Structures of Shikimate Dehydrogenase Aroe and Its Paralog Ydib a COMMON STRUCTURAL FRAMEWORK for DIFFERENT ACTIVITIES*

Total Page:16

File Type:pdf, Size:1020Kb

Structures of Shikimate Dehydrogenase Aroe and Its Paralog Ydib a COMMON STRUCTURAL FRAMEWORK for DIFFERENT ACTIVITIES* THE JOURNAL OF BIOLOGICAL CHEMISTRY Vol. 278, No. 21, Issue of May 23, pp. 19463–19472, 2003 © 2003 by The American Society for Biochemistry and Molecular Biology, Inc. Printed in U.S.A. Structures of Shikimate Dehydrogenase AroE and Its Paralog YdiB A COMMON STRUCTURAL FRAMEWORK FOR DIFFERENT ACTIVITIES* Received for publication, January 24, 2003, and in revised form, March 10, 2003 Published, JBC Papers in Press, March 12, 2003, DOI 10.1074/jbc.M300794200 Gurvan Michel‡, Aleksander W. Roszak§¶,Ve´ronique Sauve´‡, John Maclean§, Allan Matte‡, John R. Coggins¶, Miroslaw Cygler‡ʈ, and Adrian J. Lapthorn§** From the ‡Biotechnology Research Institute, NRC Macromolecular Structure Group, Montreal, Quebec H4P 2R2, Canada and the §Department of Chemistry and ¶Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom Shikimate dehydrogenase catalyzes the fourth step of opment of nontoxic herbicides (3), as well as antimicrobial (4) the shikimate pathway, the essential route for the bio- and antiparasite (2) agents. The sixth step in the pathway, synthesis of aromatic compounds in plants and micro- catalyzed by 5-enolpyruvylshikimate-3-phosphate synthase, organisms. Absent in metazoans, this pathway is an at- has already been successfully targeted, with the development tractive target for nontoxic herbicides and drugs. of glyphosate, a broad spectrum herbicide (5). However, after Escherichia coli expresses two shikimate dehydrogen- 20 years of extensive use, glyphosate-resistant weeds have ase paralogs, the NADP-specific AroE and a putative recently emerged (6), emphasizing the importance of maintain- enzyme YdiB. Here we characterize YdiB as a dual spec- ing target diversity. In order to design new inhibitors, crystal ificity quinate/shikimate dehydrogenase that utilizes ei- structures of several enzymes of the shikimate pathway have ther NAD or NADP as a cofactor. Structures of AroE and been elucidated recently: 3-dehydroquinate synthase (7), type I YdiB with bound cofactors were determined at 1.5 and and II dehydroquinases (8), type I and II shikimate kinases (9, 2.5 Å resolution, respectively. Both enzymes display a 10), and 5-enolpyruvylshikimate-3-phosphate synthase (11), similar architecture with two ␣/␤ domains separated by catalyzing the second, third, fifth, and sixth steps of the path- a wide cleft. Comparison of their dinucleotide-binding domains reveals the molecular basis for cofactor speci- way, respectively. ficity. Independent molecules display conformational Shikimate dehydrogenase (EC 1.1.1.25) catalyzes the fourth flexibility suggesting that a switch between open and reaction in the shikimate pathway, the NADP-dependent re- closed conformations occurs upon substrate binding. duction of 3-dehydroshikimate to shikimate (Fig. 1A). Whereas Sequence analysis and structural comparison led us to dehydrogenases usually form oligomers, shikimate dehydro- propose the catalytic machinery and a model for 3-de- genase, coded by the gene aroE in Escherichia coli, is present as hydroshikimate recognition. Furthermore, we discuss a monomer in most bacteria (12, 13). In higher organisms this the evolutionary and metabolic implications of the pres- activity is part of a multifunctional enzyme. In plants shiki- ence of two shikimate dehydrogenases in E. coli and mate dehydrogenase is associated with type I dehydroquinase other organisms. to form a bifunctional enzyme (14), whereas in fungi, such as Neurospora crassa, this enzyme forms the fifth domain of the pentafunctional AROM polypeptide, which catalyzes five of The shikimate pathway, which links metabolism of carbohy- seven steps of the shikimate pathway (15). However, the mo- drates to biosynthesis of aromatic compounds, is essential to lecular basis of 3-dehydroshikimate recognition and enzymatic plants, bacteria, and fungi (1) as