. eclectic regulators of diverse cellular functions.” Cellular and Molecular Life Sciences, Oct. 2007, 64(19-20), 2477-2491.* (21) Appl. No.: 10/535,043 Laffitte et al., “Identification of the DNA binding specificity and potential target genes for the farnesoid X-activated receptor.” Journal (22) PCT Filed: Nov. 14, 2003 of Biological Chemistry, 275: 10638-10647, 2000. Nicolaou et al., “Natural product-like combinatorial libraries based (86). PCT No.: PCT/USO3/36137 on privileged structures. 1. General principles and Solid-phase syn thesis of benzopyrians.” Journal of the American Chem. Soc., 122: S371 (c)(1), 9939-9953, 2000. (2), (4) Date: Dec. 9, 2005 Nicolaou et al., “Natural product-like combinatorial libraries based s 9 on privileged structures. 2. Construction of a 10,000-membered benzopyran library by directed split-and-pool chemistry using (87) PCT Pub. No.: WO2004/046068 nanoKans and optical encoding.” Journal of the American Chem. PCT Pub. Date: Jun. 3, 2004 Soc., 122:9954-9967, 2000. * cited by examiner (65) Prior Publication Data Primary Examiner San-ming Hui US 2006/O128764 A1 Jun. 15, 2006 Assistant Examiner Paul Zarek O O (74) Attorney, Agent, or Firm—Foley & Lardner LLP: Related U.S. Application Data Stephen E. Reiter (63) Continuation-in-part of application No. 10/658,115, filed on Sep. 8, 2003, now abandoned. (57) ABSTRACT (60) Provisional application No. 60/426,664, filed on Nov. The efficient regulation of cholesterol synthesis, metabolism, 15, 2002. acquisition, and transport is an essential component of lipid homeostasis. The farnesoid X receptor (FXR) is a transcrip 51) Int. Cl. tional sensor for bile acids, the primprimary product of cholesterol AOIN 43/16 2006.O1 metabolism. Accordingly,gly the developmentp of potent,p selec AOIN 37/2 (2006.01) tive, Small molecule agonists, partial agonists, and antago AOIN 37/44 (2006.01) nists of FXR would be an important step in further deconvo A6 IK3I/35 (2006.01) luting FXR physiology. In accordance with the present A6 IK 3L/24 (2006.01) invention, the identification of novel potent FXRactivators is (52) U.S. Cl. ........................ 514/456; 514/539; 514/620 described. Two derivatives of invention compounds, bearing (58) Field of Classification Search ....................... None stilbene orbiaryl moieties, contain members that are the most See application file for complete search history. potent FXR agonists reported to date in cell-based assays. These compounds are useful as chemical tools to further (56) References Cited define the physiological role of FXR as well as therapeutic U.S. PATENT DOCUMENTS leads for the treatment of diseases linked to cholesterol, bile acids and their metabolism and homeostasis. 4,160,452 A 7, 1979 Theeuwes 4,256,108 A 3, 1981 Theeuwes 18 Claims, 1 Drawing Sheet U.S. Patent Mar. 2, 2010 US 7,671,085 B2 NHR response element Cell based Assay KRRXR on a FKRRE 35000 s otSC Grah uth lul M Conc of CDCA FXR efficacy on a 384 well plate. Figure 1 US 7,671,085 B2 1. 2 NON-STEROIDAL FARNESOIDX RECEPTOR binds to LRH-1 (liver receptor homolog), which is required in MODULATORS AND METHODS FOR THE CYP7A activation. Additionally, both LXR and FXR are USE THEREOF implicated in the regulation of several other gene products involved in cholesterol absorption, metabolism and transport. FIELD OF THE INVENTION Thus, the identification of potent, selective, small molecule FXRagonists, partial agonists and antagonists would be pow The present invention relates to new chemical entities. In a erful tools and would have many potential applications. For particular aspect, the present invention relates to non-steroi example, Such compounds would facilitate the in vivo analy dal modulators of farnesoid X receptors (FXR). In another sis of FXR physiology in vivo. In addition, Such compounds, aspect, the present invention relates to methods for modulat 10 in conjunction with DNA arraying technology, might allow ing FXR-mediated processes employing the novel com for the discovery of new gene products under the control of pounds described herein. FXR. Further, FXR modulators might find potential utility in the treatment of cholestasis and other disease states associ BACKGROUND OF THE INVENTION ated with aberrant levels, flow and release of bile acids. More 15 over, in the absence of a crystal structure of FXR, a thorough The following discussion of the background of the inven structure-activity relationship (SAR) study of ligands that tion