Abstracts 2019 Focus Sessions

Total Page:16

File Type:pdf, Size:1020Kb

Abstracts 2019 Focus Sessions 52nd ANNUAL CONFERENCE Beyond Possible: Remarkable Transformation of Reproductive Biology Abstracts 2019 Focus Sessions S1.1 - The maternal lactocrine continuum programming uterine capacity. Frank Bartol, Jeffrey Vallet, Carol Bagnell Lactocrine signaling describes a mechanism by which milk-borne bioactive factors (MbFs) are communicated from mother to offspring by consequence of nursing. Lactocrine communication is an element of the maternal environmental continuum of factors that define pre- and postnatal developmental conditions and, therefore, the trajectory of mammalian development and offspring phenotype. Lactocrine-active factors can include MbFs of maternal origin, as well as factors of environmental origin to which the lactating female is exposed. Ideally, lactocrine signals communicated to nursing offspring insure a smooth transition and adaptation to extrauterine life. Disruption of lactocrine communication occurs when the quality or quantity of colostrum (first milk) is compromised. This can have lasting consequences for the health and fitness of nursing young. In the pig (Sus domesticus), imposition of a lactocrine-null state from birth (postnatal day = PND 0) by feeding milk replacer altered global patterns of uterine gene expression by PND 2, and inhibited endometrial development by PND 14. Similarly, lactocrine deficiency, reflecting minimal colostrum consumption from birth, retarded endometrial development in neonates, altered endometrial gene expression on pregnancy day (PxD) 13, and reduced live litter size in adult, neonatally lactocrine-deficient gilts. Elements of the lactocrine-sensitive, adult endometrial transcriptome at PxD 13 included factors affecting conceptus-endometrial interactions. A window for lactocrine programming of porcine endometrial function and uterine capacity was defined during the first 24 h of postnatal life. Lactocrine effects on the neonatal uterine miRNA-mRNA interactome at PND 2 implicated miRNAs as elements of the maternal lactocrine programming mechanism. In addition to molecular signals, maternally-derived somatic cells delivered to nursing young may affect the trajectory of postnatal development. Lactocrine targets in other species include pituitary mammotropes, immune system, and brain. Observations reinforce the importance of defining lactocrine mechanisms driving maternal programming of postnatal development and offspring phenotype. [Support: USDA-NIFA-2013-67016-20523] S1.2 - Maternal programming of fetal development via endocrine disruptors. Almudena Veiga-Lopez The burden of endocrine disruptor chemicals (EDCs) has risen in the past decades. Bisphenol A, S, and F (BPA, BPS, and BPF) are among the most common bisphenolic EDCs use in the manufacture of consumer products. Because exposure to bisphenols during pregnancy occurs in >90% of pregnancies, there is a growing interest to understand the risk that these chemicals may pose to human health. The goal of our research is to investigate the effect that bisphenol chemicals may have on the developing fetus, as well as the placenta. Because BPA has been demonstrated to lead to insulin resistance and obesity, we were particularly interested in evaluating if adipogenesis was altered as early as the fetal stage and if so, the mechanism by which BPA could program an adipogenic phenotype. Our work using sheep as an animal model shows that BPA, but not BPS, increases the adipogenic ability in fetal-derived preadipocytes and that this effect is accompanied by alterations in the uncoupled protein response in female fetuses. Because chemical exposure effects on the fetus are highly driven by effective crossing of the placental barrier, we also focused our attention in delineating pregnancy bisphenol toxicokinetics and their ability to persist in fetal circulation. We have demonstrated significant differences in bisphenol kinetics between mother and fetus as well as among bisphenols. We have also explored the potential effects of bisphenols on placental function and demonstrated deleterious effects of the emerging chemical BPS on placental endocrine capacity and maintenance of the trophoblast layer. Taken together, these studies show novel effects from bisphenol chemicals on fetal and placental development suggesting that pregnancy is a vulnerable window for chemical