Chain Gene Induced by GM-CSF Β Receptor Regulation of Human High-Affinity Ige Molecular Mechanisms for Transcriptional

Total Page:16

File Type:pdf, Size:1020Kb

Chain Gene Induced by GM-CSF Β Receptor Regulation of Human High-Affinity Ige Molecular Mechanisms for Transcriptional Molecular Mechanisms for Transcriptional Regulation of Human High-Affinity IgE Receptor β-Chain Gene Induced by GM-CSF This information is current as Kyoko Takahashi, Natsuko Hayashi, Shuichi Kaminogawa of September 23, 2021. and Chisei Ra J Immunol 2006; 177:4605-4611; ; doi: 10.4049/jimmunol.177.7.4605 http://www.jimmunol.org/content/177/7/4605 Downloaded from References This article cites 39 articles, 16 of which you can access for free at: http://www.jimmunol.org/content/177/7/4605.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 23, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2006 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Molecular Mechanisms for Transcriptional Regulation of Human High-Affinity IgE Receptor ␤-Chain Gene Induced by GM-CSF1 Kyoko Takahashi,*† Natsuko Hayashi,*‡ Shuichi Kaminogawa,† and Chisei Ra2* The ␤-chain of the high-affinity receptor for IgE (Fc␧RI) plays an important role in regulating activation of Fc␧RI-expressing cells such as mast cells in allergic reactions. We already reported that the transcription factor myeloid zinc finger (MZF) 1 which formed a high m.w. complex including four and a half LIM-only protein (FHL)3 in the nucleus repressed human ␤-chain gene expression through an element in the fourth intron. We also found that GM-CSF induced expression of MZF-1 and nuclear translocation of FHL3. We screened a human cDNA library and identified NFY which was reported to bind histone deacetylases (HDACs) as a constituent of the complex. The C-subunit of NFY was demonstrated to form a ternary complex with MZF-1/FHL3 Downloaded from and interact with a ␤-chain gene region including the element in the fourth intron. HDAC1 and HDAC2 were also shown to interact with the fourth intron region of the ␤-chain gene. In a human mast cell line HMC-1 cultured with GM-CSF, both ␤-chain expression and acetylation of histones interacting with the fourth intron region of the ␤-chain gene were decreased. Collectively, these results indicated that HDACs, which were recruited to the ␤-chain gene through the element in the fourth intron by MZF-1/FHL3/NFY, repressed ␤-chain gene transcription by deacetylation of histones in the presence of GM-CSF. These mech- ␤ anisms will be involved in not only the cell type-specific repression of -chain gene expression in differentiating hemopoietic cells http://www.jimmunol.org/ but also the repression of ␤-chain gene expression in the peripheral cells under specific circumstances. The Journal of Immu- nology, 2006, 177: 4605–4611. ells of limited types such as mast cells, basophils, eosin- to the stimulation by allergens. Recently, it was revealed that ophils (1), monocytes (2), Langerhans cells (3, 4), plate- ␤-chain amplified degranulation and leukotriene secretion but sup- C lets (5, 6), and neutrophils (7) express the high-affinity pressed cytokine production (12), indicating that ␤-chain regulates receptor for IgE (Fc␧RI). Fc␧RI plays an important role in trig- distinct intracellular signaling events in both positive and negative gering IgE-mediated allergic reaction. Cross-linking of Fc␧RI on manners by the same molecule of itself. Furthermore, an alterna- effector cells, for example mast cells, by Ag (allergen)-IgE com- tive splice variant which encoded only an N-terminal portion of by guest on September 23, 2021 plexes triggers allergic reaction by activating intracellular signal ␤-chain was found to be expressed in human mast cells (13). This cascades to induce not only the release of chemical mediators in truncation variant competed with full-length ␤ and prevented the early-phase reaction but also cytokine gene expressions leading Fc␧RI surface expression by inhibiting ␣-chain maturation (13). ␧ to the late-phase reaction. Moreover, Fc RI on epidermal Langer- Because all of these findings indicate that ␤-chain is a fine regu- hans cells in the skin is known to be involved in the Ag presen- lator of Fc␧RI-mediated cell activation to precisely control the tation by facilitating uptake of IgE-associated allergens, suggesting allergic reaction, elucidation of regulatory mechanisms of ␤-chain its pivotal role in the pathophysiology of atopic dermatitis. expression will make a meaningful contribution to medical inter- Fc␧RI is composed of three different subunits, ␣, ␤, and ␥,of vention for allergy. In addition, because ␤-chain has only been which the ␣-chain directly binds IgE through its extracellular do- ␥ ␧ main, while the ␤- and ␥-chains are responsible for mediating in- reported to associate with Fc RIIIA except for Fc RI (14) and its tracellular signals. Although a functional receptor is expressed expression is limited in the specific types of cells such as mast cells ␣␤␥ ␣␥ and basophils, applications which are targeted for ␤-chain are ex- both as tetramers ( 2) and trimers ( 2) in humans (8), intra- cellular signals (9, 10), in addition to cell surface expression of the pected to exert cell type-specific effects. ␧ ␤ receptor (11), were reported to be significantly amplified by The genomic structure of the human Fc RI -chain gene was ␤-chain, indicating that ␤-chain increases cell activation sensitivity already determined (15), however, only a few analyses were per- formed on regulatory mechanisms of ␤-chain gene transcription. Two Oct-1-binding sites in the 5Ј untranslated region were essen- *Division of Molecular Cell Immunology and Allergology, Advanced Medical Re- search Center, Nihon University Graduate School of Medical Sciences, Tokyo, Japan; tial for activation of ␤-chain gene promoter (16). We revealed that †Nihon University College of Bioresource Sciences, Kanagawa, Japan; and ‡Depart- the transcription factor myeloid zinc finger (MZF)3 1 repressed ment of Applied Biological Chemistry, Tamagawa University, Tokyo, Japan ␤-chain gene expression through an element in the fourth intron Received for publication March 15, 2006. Accepted for publication July 14, 2006. (17). It was suggested that this transcriptional repression required The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance a cofactor; we therefore screened for MZF-1-binding proteins and with 18 U.S.C. Section 1734 solely to indicate this fact. 1 This work was supported in part by a Grant-in Aid from the Ministry of Education, Culture, Sports, Science, and Technology of Japan. 2 Address correspondence and reprint requests to Dr. Chisei Ra, Division of Molec- 3 Abbreviations used in this paper: MZF, myeloid zinc finger; FHL, four and a half ular Cell Immunology and Allergology, Advanced Medical Research Center, Nihon LIM-only protein; HDAC, histone deacetylase; BD, binding domain; ADH, alcohol University Graduate School of Medical Sciences, 30-1 Oyaguchi Kamimachi, dehydrogenase; HA, hemagglutinin; AD, activation domain; ChIP, chromatin Itabashi-ku, Tokyo 173-8610, Japan. E-mail address: [email protected] immunoprecipitation. Copyright © 2006 by The American Association of Immunologists, Inc. 0022-1767/06/$02.00 4606 REGULATION OF HUMAN FC␧RI ␤-CHAIN GENE EXPRESSION identified a four and a half LIM-only protein (FHL)3 as a repres- growing colonies were transferred onto SD-Trp/-Leu/-His/-Met/-Ade(ad- sive cofactor (18). FHL3 was predicted to act as an adaptor mol- enine) plates containing X-␣-Gal to select those expressing the other re- ␣ ecule recruiting unidentified other molecules to the MZF-1/DNA porter genes of ADE2 and MEL1.X- -Gal was purchased from BD Clon- tech. Furthermore, to obtain proteins interacting with MZF-1 not complex, because MZF-1 and FHL3 formed a very large m.w. independent of FHL3 but dependent on FHL3, the cells which grew on the complex in the nucleus (18). In contrast, GM-CSF was reported to medium without methionine but hardly grew on the medium including induce MZF-1 expression (19). Moreover, we found that GM-CSF methionine were selected. pACT2 plasmids carrying cDNA inserts were induced translocation of FHL3 from the cytoplasm to the nucleus rescued from the selected clones and their nucleotide sequences were de- termined. The interaction among MZF-1, FHL3, and the candidate protein (18), suggesting that both up-regulation of MZF-1 and nuclear NFYC was retested by cotransformation of AH109 cells with pBridge- translocation of FHL3 by GM-CSF facilitate formation of the MZF-1/FHL3 and pACT2-NFYC. The cells were examined for expression MZF-1/FHL3 complex in the nucleus and reduce ␤-chain gene of HIS3 and ADE2 reporter genes by testing their ability to grow on -His/- expression through the element in the fourth intron. It was actually Ade medium in the absence (FHL3 was expressed) and presence (FHL3 reported that GM-CSF decreased Fc␧RI expression on the surface was not expressed) of methionine. of a human mast cell line HMC-1 (20, 21). In this study, we report Immunoprecipitation of in vitro-translated MZF-1, FHL3, that Fc␧RI ␤-chain gene expression can be suppressed in the pres- and NFY ence of GM-CSF through deacetylation of histones mediated by histone deacetylases (HDACs) which are recruited to the ␤-chain c-Myc-tagged MZF-1 (aa 1–217), FHL3, and HA-tagged NFYC were pro- duced by in vitro transcription/translation method with TNT T7 Quick Cou- gene through the complex including MZF-1/FHL3.