is merely provided to aid the reader in understanding the modulate the activity of FXR would allow for the delineation invention and is not admitted to describe or constitute prior art of the structural requirements for ligand binding and might to the present invention. aid in the design of future ligands and potential therapeutics. The efficient regulation of cholesterol biosynthesis, metabolism, acquisition and transport is an essential function SUMMARY OF THE INVENTION of mammalian cells. High levels of cholesterol are associated with atherosclerosis, a leading cause of death in the western In accordance with the present invention, the identification world and a major risk factor correlated with the occurrence of novel potent FXR activators is described. Initial screening of coronary heart disease and stroke. Until recently, recom 25 of a 10,000-membered, diversity-orientated library of ben mendations for the treatment of hypercholestemia were Zopyran containing Small molecules for FXR activation uti focused on the use of statins, which inhibit the de novo bio lizing a cell-based reporter assay led to the identification of synthesis of cholesterol, and the use of bile acid sequestering several lead compounds owning low micromolar activity agents. While statin-based agents are still in widespread use (ECss=5-10 uM. These compounds were systematically as cholesterol-lowering drugs, an evolving understanding of 30 modified employing parallel solution-phase synthesis and the mechanisms controlling cholesterol homeostasis has led Solid-phase synthesis to provide numerous compounds that to new molecular targets as candidates in therapeutic inter potently activate FXR. Two derivatives of invention com vention. pounds, bearing stilbene orbiaryl moieties, contain members Cholesterol metabolism is controlled through a complex that are the most potent FXR agonists reported to date in feedback loop involving cholesterol itself and bile acids 35 cell-based assays. These compounds are useful as chemical (which are primary oxidation products), and through secre tools to further define the physiological role of FXR as well as tion in the gut, the single most critical regulators of choles therapeutic leads for the treatment of diseases linked to cho terol absorption. The nuclear receptors LXR (liver X recep lesterol, bile acids and their metabolism and homeostasis. tor) and FXR (farnesoid X receptor) are the specialized sensors of cholesterol and bile acids that control transcription 40 BRIEF DESCRIPTION OF THE FIGURE of networks encoding key metabolic enzymes. For example activation of LXR by oxysterols (i.e., mono-oxygenated cho FIG. 1 summarizes the efficacy of the functional assay for lesterol metabolites) leads to the up-regulation of CYP7A1, the identification of FXR agonists, using the known FXR the enzyme that catalyzes the rate limiting step in the conver agonist, chenodeoxycholic acid (CDCA). sion of cholesterol to bile acids. In turn, bile acids such as 45 chenodeoxycholic acid (CDCA, 1, a low affinity endogenous DETAILED DESCRIPTION OF THE INVENTION agonist for FXR, whose structure is shown below) are potent ligands for FXR, whose activation leads to down-regulation In accordance with the present invention, there are pro of CYP7A1, leading to the completion of the feedback cir vided compounds having the structure: cuit. 50 55 60 21y-OR wherein: A is a C3 up to C8 branched chain alkyl or substituted alkyl 65 group, a C3 up to C7 cycloalkyl or Substituted cycloalkyl, an In this circuit FXR induces the expression of a transcriptional optionally substituted aryl or an optionally substituted het repressor SHP (small heterodimer partner) which in turn eroaryl, US 7,671,085 B2 3 4 X is —C(O)— or —CH2—, tuted heterocyclic” refers to heterocyclic groups further bear R is methyl or ethyl, ing one or more Substituents as set forth above. R" is H, hydroxy, alkoxy, benzoyloxy, mesityloxy, or As employed herein, “aryl” refers to aromatic groups hav –OCHC(O)OCHs. ing in the range of 6 up to 14 carbon atoms and “substituted R’ is Hor R can cooperate with R to form a benzopyran, 5 aryl” refers to aryl groups further bearing one or more Sub wherein the pyran ring has the structure: stituents as set forth above. As employed herein, “aryloxy' refers to —O-aryl groups having in the range of 6 up to 14 carbon atoms and 'substi tuted aryloxy' refers to aryloxy groups further bearing one or 10 more substituents as set forth above.