exposures. S1.3 - Ovarian Metabolism of an Environmentally Relevant Phthalate Mixture. Genoa Warner, Zhong Li, Madeline Houde, Cassandra Atkinson, Daryl Meling, Catheryne Chiang, Jodi Flaws Phthalates are synthetic chemicals with widespread human exposure that are commonly used as additives in consumer products. Evidence suggests that metabolites mediate the toxic effects of phthalates and that intravenous medical exposure can lead to significant concentrations of unmetabolized phthalates reaching organs such as the ovary. Thus, the ovary may be bioactivating phthalates in-house, increasing the local concentration of toxic metabolites in one of the most sensitive organs for endocrine disruption. This study investigated the ability of neonatal and adult mouse ovaries to metabolize an environmentally relevant phthalate mixture. Whole neonatal ovaries (postnatal day 4) and adult antral follicles from CD-1 mice were cultured in media treated with dimethyl sulfoxide (DMSO; vehicle control) or phthalate mixture (0.1–100 µg/mL) composed of 35% diethyl phthalate (DEP), 21% di(2-ethylhexyl) phthalate (DEHP), 15% dibutyl phthalate (DBP), 15% diisononyl phthalate (DiNP), 8% diisobutyl phthalate (DiBP), and 5% benzylbutyl phthalate (BBzP), which is representative of exposure of pregnant women in Illinois. After four days of culture, media were subjected to liquid chromatography mass spectrometry (LCMS) to measure the amounts of monoester metabolites. Metabolites for all phthalates except DiNP were detected in the media for both culture types. The long-chain phthalates BBzP, DEHP, and DiNP were metabolized less than the short-chain phthalates DEP, DBP, and DiBP, with neonatal ovaries showing preferential metabolism of short-chain phthalates. Ovaries and follicles were collected to measure gene and protein expression of enzymes required for phthalate metabolism, lipoprotein lipase (LPL) and aldehyde dehydrogenase family 1, subfamily A1 (ALDH1A1). Neonatal ovaries predominantly expressed LPL, whereas adult follicles expressed high levels of ALDH1A1. These data demonstrate that neonatal and adult ovaries are capable of metabolizing low doses of phthalates and suggest that metabolic capacity differs for follicles at different stages of development. Supported by NIH R56ES025147, NIH R01ES028661, and NIH T32ES007326. S1.4 - Worldwide pollution by persistent organic pollutants impacts the sperm DNA methylation of Inuit men in a dose-dependent manner. Marie-Charlotte Dumargne, Xiaojian Shao, Mathieu Dalvai, Gunnar Toft, Jens Peter Bonde, Marie-Michelle Simon, Tony Kwan, Vanessa Dumeaux, Donovan Chan, Guillaume Bourque, Tomi Pastinen, Sarah Kimmins, Jacquetta Trasler, Janice Bailey Persistent organic pollutants (POPs), either used as pesticides (e.g. DDT and its principal metabolite DDE) or industrial by-products (e.g. polychlorinated biphenyls), bio-accumulate in organisms. At the top of the Arctic food chain, Inuit populations have been exposed to POPs for generations in orders of magnitude higher than the safety threshold. We hypothesize that the sperm DNA methylome from Inuit men may be altered in response to exposure to POPs. We collected blood and sperm from 47 Inuit men from Greenland (with a serum DDE ranging from 39.4 ng/g to 5000 ng/g lipids). The sperm DNA methylome was examined using a custom human sperm-specific 5mC-Capture-sequencing approach. The quantitative association between sperm DNA methylation and an increasing environmental exposure to DDE was assessed using a binomial regression, adjusted for potential confounders (smoking, age and body mass index). We identified 8506 dose-dependent differentially methylated regions (DMRs), of which the majority were hypermethylated (74%). Genomic annotation indicated a positive enrichment at CpG islands, exons, CpG shores, sub-telomeres, transfer-RNAs and promoters (permutation test, p<0.001). Gene ontology analysis revealed enrichment for genes with roles in biological processes such as axon guidance, neurotransmitter secretion, cardiac and osteoblast development, retinoic acid receptor signaling, and histone lysine methylation (p<0.01). We report a dose-dependent association between an environmental exposure to DDE and the sperm DNA methylome. The extensive epigenetic changes detected in the most variable regions strongly suggest an alteration by environmental toxicants. This study is the first to accurately assess the genome-wide