Recommended publications
  • FHL3 Contributes to EMT and Chemotherapy Resistance Through Inhibiting Ubiquitination of Slug and Activating Tgfβ/Smad-Independent Pathways in Gastric Cancer
    FHL3 Contributes to EMT and Chemotherapy Resistance Through Inhibiting Ubiquitination of Slug and Activating TGFβ/Smad-Independent Pathways in Gastric Cancer Guodong Cao First Aliated Hospital of Anhui Medical University Pengping Li Hangzhou Xiaoshan No 1 People's Hospital Qiang Sun Xuzhou Medical University Sihan Chen First Aliated Hospital of Anhui Medical University Xin Xu First Aliated Hospital of Anhui Medical University Xiaobo He First Aliated Hospital of Anhui Medical University Zhenyu Wang Hangzhou Xiaoshan No 1 People's Hospital Peng Chen First Aliated Hospital of Anhui Medical University Maoming Xiong ( [email protected] ) First Aliated Hospital of Anhui Medical University Bo Chen First Aliated Hospital of Anhui Medical University Research Keywords: EMT, Chemotherapy resistance, FHL3, Ubiquitination, Gastric cancer Posted Date: October 9th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-87249/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. ReLoaadd iFngu l[Ml LaitchJeanxs]/ejax/output/CommonHTML/jax.js Page 1/28 Loading [MathJax]/jax/output/CommonHTML/jax.js Page 2/28 Abstract Background: Gastric cancer presents high risk of metastasis and chemotherapy resistance. Hence, the mechanistic understanding of the tumor metastasis and chemotherapy resistance is quietly important. Methods: TCGA database and clinical samples are used for exploring the role of FHL3 in disease progression and prognosis. The roles of FHL3 in metastasis and chemotherapy resistance are explored in vitro and in vivo by siRNA or shRNA treatment. Finally, we explore the FHL3-mediated EMT and chemotherapy resistance. Results: mRNA and protein level of FHL3 is signicantly up-regulated in gastric cancer tissues when compares with it in adjacent tissue.
    [Show full text]
  • In Vivo Studies Using the Classical Mouse Diversity Panel
    The Mouse Diversity Panel Predicts Clinical Drug Toxicity Risk Where Classical Models Fail Alison Harrill, Ph.D The Hamner-UNC Institute for Drug Safety Sciences 0 The Importance of Predicting Clinical Adverse Drug Reactions (ADR) Figure: Cath O’Driscoll Nature Publishing 2004 Risk ID PGx Testing 1 People Respond Differently to Drugs Pharmacogenetic Markers Identified by Genome-Wide Association Drug Adverse Drug Risk Allele Reaction (ADR) Abacavir Hypersensitivity HLA-B*5701 Flucloxacillin Hepatotoxicity Allopurinol Cutaneous ADR HLA-B*5801 Carbamazepine Stevens-Johnson HLA-B*1502 Syndrome Augmentin Hepatotoxicity DRB1*1501 Ximelagatran Hepatotoxicity DRB1*0701 Ticlopidine Hepatotoxicity HLA-A*3303 Average preclinical populations and human hepatocytes lack the diversity to detect incidence of adverse events that occur only in 1/10,000 people. Current Rodent Models of Risk Assessment The Challenge “At a time of extraordinary scientific progress, methods have hardly changed in several decades ([FDA] 2004)… Toxicologists face a major challenge in the twenty-first century. They need to embrace the new “omics” techniques and ensure that they are using the most appropriate animals if their discipline is to become a more effective tool in drug development.” -Dr. Michael Festing Quantitative geneticist Toxicol Pathol. 2010;38(5):681-90 Rodent Models as a Strategy for Hazard Characterization and Pharmacogenetics Genetically defined rodent models may provide ability to: 1. Improve preclinical prediction of drugs that carry a human safety risk 2.