well as apicomplexan para- reduction is not known. sites (2). This seven-step metabolic route leads from phos- Although in E. coli AroE is strictly specific for shikimate, phoenolpyruvate and erythrose 4-phosphate to chorismate, the some fungal shikimate dehydrogenases can also utilize quinic common precursor for the synthesis of folic acid, ubiquinone, acid as a substrate. This compound, which differs from shi- vitamins E and K, and aromatic amino acids (1). This pathway kimic acid only by the addition of a hydroxyl group at C-1 (Fig. is absent in metazoans, which must obtain the essential amino 1B), is the precursor to the ubiquitous plant secondary product acids phenylalanine and tryptophan from their diet. Therefore, chlorogenate (1). To date, two independent families of quinate/ enzymes of this pathway are important targets for the devel- shikimate dehydrogenases have been identified. The first con- sists of NAD-dependent dehydrogenases (16), and the second * This work was supported in part by Canadian Institutes of Heath consists of membrane-associated dehydrogenases that utilize Research Grant 200103GSP-90094-GMX-CFAA-19924 (to M. C.). The pyrrolo-quinoline-quinone as a cofactor (17). Both types of de- costs of publication of this article were defrayed in part by the payment hydrogenases are involved in the catabolic quinate pathway, of page charges. This article must therefore be hereby marked “adver- tisement” in accordance with 18 U.S.C. Section 1734 solely to indicate which allows growth of microorganisms with quinate as the this fact. sole carbon source by its conversion into protocatechuate and The atomic coordinates and structure factors (code 1NYT and 1O9B) subsequent metabolism by the ␤-ketoadipate pathway (16, 17). have been deposited in the Protein Data Bank, Research Collaboratory By using BLAST (18), ϳ130 sequences, mostly annotated as for Structural Bioinformatics, Rutgers University, New Brunswick, NJ putative shikimate dehydrogenases, can be identified as homol- (http://www.rcsb.org/). ʈ To whom correspondence may be addressed: Biotechnology ogous to AroE through the entire length of the gene, thereby Research Institute, NRC Macromolecular Structure Group, 6100 defining the shikimate dehydrogenase (SDH)1 family. It also Royalmount Ave., Montreal, Quebec H4P 2R2, Canada. E-mail: includes the NAD-dependent quinate/shikimate dehydroge- [email protected]. ** To whom correspondence may be addressed: Dept. of Chemistry, University of Glasgow, Glasgow G12 8QQ, Scotland, UK. E-mail: 1 The abbreviations used are: SDH, shikimate dehydrogenase; DTT, [email protected]. dithiothreitol; r.m.s.d., root mean square deviation. This paper is available on line at http://www.jbc.org 19463 19464 Crystal Structure of Shikimate Dehydrogenases NaCl, 5% (w/v) glycerol, 5 mM DTT. Initial crystals were obtained by sparse-matrix screening (Hampton Research, Laguna Niguel, CA) by hanging drop vapor diffusion. The best crystals grew at 21 °C from droplets containing 2 ␮l of protein solution and 2 ␮l of reservoir solution (0.8 M KH2PO4, 0.8 M NaH2PO4, 0.1 M Hepes, pH 7.5, 2 mM NADH) and reached their maximal size after 2 days. The crystals are hexagonal, ϭ ϭ ϭ ␣ ϭ space group P64 with cell dimensions a b 157.87 Å, c 40.01 Å, ␤ ϭ 90°, ␥ ϭ 120° with two molecules in the asymmetric unit. Structure Solution and Refinement—Native data were collected from cryo-cooled AroE crystals to 1.5 Å resolution at station 9.6 at the Daresbury SRS using a (ADSC) Quantum-4 charge-coupled device de- tector. Data were collected in-house, by using a MacScience DIP2000 detector on various crystals soaked with heavy atom solutions. Crystals soaked with Hg(CN)2 produced the only usable derivative that was isomorphous to the native crystals. This derivative was collected at a wavelength to maximize the anomalous signal on station 9.5 at the Daresbury SRS using a Mar charge-coupled device detector in a SIRAS experiment. All data were indexed and processed with the HKL suite (21), the cell dimensions and space group shown in Table I. Further FIG.1.The reactions catalyzed by shikimate (A) and