DNA methylation of sensitive sites in sperm from Inuit menand pave the way to the identification of environmental stressors which could inform on the sperm epigenetic integrityand may be predictive of fertility status and/or embryonic outcomes. S2.2 - Engineering Reproduction. Jennifer Woodruff Infertility is a major health concern, affecting more than 50 million couples. In the Western world most infertile couples resort to assisted reproduction technology (ART) to try to conceive a child. Despite undeniable successes, near half the couples who seek medical assistance for infertility fail to achieve a pregnancy. ART, as it is currently proposed, is mainly palliative, with little effort made to understand and specifically address the dysfunctions responsible for couple infertility. In these couples,
Recommended publications
  • In Vitro Testicular Toxicity Models : Opportunities for Advancement Via Biomedical Engineering Techniques
    Erschienen in: Alternatives to Animal Experimentation : ALTEX ; 30 (2013), 3. - S. 353-377 http://dx.doi.org/10.14573/altex.2013.3.353 t4 Report* In Vitro Testicular Toxicity Models: Opportunities for Advancement via Biomedical Engineering Techniques Louise Parks Saldutti 1, Bruce K. Beyer 2, William Breslin 3, Terry R. Brown 4, Robert E. Chapin 5, Sarah Campion 5, Brian Enright 6, Elaine Faustman 7, Paul M. D. Foster 8, Thomas Hartung 9, William Kelce 10, James H. Kim 11, Elizabeth G. Loboa 12, Aldert H. Piersma 13, David Seyler 14, Katie J. Turner 15, Hanry Yu 16, Xiaozhong Yu 17, and Jennifer C. Sasaki 18 1 2 Department of Development & Reproduction, Merck & Co., West Point, PA, USA; Department of Disposition, Safety 3 and Animal Research – Preclinical Safety, Sanofi U.S. Inc., Bridgewater, NJ, USA; Eli Lilly and Company, Lilly Research 4 Laboratories, Indianapolis, IN, USA; Department of Biochemistry & Molecular Biology, Johns Hopkins Bloomberg School of 5 Public Health, Baltimore, MD, USA; Pfizer Inc., Global R&D, Developmental and Reproductive Toxicology Group, Groton, 7 CT, USA; 6AbbVie Inc., North Chicago, IL, USA; University of Washington, Department of Environmental and Occupational 8 Health Sciences, Institute for Risk Analysis and Risk Communication, Seattle, WA, USA; National Toxicology Program, National Institutes of Environmental Health Sciences, National Institute of Health, Department of Health and Human Services, 9 Research Triangle Park, NC, USA; Johns Hopkins University, Bloomberg School of Public Health, Center for
    [Show full text]
  • DISSERTATION PROTEOMIC PROFILING of the RAT RENAL PROXIMAL CONVOLUTED TUBULE in RESPONSE to CHRONIC METABOLIC ACIDOSIS Submitted
    DISSERTATION PROTEOMIC PROFILING OF THE RAT RENAL PROXIMAL CONVOLUTED TUBULE IN RESPONSE TO CHRONIC METABOLIC ACIDOSIS Submitted by Dana Marie Freund Department of Biochemistry and Molecular Biology In partial fulfillment of the requirements For the Degree of Doctor of Philosophy Colorado State University Fort Collins, Colorado Spring 2013 Doctoral Committee: Advisor: Norman Curthoys Co-Advisor: Jessica Prenni Jennifer Nyborg Olve Peersen Karen Dobos ABSTRACT PROTEOMIC PROFILING OF THE RAT RENAL PROXIMAL CONVOLUTED TUBULE IN RESPONSE TO CHRONIC METABOLIC ACIDOSIS The human kidneys contain more than one million glomeruli which filter nearly 200 liters of plasma per day. The proximal tubule is the segment of the nephron that immediately follows the glomeruli. This portion of the nephron contributes to fluid, electrolyte and nutrient homeostasis by reabsorbing 60-70% of the filtered water and NaCl and an even greater proportion of NaHCO3. The initial or convoluted portion of the proximal tubule reabsorbs nearly all of the nutrients in the glomerular filtrate and is the site of active secretion and many of the metabolic functions of the kidney. For example, the proximal convoluted tubule is the primary site of renal ammoniagenesis and gluconeogenesis, processes that are significantly activated during metabolic acidosis. Metabolic acidosis is a common clinical condition that is characterized by a decrease in blood pH and bicarbonate concentration. Metabolic acidosis also occurs frequently as a secondary complication, which adversely affects the outcome of patients with various life- threatening conditions. This type of acidosis can occur acutely, lasting for a few hours to a day, or as a chronic condition where acid-base balance is not fully restored.