    [Show full text]
  • Bioinformatic Analysis of Structure and Function of LIM Domains of Human Zyxin Family Proteins
    International Journal of Molecular Sciences Article Bioinformatic Analysis of Structure and Function of LIM Domains of Human Zyxin Family Proteins M. Quadir Siddiqui 1,† , Maulik D. Badmalia 1,† and Trushar R. Patel 1,2,3,* 1 Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada; [email protected] (M.Q.S.); [email protected] (M.D.B.) 2 Department of Microbiology, Immunology and Infectious Disease, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive, Calgary, AB T2N 4N1, Canada 3 Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB T6G 2E1, Canada * Correspondence: [email protected] † These authors contributed equally to the work. Abstract: Members of the human Zyxin family are LIM domain-containing proteins that perform critical cellular functions and are indispensable for cellular integrity. Despite their importance, not much is known about their structure, functions, interactions and dynamics. To provide insights into these, we used a set of in-silico tools and databases and analyzed their amino acid sequence, phylogeny, post-translational modifications, structure-dynamics, molecular interactions, and func- tions. Our analysis revealed that zyxin members are ohnologs. Presence of a conserved nuclear export signal composed of LxxLxL/LxxxLxL consensus sequence, as well as a possible nuclear localization signal, suggesting that Zyxin family members may have nuclear and cytoplasmic roles. The molecular modeling and structural analysis indicated that Zyxin family LIM domains share Citation: Siddiqui, M.Q.; Badmalia, similarities with transcriptional regulators and have positively charged electrostatic patches, which M.D.; Patel, T.R.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • 4-6 Weeks Old Female C57BL/6 Mice Obtained from Jackson Labs Were Used for Cell Isolation
    Methods Mice: 4-6 weeks old female C57BL/6 mice obtained from Jackson labs were used for cell isolation. Female Foxp3-IRES-GFP reporter mice (1), backcrossed to B6/C57 background for 10 generations, were used for the isolation of naïve CD4 and naïve CD8 cells for the RNAseq experiments. The mice were housed in pathogen-free animal facility in the La Jolla Institute for Allergy and Immunology and were used according to protocols approved by the Institutional Animal Care and use Committee. Preparation of cells: Subsets of thymocytes were isolated by cell sorting as previously described (2), after cell surface staining using CD4 (GK1.5), CD8 (53-6.7), CD3ε (145- 2C11), CD24 (M1/69) (all from Biolegend). DP cells: CD4+CD8 int/hi; CD4 SP cells: CD4CD3 hi, CD24 int/lo; CD8 SP cells: CD8 int/hi CD4 CD3 hi, CD24 int/lo (Fig S2). Peripheral subsets were isolated after pooling spleen and lymph nodes. T cells were enriched by negative isolation using Dynabeads (Dynabeads untouched mouse T cells, 11413D, Invitrogen). After surface staining for CD4 (GK1.5), CD8 (53-6.7), CD62L (MEL-14), CD25 (PC61) and CD44 (IM7), naïve CD4+CD62L hiCD25-CD44lo and naïve CD8+CD62L hiCD25-CD44lo were obtained by sorting (BD FACS Aria). Additionally, for the RNAseq experiments, CD4 and CD8 naïve cells were isolated by sorting T cells from the Foxp3- IRES-GFP mice: CD4+CD62LhiCD25–CD44lo GFP(FOXP3)– and CD8+CD62LhiCD25– CD44lo GFP(FOXP3)– (antibodies were from Biolegend). In some cases, naïve CD4 cells were cultured in vitro under Th1 or Th2 polarizing conditions (3, 4).