quinate processing was carried out using programs from the CCP4 package (22). (B) dehydrogenases. From the anomalous Patterson map it was possible to identify 13 mercury sites using SHELX-90 (23), which were refined in Mlphare against the native 1.5-Å data to maximize the isomorphous signal. nases, whereas the pyrrolo-quinoline-quinone-dependent en- Phase refinement and extension was performed using the program DM zymes compose a different protein family. This family displays with solvent flattening and histogram matching. Averaging was at- no significant sequence similarity with any other NAD(P)-de- tempted but was unsuccessful because of the large variation in confor- pendent dehydrogenases, therefore constituting a distinct de- mation in the independent molecules in the asymmetric unit. Refine- hydrogenase family. Analysis of the complete genome of E. coli ment was carried out using the maximum likelihood refinement K12 and pathogenic O157:H7 strains has revealed the presence program REFMAC (24). Five percent of the data were randomly set aside as test data for calculation of Rfree. The structure was built of a gene of unknown function, ydiB, which shares 25% se- automatically using the program ARP/WARP (25) and assembled into quence identity with aroE. Thus, AroE and YdiB are paralogs, the four independent chains that were Ͼ90% complete. Manual correc- the only two proteins from the SDH family present in E. coli. tion of the structure and model building and addition of solvent was Here we report the biochemical characterization of YdiB and performed using modules within the program QUANTA (Accelrys Inc.). Nine iterations of refinement and manual rebuilding with the addition demonstrate that it is a quinate/shikimate dehydrogenase that ϩ can utilize either NAD or NADP as a cofactor. We have deter- of molecules of NADP , sulfate, glycerol, and DTT with the application of individual anisotropic temperature factors in the final stages of mined crystal structures of both these enzymes, AroE at 1.5 Å refinement resulted in a model with the final Rwork of 14.7% and Rfree of and YdiB at 2.5 Å resolution.
Recommended publications
  • Quinic Acid-Mediated Induction of Hypovirulence and a Hypovirulence-Associated Double-Stranded RNA in Rhizoctonia Solani Chunyu Liu
    The University of Maine DigitalCommons@UMaine Electronic Theses and Dissertations Fogler Library 8-2001 Quinic Acid-Mediated Induction of Hypovirulence and a Hypovirulence-Associated Double-Stranded RNA in Rhizoctonia Solani Chunyu Liu Follow this and additional works at: http://digitalcommons.library.umaine.edu/etd Part of the Biochemistry Commons, and the Molecular Biology Commons Recommended Citation Liu, Chunyu, "Quinic Acid-Mediated Induction of Hypovirulence and a Hypovirulence-Associated Double-Stranded RNA in Rhizoctonia Solani" (2001). Electronic Theses and Dissertations. 332. http://digitalcommons.library.umaine.edu/etd/332 This Open-Access Dissertation is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of DigitalCommons@UMaine. QUlNlC ACID-MEDIATED INDUCTION OF HYPOVIRULENCE AND A HY POVlRULENCE-ASSOCIATED DOUBLESTRANDED RNA IN RHIZOCTONIA SOLANI BY Chunyu Liu B.S. Wuhan University, 1989 MS. Wuhan University. 1992 A THESIS Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy (in Biochemistry and Molecular Biology) The Graduate School The Universrty of Maine August, 2001 Advisory Committee: Stellos Tavantzis, Professor of Plant Pathology, Advisor Seanna Annis, Assistant Professor of Mycology Robert Cashon, Assistant Professor of Biochemistry, Molecular Biology Robert Gundersen, Associate Professor of Biochemistry, Molecular Biology John Singer, Professor of Microbiology QUlNlC ACID-MEDIATED INDUCTION OF HYPOVIRULENCE AND A HYPOVIRULENCE-ASSOCIATED DOUBLE-STRANDED RNA (DSRNA) IN RHIZOCTONIA SOLANI By Chunyu Liu Thesis Advisor: Dr. Stellos Tavantzis An Abstract of the Thesis Presented in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy (in Biochemistry and Molecular Biology) August, 2001 This study is a part of a project focused on the relationship between dsRNA and hypovirulence in R.