Recommended publications
  • FHL3 Contributes to EMT and Chemotherapy Resistance Through Inhibiting Ubiquitination of Slug and Activating Tgfβ/Smad-Independent Pathways in Gastric Cancer
    FHL3 Contributes to EMT and Chemotherapy Resistance Through Inhibiting Ubiquitination of Slug and Activating TGFβ/Smad-Independent Pathways in Gastric Cancer Guodong Cao First Aliated Hospital of Anhui Medical University Pengping Li Hangzhou Xiaoshan No 1 People's Hospital Qiang Sun Xuzhou Medical University Sihan Chen First Aliated Hospital of Anhui Medical University Xin Xu First Aliated Hospital of Anhui Medical University Xiaobo He First Aliated Hospital of Anhui Medical University Zhenyu Wang Hangzhou Xiaoshan No 1 People's Hospital Peng Chen First Aliated Hospital of Anhui Medical University Maoming Xiong ( [email protected] ) First Aliated Hospital of Anhui Medical University Bo Chen First Aliated Hospital of Anhui Medical University Research Keywords: EMT, Chemotherapy resistance, FHL3, Ubiquitination, Gastric cancer Posted Date: October 9th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-87249/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. ReLoaadd iFngu l[Ml LaitchJeanxs]/ejax/output/CommonHTML/jax.js Page 1/28 Loading [MathJax]/jax/output/CommonHTML/jax.js Page 2/28 Abstract Background: Gastric cancer presents high risk of metastasis and chemotherapy resistance. Hence, the mechanistic understanding of the tumor metastasis and chemotherapy resistance is quietly important. Methods: TCGA database and clinical samples are used for exploring the role of FHL3 in disease progression and prognosis. The roles of FHL3 in metastasis and chemotherapy resistance are explored in vitro and in vivo by siRNA or shRNA treatment. Finally, we explore the FHL3-mediated EMT and chemotherapy resistance. Results: mRNA and protein level of FHL3 is signicantly up-regulated in gastric cancer tissues when compares with it in adjacent tissue.
    [Show full text]
  • In Vivo Studies Using the Classical Mouse Diversity Panel
    The Mouse Diversity Panel Predicts Clinical Drug Toxicity Risk Where Classical Models Fail Alison Harrill, Ph.D The Hamner-UNC Institute for Drug Safety Sciences 0 The Importance of Predicting Clinical Adverse Drug Reactions (ADR) Figure: Cath O’Driscoll Nature Publishing 2004 Risk ID PGx Testing 1 People Respond Differently to Drugs Pharmacogenetic Markers Identified by Genome-Wide Association Drug Adverse Drug Risk Allele Reaction (ADR) Abacavir Hypersensitivity HLA-B*5701 Flucloxacillin Hepatotoxicity Allopurinol Cutaneous ADR HLA-B*5801 Carbamazepine Stevens-Johnson HLA-B*1502 Syndrome Augmentin Hepatotoxicity DRB1*1501 Ximelagatran Hepatotoxicity DRB1*0701 Ticlopidine Hepatotoxicity HLA-A*3303 Average preclinical populations and human hepatocytes lack the diversity to detect incidence of adverse events that occur only in 1/10,000 people. Current Rodent Models of Risk Assessment The Challenge “At a time of extraordinary scientific progress, methods have hardly changed in several decades ([FDA] 2004)… Toxicologists face a major challenge in the twenty-first century. They need to embrace the new “omics” techniques and ensure that they are using the most appropriate animals if their discipline is to become a more effective tool in drug development.” -Dr. Michael Festing Quantitative geneticist Toxicol Pathol. 2010;38(5):681-90 Rodent Models as a Strategy for Hazard Characterization and Pharmacogenetics Genetically defined rodent models may provide ability to: 1. Improve preclinical prediction of drugs that carry a human safety risk 2.