    [Show full text]
  • Anti-NFYC Antibody (ARG66549)
    Product datasheet [email protected] ARG66549 Package: 100 μl anti-NFYC antibody Store at: -20°C Summary Product Description Rabbit Polyclonal antibody recognizes NFYC Tested Reactivity Hu, Ms Tested Application IHC-P, WB Host Rabbit Clonality Polyclonal Isotype IgG Target Name NFYC Antigen Species Human Immunogen KLH-conjugated synthetic peptide encompassing a sequence within the N-term region of Human NFYC. Conjugation Un-conjugated Alternate Names HAP5; NF-YC; Nuclear transcription factor Y subunit gamma; Nuclear transcription factor Y subunit C; CBF-C; HSM; CBFC; Transactivator HSM-1/2; CAAT box DNA-binding protein subunit C; H1TF2A Application Instructions Application table Application Dilution IHC-P 1:100 - 1:200 WB 1:500 - 1:1000 Application Note IHC-P: Antigen Retrieval: Heat mediation was performed in Sodium citrate buffer (pH 6.0). * The dilutions indicate recommended starting dilutions and the optimal dilutions or concentrations should be determined by the scientist. Calculated Mw 50 kDa Observed Size 50 kDa Properties Form Liquid Purification Affinity purification with immunogen. Buffer 0.42% Potassium phosphate (pH 7.3), 0.87% NaCl, 0.01% Sodium azide and 30% Glycerol. Preservative 0.01% Sodium azide Stabilizer 30% Glycerol Storage instruction For continuous use, store undiluted antibody at 2-8°C for up to a week. For long-term storage, aliquot and store at -20°C. Storage in frost free freezers is not recommended. Avoid repeated freeze/thaw cycles. Suggest spin the vial prior to opening. The antibody solution should be gently mixed before use. www.arigobio.com 1/2 Note For laboratory research only, not for drug, diagnostic or other use.
    [Show full text]
  • Genome-Wide DNA Methylation Analysis of KRAS Mutant Cell Lines Ben Yi Tew1,5, Joel K
    www.nature.com/scientificreports OPEN Genome-wide DNA methylation analysis of KRAS mutant cell lines Ben Yi Tew1,5, Joel K. Durand2,5, Kirsten L. Bryant2, Tikvah K. Hayes2, Sen Peng3, Nhan L. Tran4, Gerald C. Gooden1, David N. Buckley1, Channing J. Der2, Albert S. Baldwin2 ✉ & Bodour Salhia1 ✉ Oncogenic RAS mutations are associated with DNA methylation changes that alter gene expression to drive cancer. Recent studies suggest that DNA methylation changes may be stochastic in nature, while other groups propose distinct signaling pathways responsible for aberrant methylation. Better understanding of DNA methylation events associated with oncogenic KRAS expression could enhance therapeutic approaches. Here we analyzed the basal CpG methylation of 11 KRAS-mutant and dependent pancreatic cancer cell lines and observed strikingly similar methylation patterns. KRAS knockdown resulted in unique methylation changes with limited overlap between each cell line. In KRAS-mutant Pa16C pancreatic cancer cells, while KRAS knockdown resulted in over 8,000 diferentially methylated (DM) CpGs, treatment with the ERK1/2-selective inhibitor SCH772984 showed less than 40 DM CpGs, suggesting that ERK is not a broadly active driver of KRAS-associated DNA methylation. KRAS G12V overexpression in an isogenic lung model reveals >50,600 DM CpGs compared to non-transformed controls. In lung and pancreatic cells, gene ontology analyses of DM promoters show an enrichment for genes involved in diferentiation and development. Taken all together, KRAS-mediated DNA methylation are stochastic and independent of canonical downstream efector signaling. These epigenetically altered genes associated with KRAS expression could represent potential therapeutic targets in KRAS-driven cancer. Activating KRAS mutations can be found in nearly 25 percent of all cancers1.