    [Show full text]
  • Microbial Degradation of the Morphine Alkaloids Purification and Characterization of Morphine Dehydrogenase from Pseudomonas Putida M10
    Biochem. J. (1991) 274, 875-880 (Printed in Great Britain) 875 Microbial degradation of the morphine alkaloids Purification and characterization of morphine dehydrogenase from Pseudomonas putida M10 Neil C. BRUCE,* Clare J. WILMOT, Keith N. JORDAN, Lauren D. Gray STEPHENS and Christopher R. LOWE Institute of Biotechnology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QT, U.K. The NADP+-dependent morphine dehydrogenase that catalyses the oxidation of morphine to morphinone was detected in glucose-grown cells of Pseudomonas putida M 10. A rapid and reliable purification procedure involving two consecutive affinity chromatography steps on immobilized dyes was developed for purifying the enzyme 1216-fold to electrophoretic homogeneity from P. putida M 10. Morphine dehydrogenase was found to be a monomer of Mr 32000 and highly specific with regard to substrates, oxidizing only the C-6 hydroxy group of morphine and codeine. The pH optimum of morphine dehydrogenase was 9.5, and at pH 6.5 in the presence of NADPH the enzyme catalyses the reduction of codeinone to codeine. The Km values for morphine and codeine were 0.46 mm and 0.044 mm respectively. The enzyme was inhibited by thiol-blocking reagents and the metal-complexing reagents 1, 10-phenanthroline and 2,2'-dipyridyl, suggesting that a metal centre may be necessary for activity of the enzyme. INTRODUCTION EXPERIMENTAL The morphine alkaloids have attracted considerable attention Materials owing to their analgaesic properties and, consequently, much Mimetic Orange 3 A6XL and Mimetic Red A6XL were effort in the past has been directed at the production of new obtained from Affinity Chromatography Ltd., Freeport, morphine alkaloids by micro-organisms (lizuka et al., 1960, Ballasalla, Isle of Man, U.K.
    [Show full text]
  • Downloaded As a Text File, Is Completely Dynamic
    BMC Bioinformatics BioMed Central Database Open Access ORENZA: a web resource for studying ORphan ENZyme activities Olivier Lespinet and Bernard Labedan* Address: Institut de Génétique et Microbiologie, CNRS UMR 8621, Université Paris-Sud, Bâtiment 400, 91405 Orsay Cedex, France Email: Olivier Lespinet - [email protected]; Bernard Labedan* - [email protected] * Corresponding author Published: 06 October 2006 Received: 25 July 2006 Accepted: 06 October 2006 BMC Bioinformatics 2006, 7:436 doi:10.1186/1471-2105-7-436 This article is available from: http://www.biomedcentral.com/1471-2105/7/436 © 2006 Lespinet and Labedan; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Despite the current availability of several hundreds of thousands of amino acid sequences, more than 36% of the enzyme activities (EC numbers) defined by the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology (NC-IUBMB) are not associated with any amino acid sequence in major public databases. This wide gap separating knowledge of biochemical function and sequence information is found for nearly all classes of enzymes. Thus, there is an urgent need to explore these sequence-less EC numbers, in order to progressively close this gap. Description: We designed ORENZA, a PostgreSQL database of ORphan ENZyme Activities, to collate information about the EC numbers defined by the NC-IUBMB with specific emphasis on orphan enzyme activities.
    [Show full text]
  • STRUCTURAL STUDIES and EVALUATION of INHIBITORS of Mycobacterium
    STRUCTURAL STUDIES AND EVALUATION OF INHIBITORS OF Mycobacterium tuberculosis H37Rv SHIKIMATE DEHYDROGENASE (MtSDH) A Thesis by MALLIKARJUN LALGONDAR Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Chair of Committee, James C. Sacchettini Committee Members, David P. Barondeau Mary Bryk Head of Department, Gregory D. Reinhart May 2014 Major Subject: Biochemistry Copyright 2014 Mallikarjun Lalgondar ABSTRACT Shikimate dehydrogenase (SDH) is a reversible enzyme catalyzing the reduction of 3-dehydroshikimate (3DHS) to shikimate (SKM) utilizing NADPH cofactor in the shikimate pathway, a central route for biosynthesis of aromatic amino acids, folates and ubiquinones in microogransims, plants and parasites, which renders the enzymes of this essential pathway as attractive targets for developing antimicrobials, herbicides and antiparasitic agents. In this study, the crystal structure of Mycobacterium tuberculosis SDH (MtSDH) was determined in the apo-form and in complex with a ligand, SKM. The overall structure of MtSDH contains two structural domains with α/β architecture. The N-terminal substrate binding domain and C-terminal cofactor binding domain are interconnected by two helices forming an active site groove where catalysis occurs. In MtSDH, a series of helices connecting β10 and β11 strands replace a long loop found in other known SDH structures and this region may undergo structural changes upon cofactor binding. NADP+ was modeled reliably in the cofactor binding site to gain insight into specific interactions. The analysis reveals that NADP(H) binds in anti conformation and in addition to residues in “basic patch”, Ser125 within the glycine rich loop may interact with the 2'-phosphate of adenine ribose and form a novel cofactor binding microenvironment in SDH family of enzymes.