    [Show full text]
  • Upregulation of Peroxisome Proliferator-Activated Receptor-Α And
    Upregulation of peroxisome proliferator-activated receptor-α and the lipid metabolism pathway promotes carcinogenesis of ampullary cancer Chih-Yang Wang, Ying-Jui Chao, Yi-Ling Chen, Tzu-Wen Wang, Nam Nhut Phan, Hui-Ping Hsu, Yan-Shen Shan, Ming-Derg Lai 1 Supplementary Table 1. Demographics and clinical outcomes of five patients with ampullary cancer Time of Tumor Time to Age Differentia survival/ Sex Staging size Morphology Recurrence recurrence Condition (years) tion expired (cm) (months) (months) T2N0, 51 F 211 Polypoid Unknown No -- Survived 193 stage Ib T2N0, 2.41.5 58 F Mixed Good Yes 14 Expired 17 stage Ib 0.6 T3N0, 4.53.5 68 M Polypoid Good No -- Survived 162 stage IIA 1.2 T3N0, 66 M 110.8 Ulcerative Good Yes 64 Expired 227 stage IIA T3N0, 60 M 21.81 Mixed Moderate Yes 5.6 Expired 16.7 stage IIA 2 Supplementary Table 2. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of an ampullary cancer microarray using the Database for Annotation, Visualization and Integrated Discovery (DAVID). This table contains only pathways with p values that ranged 0.0001~0.05. KEGG Pathway p value Genes Pentose and 1.50E-04 UGT1A6, CRYL1, UGT1A8, AKR1B1, UGT2B11, UGT2A3, glucuronate UGT2B10, UGT2B7, XYLB interconversions Drug metabolism 1.63E-04 CYP3A4, XDH, UGT1A6, CYP3A5, CES2, CYP3A7, UGT1A8, NAT2, UGT2B11, DPYD, UGT2A3, UGT2B10, UGT2B7 Maturity-onset 2.43E-04 HNF1A, HNF4A, SLC2A2, PKLR, NEUROD1, HNF4G, diabetes of the PDX1, NR5A2, NKX2-2 young Starch and sucrose 6.03E-04 GBA3, UGT1A6, G6PC, UGT1A8, ENPP3, MGAM, SI, metabolism
    [Show full text]
  • Table 2. Significant
    Table 2. Significant (Q < 0.05 and |d | > 0.5) transcripts from the meta-analysis Gene Chr Mb Gene Name Affy ProbeSet cDNA_IDs d HAP/LAP d HAP/LAP d d IS Average d Ztest P values Q-value Symbol ID (study #5) 1 2 STS B2m 2 122 beta-2 microglobulin 1452428_a_at AI848245 1.75334941 4 3.2 4 3.2316485 1.07398E-09 5.69E-08 Man2b1 8 84.4 mannosidase 2, alpha B1 1416340_a_at H4049B01 3.75722111 3.87309653 2.1 1.6 2.84852656 5.32443E-07 1.58E-05 1110032A03Rik 9 50.9 RIKEN cDNA 1110032A03 gene 1417211_a_at H4035E05 4 1.66015788 4 1.7 2.82772795 2.94266E-05 0.000527 NA 9 48.5 --- 1456111_at 3.43701477 1.85785922 4 2 2.8237185 9.97969E-08 3.48E-06 Scn4b 9 45.3 Sodium channel, type IV, beta 1434008_at AI844796 3.79536664 1.63774235 3.3 2.3 2.75319499 1.48057E-08 6.21E-07 polypeptide Gadd45gip1 8 84.1 RIKEN cDNA 2310040G17 gene 1417619_at 4 3.38875643 1.4 2 2.69163229 8.84279E-06 0.0001904 BC056474 15 12.1 Mus musculus cDNA clone 1424117_at H3030A06 3.95752801 2.42838452 1.9 2.2 2.62132809 1.3344E-08 5.66E-07 MGC:67360 IMAGE:6823629, complete cds NA 4 153 guanine nucleotide binding protein, 1454696_at -3.46081884 -4 -1.3 -1.6 -2.6026947 8.58458E-05 0.0012617 beta 1 Gnb1 4 153 guanine nucleotide binding protein, 1417432_a_at H3094D02 -3.13334396 -4 -1.6 -1.7 -2.5946297 1.04542E-05 0.0002202 beta 1 Gadd45gip1 8 84.1 RAD23a homolog (S.