    [Show full text]
  • Mouse Population-Guided Resequencing Reveals That Variants in CD44 Contribute to Acetaminophen-Induced Liver Injury in Humans
    Downloaded from genome.cshlp.org on October 2, 2021 - Published by Cold Spring Harbor Laboratory Press Letter Mouse population-guided resequencing reveals that variants in CD44 contribute to acetaminophen-induced liver injury in humans Alison H. Harrill,1,2,12 Paul B. Watkins,3,12 Stephen Su,6 Pamela K. Ross,2 David E. Harbourt,5 Ioannis M. Stylianou,7 Gary A. Boorman,8 Mark W. Russo,3 Richard S. Sackler,9 Stephen C. Harris,11 Philip C. Smith,5 Raymond Tennant,8 Molly Bogue,7 Kenneth Paigen,7 Christopher Harris,9,10 Tanupriya Contractor,9 Timothy Wiltshire,5 Ivan Rusyn,1,2,14 and David W. Threadgill1,4,13,14,15 1Curriculum in Toxicology, University of North Carolina, Chapel Hill, North Carolina 27599, USA; 2Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, North Carolina 27599, USA; 3Division of Gastroenterology and Hepatology, University of North Carolina, Chapel Hill, North Carolina 27599, USA; 4Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599, USA; 5School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, USA; 6Department of Mouse Genetics, Genomics Institute of the Novartis Research Foundation, San Diego, California 92121, USA; 7The Jackson Laboratory, Bar Harbor, Maine 04609, USA; 8National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA; 9Verto Institute Research Laboratories, New Brunswick, New Jersey 08903, USA; 10Cancer Institute of New Jersey, New Brunswick, New Jersey 08903, USA; 11Purdue Pharma L.P., Stamford, Connecticut 06901, USA; 12Hamner-UNC Center for Drug Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina 27709, USA; 13Department of Genetics, North Carolina State University, Raleigh, North Carolina 27695, USA Interindividual variability in response to chemicals and drugs is a common regulatory concern.
    [Show full text]
  • Functional Genomics Atlas of Synovial Fibroblasts Defining Rheumatoid Arthritis
    medRxiv preprint doi: https://doi.org/10.1101/2020.12.16.20248230; this version posted December 18, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. Functional genomics atlas of synovial fibroblasts defining rheumatoid arthritis heritability Xiangyu Ge1*, Mojca Frank-Bertoncelj2*, Kerstin Klein2, Amanda Mcgovern1, Tadeja Kuret2,3, Miranda Houtman2, Blaž Burja2,3, Raphael Micheroli2, Miriam Marks4, Andrew Filer5,6, Christopher D. Buckley5,6,7, Gisela Orozco1, Oliver Distler2, Andrew P Morris1, Paul Martin1, Stephen Eyre1* & Caroline Ospelt2*,# 1Versus Arthritis Centre for Genetics and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK 2Department of Rheumatology, Center of Experimental Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland 3Department of Rheumatology, University Medical Centre, Ljubljana, Slovenia 4Schulthess Klinik, Zurich, Switzerland 5Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK 6NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, University of Birmingham, Birmingham, UK 7Kennedy Institute of Rheumatology, University of Oxford Roosevelt Drive Headington Oxford UK *These authors contributed equally #corresponding author: [email protected] NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice. 1 medRxiv preprint doi: https://doi.org/10.1101/2020.12.16.20248230; this version posted December 18, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Uttrykking Final Ph[1].D THESIS TUYEN 27.10.06
    Nuclear Receptor Coregulators Role of Protein-Protein Interactions and cAMP/PKA Signaling Tuyen Thi Van Hoang Dissertation for the degree philosophiae doctor (PhD) at the University of Bergen October 2006 2 TABLE OF CONTENTS SCIENTIFIC ENVIRONMENTS.............................................................................................. 5 ACKNOWLEDGEMENTS ....................................................................................................... 7 LIST OF PAPERS...................................................................................................................... 9 ABBREVIATIONS.................................................................................................................. 11 PREFACE ................................................................................................................................ 13 INTRODUCTION.................................................................................................................... 15 1. Nuclear receptors ........................................................................................................... 15 1.1. Functional and structural domains ............................................................................ 15 1.2. Subfamilies and activation mechanisms ................................................................... 15 1.3. Steroidogenic factor-1............................................................................................... 19 1.3.1. Functional and structural domains ....................................................................