    [Show full text]
  • Replace This with the Actual Title Using All Caps
    UNDERSTANDING THE GENETICS UNDERLYING MASTITIS USING A MULTI-PRONGED APPROACH A Dissertation Presented to the Faculty of the Graduate School of Cornell University In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Asha Marie Miles December 2019 © 2019 Asha Marie Miles UNDERSTANDING THE GENETICS UNDERLYING MASTITIS USING A MULTI-PRONGED APPROACH Asha Marie Miles, Ph. D. Cornell University 2019 This dissertation addresses deficiencies in the existing genetic characterization of mastitis due to granddaughter study designs and selection strategies based primarily on lactation average somatic cell score (SCS). Composite milk samples were collected across 6 sampling periods representing key lactation stages: 0-1 day in milk (DIM), 3- 5 DIM, 10-14 DIM, 50-60 DIM, 90-110 DIM, and 210-230 DIM. Cows were scored for front and rear teat length, width, end shape, and placement, fore udder attachment, udder cleft, udder depth, rear udder height, and rear udder width. Independent multivariable logistic regression models were used to generate odds ratios for elevated SCC (≥ 200,000 cells/ml) and farm-diagnosed clinical mastitis. Within our study cohort, loose fore udder attachment, flat teat ends, low rear udder height, and wide rear teats were associated with increased odds of mastitis. Principal component analysis was performed on these traits to create a single new phenotype describing mastitis susceptibility based on these high-risk phenotypes. Cows (N = 471) were genotyped on the Illumina BovineHD 777K SNP chip and considering all 14 traits of interest, a total of 56 genome-wide associations (GWA) were performed and 28 significantly associated quantitative trait loci (QTL) were identified.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • A Gene Expression Resource Generated by Genome-Wide Lacz
    © 2015. Published by The Company of Biologists Ltd | Disease Models & Mechanisms (2015) 8, 1467-1478 doi:10.1242/dmm.021238 RESOURCE ARTICLE A gene expression resource generated by genome-wide lacZ profiling in the mouse Elizabeth Tuck1,**, Jeanne Estabel1,*,**, Anika Oellrich1, Anna Karin Maguire1, Hibret A. Adissu2, Luke Souter1, Emma Siragher1, Charlotte Lillistone1, Angela L. Green1, Hannah Wardle-Jones1, Damian M. Carragher1,‡, Natasha A. Karp1, Damian Smedley1, Niels C. Adams1,§, Sanger Institute Mouse Genetics Project1,‡‡, James N. Bussell1, David J. Adams1, Ramiro Ramırez-Soliś 1, Karen P. Steel1,¶, Antonella Galli1 and Jacqueline K. White1,§§ ABSTRACT composite of RNA-based expression data sets. Strong agreement was observed, indicating a high degree of specificity in our data. Knowledge of the expression profile of a gene is a critical piece of Furthermore, there were 1207 observations of expression of a information required to build an understanding of the normal and particular gene in an anatomical structure where Bgee had no essential functions of that gene and any role it may play in the data, indicating a large amount of novelty in our data set. development or progression of disease. High-throughput, large- Examples of expression data corroborating and extending scale efforts are on-going internationally to characterise reporter- genotype-phenotype associations and supporting disease gene tagged knockout mouse lines. As part of that effort, we report an candidacy are presented to demonstrate the potential of this open access adult mouse expression resource, in which the powerful resource. expression profile of 424 genes has been assessed in up to 47 different organs, tissues and sub-structures using a lacZ reporter KEY WORDS: Gene expression, lacZ reporter, Mouse, Resource gene.