    [Show full text]
  • Replace This with the Actual Title Using All Caps
    UNDERSTANDING THE GENETICS UNDERLYING MASTITIS USING A MULTI-PRONGED APPROACH A Dissertation Presented to the Faculty of the Graduate School of Cornell University In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Asha Marie Miles December 2019 © 2019 Asha Marie Miles UNDERSTANDING THE GENETICS UNDERLYING MASTITIS USING A MULTI-PRONGED APPROACH Asha Marie Miles, Ph. D. Cornell University 2019 This dissertation addresses deficiencies in the existing genetic characterization of mastitis due to granddaughter study designs and selection strategies based primarily on lactation average somatic cell score (SCS). Composite milk samples were collected across 6 sampling periods representing key lactation stages: 0-1 day in milk (DIM), 3- 5 DIM, 10-14 DIM, 50-60 DIM, 90-110 DIM, and 210-230 DIM. Cows were scored for front and rear teat length, width, end shape, and placement, fore udder attachment, udder cleft, udder depth, rear udder height, and rear udder width. Independent multivariable logistic regression models were used to generate odds ratios for elevated SCC (≥ 200,000 cells/ml) and farm-diagnosed clinical mastitis. Within our study cohort, loose fore udder attachment, flat teat ends, low rear udder height, and wide rear teats were associated with increased odds of mastitis. Principal component analysis was performed on these traits to create a single new phenotype describing mastitis susceptibility based on these high-risk phenotypes. Cows (N = 471) were genotyped on the Illumina BovineHD 777K SNP chip and considering all 14 traits of interest, a total of 56 genome-wide associations (GWA) were performed and 28 significantly associated quantitative trait loci (QTL) were identified.
    [Show full text]
  • Bioinformatic Analysis of Structure and Function of LIM Domains of Human Zyxin Family Proteins
    International Journal of Molecular Sciences Article Bioinformatic Analysis of Structure and Function of LIM Domains of Human Zyxin Family Proteins M. Quadir Siddiqui 1,† , Maulik D. Badmalia 1,† and Trushar R. Patel 1,2,3,* 1 Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada; [email protected] (M.Q.S.); [email protected] (M.D.B.) 2 Department of Microbiology, Immunology and Infectious Disease, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive, Calgary, AB T2N 4N1, Canada 3 Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB T6G 2E1, Canada * Correspondence: [email protected] † These authors contributed equally to the work. Abstract: Members of the human Zyxin family are LIM domain-containing proteins that perform critical cellular functions and are indispensable for cellular integrity. Despite their importance, not much is known about their structure, functions, interactions and dynamics. To provide insights into these, we used a set of in-silico tools and databases and analyzed their amino acid sequence, phylogeny, post-translational modifications, structure-dynamics, molecular interactions, and func- tions. Our analysis revealed that zyxin members are ohnologs. Presence of a conserved nuclear export signal composed of LxxLxL/LxxxLxL consensus sequence, as well as a possible nuclear localization signal, suggesting that Zyxin family members may have nuclear and cytoplasmic roles. The molecular modeling and structural analysis indicated that Zyxin family LIM domains share Citation: Siddiqui, M.Q.; Badmalia, similarities with transcriptional regulators and have positively charged electrostatic patches, which M.D.; Patel, T.R.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Regulation of Xenobiotic and Bile Acid Metabolism by the Anti-Aging Intervention Calorie Restriction in Mice
    REGULATION OF XENOBIOTIC AND BILE ACID METABOLISM BY THE ANTI-AGING INTERVENTION CALORIE RESTRICTION IN MICE By Zidong Fu Submitted to the Graduate Degree Program in Pharmacology, Toxicology, and Therapeutics and the Graduate Faculty of the University of Kansas in partial fulfillment of the requirements for the degree of Doctor of Philosophy. Dissertation Committee ________________________________ Chairperson: Curtis Klaassen, Ph.D. ________________________________ Udayan Apte, Ph.D. ________________________________ Wen-Xing Ding, Ph.D. ________________________________ Thomas Pazdernik, Ph.D. ________________________________ Hao Zhu, Ph.D. Date Defended: 04-11-2013 The Dissertation Committee for Zidong Fu certifies that this is the approved version of the following dissertation: REGULATION OF XENOBIOTIC AND BILE ACID METABOLISM BY THE ANTI-AGING INTERVENTION CALORIE RESTRICTION IN MICE ________________________________ Chairperson: Curtis Klaassen, Ph.D. Date approved: 04-11-2013 ii ABSTRACT Calorie restriction (CR), defined as reduced calorie intake without causing malnutrition, is the best-known intervention to increase life span and slow aging-related diseases in various species. However, current knowledge on the exact mechanisms of aging and how CR exerts its anti-aging effects is still inadequate. The detoxification theory of aging proposes that the up-regulation of xenobiotic processing genes (XPGs) involved in phase-I and phase-II xenobiotic metabolism as well as transport, which renders a wide spectrum of detoxification, is a longevity mechanism. Interestingly, bile acids (BAs), the metabolites of cholesterol, have recently been connected with longevity. Thus, this dissertation aimed to determine the regulation of xenobiotic and BA metabolism by the well-known anti-aging intervention CR. First, the mRNA expression of XPGs in liver during aging was investigated.