    [Show full text]
  • Proof of De Novo Synthesis of the Qa Enzymes of Neurospora Crassa During Induction
    Proc. Nati. Acad. Sci. USA Vol. 74, No. 10, pp. 4256-4260, October 1977 Biochemistry Proof of de novo synthesis of the qa enzymes of Neurospora crassa during induction [catabolic dehydroquinase (5-dehydroquinate dehydratase)/quinate dehydrogenase/qa gene cluster/eukaryote gene regulation] WILLIAM R. REINERT AND NORMAN H. GILES Program in Genetics, Department of Zoology, University of Georgia, Athens, Georgia 30602 Contributed by Norman H. Giles, July 22, 1977 ABSTRACT In Neurospora crassa three inducible enzymes There is strong genetic evidence that the qa-1 gene encodes a are necessary to catabolize quinic acid to protocatechuic acid. regulatory protein which, in the presence of quinic acid, exerts The three genes encoding these enzymes are tightly linked on chromosome VII near methionine-7 (me-7). This qa cluster in- positive control over the synthesis of the enzymes encoded in cludes a fourth gene, qa-1, which encodes a regulatory protein the three adjacent structural genes (6, 10). The appearance of apparently exerting positive control over transcription of the enzyme activity is very specifically regulated. In the presence other three qa genes. However, an alternative hypothesis is that of a preferred carbon source, e.g., sucrose, the activities of all the qa-I protein simply activates preformed polypeptides de- three enzymes are quite low. Quinate as a sole carbon source rived from the three structural genes. The use of density labeling causes a coordinate induction of all three enzymes (9). This with D20 demonstrated conclusively that the qa enzymes are synthesized de novo only during induction on quinic acid. Na- increase in enzyme activity can be inhibited by the simulta- tive catabolic dehydroquinase (5-dehydroquinate dehydratase; neous addition of cycloheximide to the medium (ref.
    [Show full text]
  • Elucidating the Role of Shikimate Dehydrogenase in Controlling The
    Habashi et al. BMC Plant Biology (2019) 19:476 https://doi.org/10.1186/s12870-019-2042-1 RESEARCH ARTICLE Open Access Elucidating the role of shikimate dehydrogenase in controlling the production of anthocyanins and hydrolysable tannins in the outer peels of pomegranate Rida Habashi1,2, Yael Hacham1,2, Rohit Dhakarey1, Ifat Matityahu1, Doron Holland3, Li Tian4 and Rachel Amir1,2* Abstract Background: The outer peels of pomegranate (Punica granatum L.) possess two groups of polyphenols that have health beneficial properties: anthocyanins (ATs, which also affect peel color); and hydrolysable tannins (HTs). Their biosynthesis intersects at 3-dehydroshikimate (3-DHS) in the shikimate pathway by the activity of shikimate dehydrogenase (SDH), which converts 3-DHS to shikimate (providing the precursor for AT biosynthesis) or to gallic acid (the precursor for HTs biosynthesis) using NADPH or NADP+ as a cofactor. The aim of this study is to gain more knowledge about the factors that regulate the levels of HTs and ATs, and the role of SDH. Results: The results have shown that the levels of ATs and HTs are negatively correlated in the outer fruit peels of 33 pomegranate accessions, in the outer peels of two fruits exposed to sunlight, and in those covered by paper bags. When calli obtained from the outer fruit peel were subjected to light/dark treatment and osmotic stresses (imposed by different sucrose concentrations), it was shown that light with high sucrose promotes the synthesis of ATs, while dark at the same sucrose concentration promotes the synthesis of HTs. To verify the role of SDH, six PgSDHs (PgSDH1, PgSDH3–1,2, PgSDH3a-1,2 and PgSDH4) were identified in pomegranate.