    [Show full text]
  • Grhpr Gene, Full Gene Analysis
    TEST ID: GRHPZ GRHPR GENE, FULL GENE ANALYSIS CLINICAL INFORMATION MOBILE APPS FROM MAYO MEDICAL LABORATORIES Primary hyperoxaluria type 2 (PH2) is a hereditary disorder of glyoxylate metabolism caused by deficiency of the hepatic enzyme glyoxylate reductase/hydroxypyruvate reductase (GRHPR). Lab Catalog for iPad and Absence of GRHPR activity results in excess oxalate and usually L-glycerate excreted in the Lab Reference for iPhone urine leading to nephrolithiasis (kidney stones) and sometimes renal failure. and iPod Touch Onset of PH2 is typically in childhood or adolescence with symptoms related to kidney stones. In some cases, kidney failure may be the initial presenting feature. Nephrocalcinosis, as seen by renal ultrasound, is observed less frequently in individuals with PH2 than primary Requires iOS 5.1+ hyperoxaluria type 1 (PH1). End-stage renal disease (ESRD) is also less common and of later onset than PH1; however, once ESRD develops, oxalate deposition in other organs such as REFERENCE VALUES bone, retina, and myocardium can occur. An interpretive report will be While the exact prevalence and incidence of PH2 are not known, it is thought that PH2 is less provided. common than PH1, which has an estimated prevalence rate of 1 to 3 per million population and an incidence of 0.1 per million/year. ANALYTIC TIME Biochemical testing is indicated in patients with possible primary hyperoxaluria. Measurement 14 days of urinary oxalate in a timed, 24-hour urine collection is strongly preferred, with correction to adult body surface area in pediatric patients (HYOX / Hyperoxaluria Panel, Urine; OXU / Oxalate, Urine). In very young children (incapable of performing a timed collection), random urine oxalate to creatinine ratios may be used for determination of oxalate excretion.
    [Show full text]
  • Methods in and Applications of the Sequencing of Short Non-Coding Rnas" (2013)
    University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2013 Methods in and Applications of the Sequencing of Short Non- Coding RNAs Paul Ryvkin University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Bioinformatics Commons, Genetics Commons, and the Molecular Biology Commons Recommended Citation Ryvkin, Paul, "Methods in and Applications of the Sequencing of Short Non-Coding RNAs" (2013). Publicly Accessible Penn Dissertations. 922. https://repository.upenn.edu/edissertations/922 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/922 For more information, please contact [email protected]. Methods in and Applications of the Sequencing of Short Non-Coding RNAs Abstract Short non-coding RNAs are important for all domains of life. With the advent of modern molecular biology their applicability to medicine has become apparent in settings ranging from diagonistic biomarkers to therapeutics and fields angingr from oncology to neurology. In addition, a critical, recent technological development is high-throughput sequencing of nucleic acids. The convergence of modern biotechnology with developments in RNA biology presents opportunities in both basic research and medical settings. Here I present two novel methods for leveraging high-throughput sequencing in the study of short non- coding RNAs, as well as a study in which they are applied to Alzheimer's Disease (AD). The computational methods presented here include High-throughput Annotation of Modified Ribonucleotides (HAMR), which enables researchers to detect post-transcriptional covalent modifications ot RNAs in a high-throughput manner. In addition, I describe Classification of RNAs by Analysis of Length (CoRAL), a computational method that allows researchers to characterize the pathways responsible for short non-coding RNA biogenesis.