    [Show full text]
  • Flavin-Containing Monooxygenases: Mutations, Disease and Drug Response Phillips, IR; Shephard, EA
    Flavin-containing monooxygenases: mutations, disease and drug response Phillips, IR; Shephard, EA For additional information about this publication click this link. http://qmro.qmul.ac.uk/jspui/handle/123456789/1015 Information about this research object was correct at the time of download; we occasionally make corrections to records, please therefore check the published record when citing. For more information contact [email protected] Flavin-containing monooxygenases: mutations, disease and drug response Ian R. Phillips1 and Elizabeth A. Shephard2 1School of Biological and Chemical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, UK 2Department of Biochemistry and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK Corresponding author: Shephard, E.A. ([email protected]). and, thus, contribute to drug development. This review Flavin-containing monooxygenases (FMOs) metabolize considers the role of FMOs and their genetic variants in numerous foreign chemicals, including drugs, pesticides disease and drug response. and dietary components and, thus, mediate interactions between humans and their chemical environment. We Mechanism and structure describe the mechanism of action of FMOs and insights For catalysis FMOs require flavin adenine dinucleotide gained from the structure of yeast FMO. We then (FAD) as a prosthetic group, NADPH as a cofactor and concentrate on the three FMOs (FMOs 1, 2 and 3) that are molecular oxygen as a cosubstrate [5,6]. In contrast to most important for metabolism of foreign chemicals in CYPs FMOs accept reducing equivalents directly from humans, focusing on the role of the FMOs and their genetic NADPH and, thus, do not require accessory proteins.
    [Show full text]
  • Supplemental Materials ZNF281 Enhances Cardiac Reprogramming
    Supplemental Materials ZNF281 enhances cardiac reprogramming by modulating cardiac and inflammatory gene expression Huanyu Zhou, Maria Gabriela Morales, Hisayuki Hashimoto, Matthew E. Dickson, Kunhua Song, Wenduo Ye, Min S. Kim, Hanspeter Niederstrasser, Zhaoning Wang, Beibei Chen, Bruce A. Posner, Rhonda Bassel-Duby and Eric N. Olson Supplemental Table 1; related to Figure 1. Supplemental Table 2; related to Figure 1. Supplemental Table 3; related to the “quantitative mRNA measurement” in Materials and Methods section. Supplemental Table 4; related to the “ChIP-seq, gene ontology and pathway analysis” and “RNA-seq” and gene ontology analysis” in Materials and Methods section. Supplemental Figure S1; related to Figure 1. Supplemental Figure S2; related to Figure 2. Supplemental Figure S3; related to Figure 3. Supplemental Figure S4; related to Figure 4. Supplemental Figure S5; related to Figure 6. Supplemental Table S1. Genes included in human retroviral ORF cDNA library. Gene Gene Gene Gene Gene Gene Gene Gene Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol AATF BMP8A CEBPE CTNNB1 ESR2 GDF3 HOXA5 IL17D ADIPOQ BRPF1 CEBPG CUX1 ESRRA GDF6 HOXA6 IL17F ADNP BRPF3 CERS1 CX3CL1 ETS1 GIN1 HOXA7 IL18 AEBP1 BUD31 CERS2 CXCL10 ETS2 GLIS3 HOXB1 IL19 AFF4 C17ORF77 CERS4 CXCL11 ETV3 GMEB1 HOXB13 IL1A AHR C1QTNF4 CFL2 CXCL12 ETV7 GPBP1 HOXB5 IL1B AIMP1 C21ORF66 CHIA CXCL13 FAM3B GPER HOXB6 IL1F3 ALS2CR8 CBFA2T2 CIR1 CXCL14 FAM3D GPI HOXB7 IL1F5 ALX1 CBFA2T3 CITED1 CXCL16 FASLG GREM1 HOXB9 IL1F6 ARGFX CBFB CITED2 CXCL3 FBLN1 GREM2 HOXC4 IL1F7