    [Show full text]
  • Building Microbial Factories for The
    Contents lists available at ScienceDirect Metabolic Engineering journal homepage: www.elsevier.com/locate/meteng Building microbial factories for the production of aromatic amino acid pathway derivatives: From commodity chemicals to plant-sourced natural products ∗ Mingfeng Caoa,b,1, Meirong Gaoa,b,1, Miguel Suásteguia,b, Yanzhen Meie, Zengyi Shaoa,b,c,d, a Department of Chemical and Biological Engineering, Iowa State University, USA b NSF Engineering Research Center for Biorenewable Chemicals (CBiRC), Iowa State University, USA c Interdepartmental Microbiology Program, Iowa State University, USA d The Ames Laboratory, USA e School of Life Sciences, No.1 Wenyuan Road, Nanjing Normal University, Qixia District, Nanjing, 210023, China ARTICLE INFO ABSTRACT Keywords: The aromatic amino acid biosynthesis pathway, together with its downstream branches, represents one of the Aromatic amino acid biosynthesis most commercially valuable biosynthetic pathways, producing a diverse range of complex molecules with many Shikimate pathway useful bioactive properties. Aromatic compounds are crucial components for major commercial segments, from De novo biosynthesis polymers to foods, nutraceuticals, and pharmaceuticals, and the demand for such products has been projected to Microbial production continue to increase at national and global levels. Compared to direct plant extraction and chemical synthesis, Flavonoids microbial production holds promise not only for much shorter cultivation periods and robustly higher yields, but Stilbenoids Benzylisoquinoline alkaloids also for enabling further derivatization to improve compound efficacy by tailoring new enzymatic steps. This review summarizes the biosynthetic pathways for a large repertoire of commercially valuable products that are derived from the aromatic amino acid biosynthesis pathway, and it highlights both generic strategies and spe- cific solutions to overcome certain unique problems to enhance the productivities of microbial hosts.
    [Show full text]
  • Determining Novel Functions of Arabidopsis 14-3-3 Proteins In
    Diaz et al. BMC Systems Biology 2011, 5:192 http://www.biomedcentral.com/1752-0509/5/192 RESEARCHARTICLE Open Access Determining novel functions of Arabidopsis 14-3-3 proteins in central metabolic processes Celine Diaz1, Miyako Kusano1, Ronan Sulpice2, Mitsutaka Araki1, Henning Redestig1, Kazuki Saito1, Mark Stitt2 and Ryoung Shin1* Abstract Background: 14-3-3 proteins are considered master regulators of many signal transduction cascades in eukaryotes. In plants, 14-3-3 proteins have major roles as regulators of nitrogen and carbon metabolism, conclusions based on the studies of a few specific 14-3-3 targets. Results: In this study, extensive novel roles of 14-3-3 proteins in plant metabolism were determined through combining the parallel analyses of metabolites and enzyme activities in 14-3-3 overexpression and knockout plants with studies of protein-protein interactions. Decreases in the levels of sugars and nitrogen-containing-compounds and in the activities of known 14-3-3-interacting-enzymes were observed in 14-3-3 overexpression plants. Plants overexpressing 14-3-3 proteins also contained decreased levels of malate and citrate, which are intermediate compounds of the tricarboxylic acid (TCA) cycle. These modifications were related to the reduced activities of isocitrate dehydrogenase and malate dehydrogenase, which are key enzymes of TCA cycle. In addition, we demonstrated that 14-3-3 proteins interacted with one isocitrate dehydrogenase and two malate dehydrogenases. There were also changes in the levels of aromatic compounds and the activities of shikimate dehydrogenase, which participates in the biosynthesis of aromatic compounds. Conclusion: Taken together, our findings indicate that 14-3-3 proteins play roles as crucial tuners of multiple primary metabolic processes including TCA cycle and the shikimate pathway.