    [Show full text]
  • Supplemental Information
    Supplemental information Dissection of the genomic structure of the miR-183/96/182 gene. Previously, we showed that the miR-183/96/182 cluster is an intergenic miRNA cluster, located in a ~60-kb interval between the genes encoding nuclear respiratory factor-1 (Nrf1) and ubiquitin-conjugating enzyme E2H (Ube2h) on mouse chr6qA3.3 (1). To start to uncover the genomic structure of the miR- 183/96/182 gene, we first studied genomic features around miR-183/96/182 in the UCSC genome browser (http://genome.UCSC.edu/), and identified two CpG islands 3.4-6.5 kb 5’ of pre-miR-183, the most 5’ miRNA of the cluster (Fig. 1A; Fig. S1 and Seq. S1). A cDNA clone, AK044220, located at 3.2-4.6 kb 5’ to pre-miR-183, encompasses the second CpG island (Fig. 1A; Fig. S1). We hypothesized that this cDNA clone was derived from 5’ exon(s) of the primary transcript of the miR-183/96/182 gene, as CpG islands are often associated with promoters (2). Supporting this hypothesis, multiple expressed sequences detected by gene-trap clones, including clone D016D06 (3, 4), were co-localized with the cDNA clone AK044220 (Fig. 1A; Fig. S1). Clone D016D06, deposited by the German GeneTrap Consortium (GGTC) (http://tikus.gsf.de) (3, 4), was derived from insertion of a retroviral construct, rFlpROSAβgeo in 129S2 ES cells (Fig. 1A and C). The rFlpROSAβgeo construct carries a promoterless reporter gene, the β−geo cassette - an in-frame fusion of the β-galactosidase and neomycin resistance (Neor) gene (5), with a splicing acceptor (SA) immediately upstream, and a polyA signal downstream of the β−geo cassette (Fig.
    [Show full text]
  • The Centriole Protein CEP76 Negatively Regulates PLK1 Activity in the Cytoplasm for Proper Mitotic Progression
    © 2020. Published by The Company of Biologists Ltd | Journal of Cell Science (2020) 133, jcs241281. doi:10.1242/jcs.241281 RESEARCH ARTICLE The centriole protein CEP76 negatively regulates PLK1 activity in the cytoplasm for proper mitotic progression Yutaka Takeda, Kaho Yamazaki, Kaho Hashimoto, Koki Watanabe, Takumi Chinen*,‡ and Daiju Kitagawa*,‡ ABSTRACT are important for accurate mitotic progression (Golsteyn, 1995; Polo-like kinase 1 (PLK1) dynamically changes its localization and Schmucker and Sumara, 2014). Several factors regulate PLK1 plays important roles in proper mitotic progression. In particular, strict localization during mitosis. PLK1 is recruited to centrosomes in a control of cytoplasmic PLK1 is needed to prevent mitotic defects. CDK1-dependent manner (Lee et al., 2014). The initial recruitment However, the regulation of cytoplasmic PLK1 is not fully understood. In of PLK1 to kinetochores is mediated by its interaction with PBIP1 this study, we show that CEP76, a centriolar protein, physically (also known as CENPU; Kang et al., 2006). During anaphase, PLK1 interacts with PLK1 and tightly controls the activation of cytoplasmic binds to PRC1 and changes its localization to the midbody (Hu et al., PLK1 during mitosis in human cells. We found that removal of 2012). In addition, strict control of PLK1 in the cytoplasm is needed centrosomes induced ectopic aggregation of PLK1, which is highly to prevent its aggregation and mitotic defects (Mukhopadhyay and phosphorylated, in the cytoplasm during mitosis. Importantly, a Dasso, 2010; Schmit et al., 2012; Zhao et al., 2016). However, the targeted RNAi screen revealed that depletion of CEP76 resulted in a detailed mechanisms through which the localization, expression and similar phenotype.
    [Show full text]
  • Is Cep70, a Centrosomal Protein with New Roles in Breast Cancer Dissemination and Metastasis, a Facilitator of Epithelial-Mesenchymal Transition?