    [Show full text]
  • Mouse Population-Guided Resequencing Reveals That Variants in CD44 Contribute to Acetaminophen-Induced Liver Injury in Humans
    Downloaded from genome.cshlp.org on October 2, 2021 - Published by Cold Spring Harbor Laboratory Press Letter Mouse population-guided resequencing reveals that variants in CD44 contribute to acetaminophen-induced liver injury in humans Alison H. Harrill,1,2,12 Paul B. Watkins,3,12 Stephen Su,6 Pamela K. Ross,2 David E. Harbourt,5 Ioannis M. Stylianou,7 Gary A. Boorman,8 Mark W. Russo,3 Richard S. Sackler,9 Stephen C. Harris,11 Philip C. Smith,5 Raymond Tennant,8 Molly Bogue,7 Kenneth Paigen,7 Christopher Harris,9,10 Tanupriya Contractor,9 Timothy Wiltshire,5 Ivan Rusyn,1,2,14 and David W. Threadgill1,4,13,14,15 1Curriculum in Toxicology, University of North Carolina, Chapel Hill, North Carolina 27599, USA; 2Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, North Carolina 27599, USA; 3Division of Gastroenterology and Hepatology, University of North Carolina, Chapel Hill, North Carolina 27599, USA; 4Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599, USA; 5School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, USA; 6Department of Mouse Genetics, Genomics Institute of the Novartis Research Foundation, San Diego, California 92121, USA; 7The Jackson Laboratory, Bar Harbor, Maine 04609, USA; 8National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA; 9Verto Institute Research Laboratories, New Brunswick, New Jersey 08903, USA; 10Cancer Institute of New Jersey, New Brunswick, New Jersey 08903, USA; 11Purdue Pharma L.P., Stamford, Connecticut 06901, USA; 12Hamner-UNC Center for Drug Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina 27709, USA; 13Department of Genetics, North Carolina State University, Raleigh, North Carolina 27695, USA Interindividual variability in response to chemicals and drugs is a common regulatory concern.
    [Show full text]
  • Functional Genomics Atlas of Synovial Fibroblasts Defining Rheumatoid Arthritis
    medRxiv preprint doi: https://doi.org/10.1101/2020.12.16.20248230; this version posted December 18, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. Functional genomics atlas of synovial fibroblasts defining rheumatoid arthritis heritability Xiangyu Ge1*, Mojca Frank-Bertoncelj2*, Kerstin Klein2, Amanda Mcgovern1, Tadeja Kuret2,3, Miranda Houtman2, Blaž Burja2,3, Raphael Micheroli2, Miriam Marks4, Andrew Filer5,6, Christopher D. Buckley5,6,7, Gisela Orozco1, Oliver Distler2, Andrew P Morris1, Paul Martin1, Stephen Eyre1* & Caroline Ospelt2*,# 1Versus Arthritis Centre for Genetics and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK 2Department of Rheumatology, Center of Experimental Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland 3Department of Rheumatology, University Medical Centre, Ljubljana, Slovenia 4Schulthess Klinik, Zurich, Switzerland 5Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK 6NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, University of Birmingham, Birmingham, UK 7Kennedy Institute of Rheumatology, University of Oxford Roosevelt Drive Headington Oxford UK *These authors contributed equally #corresponding author: [email protected] NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice. 1 medRxiv preprint doi: https://doi.org/10.1101/2020.12.16.20248230; this version posted December 18, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
    [Show full text]