    [Show full text]
  • The Id-Protein Family in Developmental and Cancer-Associated Pathways Cornelia Roschger and Chiara Cabrele*
    Roschger and Cabrele Cell Communication and Signaling (2017) 15:7 DOI 10.1186/s12964-016-0161-y REVIEW Open Access The Id-protein family in developmental and cancer-associated pathways Cornelia Roschger and Chiara Cabrele* Abstract Inhibitors of DNA binding and cell differentiation (Id) proteins are members of the large family of the helix-loop- helix (HLH) transcription factors, but they lack any DNA-binding motif. During development, the Id proteins play a key role in the regulation of cell-cycle progression and cell differentiation by modulating different cell-cycle regulators both by direct and indirect mechanisms. Several Id-protein interacting partners have been identified thus far, which belong to structurally and functionally unrelated families, including, among others, the class I and II bHLH transcription factors, the retinoblastoma protein and related pocket proteins, the paired-box transcription factors, and the S5a subunit of the 26 S proteasome. Although the HLH domain of the Id proteins is involved in most of their protein-protein interaction events, additional motifs located in their N-terminal and C-terminal regions are required for the recognition of diverse protein partners. The ability of the Id proteins to interact with structurally different proteins is likely to arise from their conformational flexibility: indeed, these proteins contain intrinsically disordered regions that, in the case of the HLH region, undergo folding upon self- or heteroassociation. Besides their crucial role for cell-fate determination and cell-cycle progression during development, other important cellular events have been related to the Id-protein expression in a number of pathologies. Dysregulated Id-protein expression has been associated with tumor growth, vascularization, invasiveness, metastasis, chemoresistance and stemness, as well as with various developmental defects and diseases.
    [Show full text]
  • Pig Antibodies
    Pig Antibodies gene_name sku Entry_Name Protein_Names Organism Length Identity CDX‐2 ARP31476_P050 D0V4H7_PIG Caudal type homeobox 2 (Fragment) Sus scrofa (Pig) 147 100.00% CDX‐2 ARP31476_P050 A7MAE3_PIG Caudal type homeobox transcription factor 2 (Fragment) Sus scrofa (Pig) 75 100.00% Tnnt3 ARP51286_P050 Q75NH3_PIG Troponin T fast skeletal muscle type Sus scrofa (Pig) 271 85.00% Tnnt3 ARP51286_P050 Q75NH2_PIG Troponin T fast skeletal muscle type Sus scrofa (Pig) 266 85.00% Tnnt3 ARP51286_P050 Q75NH1_PIG Troponin T fast skeletal muscle type Sus scrofa (Pig) 260 85.00% Tnnt3 ARP51286_P050 Q75NH0_PIG Troponin T fast skeletal muscle type Sus scrofa (Pig) 250 85.00% Tnnt3 ARP51286_P050 Q75NG8_PIG Troponin T fast skeletal muscle type Sus scrofa (Pig) 266 85.00% Tnnt3 ARP51286_P050 Q75NG7_PIG Troponin T fast skeletal muscle type Sus scrofa (Pig) 260 85.00% Tnnt3 ARP51286_P050 Q75NG6_PIG Troponin T fast skeletal muscle type Sus scrofa (Pig) 250 85.00% Tnnt3 ARP51286_P050 TNNT3_PIG Troponin T, fast skeletal muscle (TnTf) Sus scrofa (Pig) 271 85.00% ORF Names:PANDA_000462 EMBL EFB13877.1OrganismAiluropod High mobility group protein B2 (High mobility group protein a melanoleuca (Giant panda) ARP31939_P050 HMGB2_PIG 2) (HMG‐2) Sus scrofa (Pig) 210 100.00% Agpat5 ARP47429_P050 B8XTR3_PIG 1‐acylglycerol‐3‐phosphate O‐acyltransferase 5 Sus scrofa (Pig) 365 85.00% irf9 ARP31200_P050 Q29390_PIG Transcriptional regulator ISGF3 gamma subunit (Fragment) Sus scrofa (Pig) 57 100.00% irf9 ARP31200_P050 Q0GFA1_PIG Interferon regulatory factor 9 Sus scrofa (Pig)
    [Show full text]