    Is Cep70, a centrosomal protein with new roles in breast cancer dissemination and metastasis, a facilitator of epithelial-mesenchymal transition? Pedro A. Lazo 1,2 1 Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, Salamanca, Spain 2 Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain Running title: Cep70 and EMT Disclosures: None declared. Contact address: [email protected] 1 Introduction Microtubules are driving mechanisms of chromosomes, intracellular organelle movement, and cell shape and motility. Microtubules are organized on centrosomes, which are assembled in microtubule-organizing centers (MTOC). In mitosis there is no nuclear envelope and centromeres associated to microtubules are mainly involved in chromosome redistribution into daughter cells. In differentiated cells the microtubule- organizing centers are dispersed in the cytoplasm (non centrosomal (ncMTOC)) and interact with the minus end of microtubules through γ-tubulin. 1 However, it is not known if the microtubule contribution to tumor biology is only by facilitating tumor aneuploidy. During tumor dissemination, a process not linked to cell division, important changes take place in cell shape and motility. Microtubules are very dynamic because of their inherent structural instability, and this plasticity facilitates their reorganization during the epithelial-mesenchymal
    [Show full text]
  • Elucidating Biological Roles of Novel Murine Genes in Hearing Impairment in Africa
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 September 2019 doi:10.20944/preprints201909.0222.v1 Review Elucidating Biological Roles of Novel Murine Genes in Hearing Impairment in Africa Oluwafemi Gabriel Oluwole,1* Abdoulaye Yal 1,2, Edmond Wonkam1, Noluthando Manyisa1, Jack Morrice1, Gaston K. Mazanda1 and Ambroise Wonkam1* 1Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town, South Africa. 2Department of Neurology, Point G Teaching Hospital, University of Sciences, Techniques and Technology, Bamako, Mali. *Correspondence to: [email protected]; [email protected] Abstract: The prevalence of congenital hearing impairment (HI) is highest in Africa. Estimates evaluated genetic causes to account for 31% of HI cases in Africa, but the identification of associated causative genes mutations have been challenging. In this study, we reviewed the potential roles, in humans, of 38 novel genes identified in a murine study. We gathered information from various genomic annotation databases and performed functional enrichment analysis using online resources i.e. genemania and g.proflier. Results revealed that 27/38 genes are express mostly in the brain, suggesting additional cognitive roles. Indeed, HERC1- R3250X had been associated with intellectual disability in a Moroccan family. A homozygous 216-bp deletion in KLC2 was found in two siblings of Egyptian descent with spastic paraplegia. Up to 27/38 murine genes have link to at least a disease, and the commonest mode of inheritance is autosomal recessive (n=8). Network analysis indicates that 20 other genes have intermediate and biological links to the novel genes, suggesting their possible roles in HI.
    [Show full text]
  • Mutations Suggests Both Loss-Of-Function and Gain-Of-Function Effects Morag A
    © 2021. Published by The Company of Biologists Ltd | Disease Models & Mechanisms (2021) 14, dmm047225. doi:10.1242/dmm.047225 RESEARCH ARTICLE Hearing impairment due to Mir183/96/182 mutations suggests both loss-of-function and gain-of-function effects Morag A. Lewis1,2,*, Francesca Di Domenico1, Neil J. Ingham1,2, Haydn M. Prosser2 and Karen P. Steel1,2 ABSTRACT birth. However, this is not the cause of the hearing loss; even before The microRNA miR-96 is important for hearing, as point mutations in the onset of normal hearing, homozygote hair cells fail to mature humans and mice result in dominant progressive hearing loss. Mir96 both morphologically and physiologically, remaining in their is expressed in sensory cells along with Mir182 and Mir183, but the immature state, and heterozygote hair cells show a developmental roles of these closely-linked microRNAs are as yet unknown. Here, delay. miR-96 is thus thought to be responsible for coordinating we analyse mice carrying null alleles of Mir182, and of Mir183 and hair cell maturation (Chen et al., 2014; Kuhn et al., 2011). Mir96 together to investigate their roles in hearing. We found that Overexpression of the three miRNAs also results in cochlear defects Mir183/96 heterozygous mice had normal hearing and homozygotes and hearing loss (Weston et al., 2018). The complete loss of all were completely deaf with abnormal hair cell stereocilia bundles and mature miRNAs from the inner ear results in early developmental reduced numbers of inner hair cell synapses at 4 weeks of age. defects including a severely truncated cochlear duct (Friedman Mir182 knockout mice developed normal hearing then exhibited et al., 2009; Soukup et al., 2009).
    [Show full text]