    [Show full text]
  • Subcellular Localization of Quinate: Oxidoreductase from Phaseolus Mungo L. Sprouts Xiangbo Kang, H
    Subcellular Localization of Quinate: Oxidoreductase from Phaseolus mungo L. Sprouts Xiangbo Kang, H. Ekkehard Neuhaus and Renate Scheibe Pflanzenphysiologie, Fachbereich Biologie/Chemie, Universität Osnabrück, D-49069 Osnabrück, Bundesrepublik Deutschland Z. Naturforsch. 49c, 415-420 (1994); received March 24/April 27, 1994 Phaseolus mungo, Quinate:Oxidoreductase, Quinic Acid, Prechorismate Pathway, Shikimate Pathway Quinate:oxidoreductase (QORase, EC 1.1.1.24) was isolated and purified from etiolated mung bean (Phaseolus mungo L.) sprouts and a monospecific antiserum was raised in rabbit to the homogeneous protein. Highly intact etioplasts were isolated from the same plant material. The stroma of the purified etioplasts was enzymatically characterized. Contami­ nation by cytosol, mitochondria and vacuole was estimated from activities of marker en­ zymes. QORase activity was localized in the stroma (about 91% for both NAD+ and NADP+ as a cofactor). Western blotting and immunoprinting of the stroma proteins revealed a single band that migrated identically with the purified QORase. The results suggest that the QOR­ ase is localized predominantly, if not exclusively, in the etioplast stroma. The physiological role of the enzyme is discussed. Introduction (Refeno et al., 1982), tobacco callus (Beaudoin Quinic acid is widely distributed among higher and Thorpe, 1983, 1984) and conifer needles (Osi­ and lower plants (Karrer, 1958; Minamikawa and pov and Shein, 1987). Two of them were reported Yoshida, 1972; Boudet, 1973; Yoshida et al, 1975). to be purified to homogeneity (Refeno et al., 1982; Therefore, its physiological function and metab­ Kang and Scheibe, 1993). However, the character­ olism are of interest. At the turn of the 1960’s istics of these enzymes appeared to be very diver­ Weinstein et al.
    [Show full text]
  • Saccharomyces Cerevisiae—An Interesting Producer of Bioactive Plant Polyphenolic Metabolites
    International Journal of Molecular Sciences Review Saccharomyces Cerevisiae—An Interesting Producer of Bioactive Plant Polyphenolic Metabolites Grzegorz Chrzanowski Department of Biotechnology, Institute of Biology and Biotechnology, University of Rzeszow, 35-310 Rzeszow, Poland; [email protected]; Tel.: +48-17-851-8753 Received: 26 August 2020; Accepted: 29 September 2020; Published: 5 October 2020 Abstract: Secondary phenolic metabolites are defined as valuable natural products synthesized by different organisms that are not essential for growth and development. These compounds play an essential role in plant defense mechanisms and an important role in the pharmaceutical, cosmetics, food, and agricultural industries. Despite the vast chemical diversity of natural compounds, their content in plants is very low, and, as a consequence, this eliminates the possibility of the production of these interesting secondary metabolites from plants. Therefore, microorganisms are widely used as cell factories by industrial biotechnology, in the production of different non-native compounds. Among microorganisms commonly used in biotechnological applications, yeast are a prominent host for the diverse secondary metabolite biosynthetic pathways. Saccharomyces cerevisiae is often regarded as a better host organism for the heterologous production of phenolic compounds, particularly if the expression of different plant genes is necessary. Keywords: heterologous production; shikimic acid pathway; phenolic acids; flavonoids; anthocyanins; stilbenes 1. Introduction Secondary metabolites are defined as valuable natural products synthesized by different organisms that are not essential for growth and development. Plants produce over 200,000 of these compounds, which mostly arise from specialized metabolite pathways. Phenolic compounds play essential roles in interspecific competition and plant defense mechanisms against biotic and abiotic stresses [1] and radiation, and might act as regulatory molecules, pigments, or fragrances [2].
    [Show full text]
  • Building Microbial Factories for the Production of Aromatic Amino Acid
    Chemical and Biological Engineering Publications Chemical and Biological Engineering 8-10-2019 Building microbial factories for the production of aromatic amino acid pathway derivatives: From commodity chemicals to plant-sourced natural products Mingfeng Cao Iowa State University Meirong Gao Iowa State University, [email protected] Miguel Suastegui Iowa State University See next page for additional authors Follow this and additional works at: https://lib.dr.iastate.edu/cbe_pubs Part of the Biochemical and Biomolecular Engineering Commons, and the Biology and Biomimetic Materials Commons The ompc lete bibliographic information for this item can be found at https://lib.dr.iastate.edu/ cbe_pubs/386. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Article is brought to you for free and open access by the Chemical and Biological Engineering at Iowa State University Digital Repository. It has been accepted for inclusion in Chemical and Biological Engineering Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Building microbial factories for the production of aromatic amino acid pathway derivatives: From commodity chemicals to plant-sourced natural products Abstract The ra omatic amino acid biosynthesis pathway, together with its downstream branches, represents one of the most commercially valuable biosynthetic pathways, producing a diverse range of complex molecules with many useful bioactive properties. Aromatic compounds are crucial components for major commercial segments, from polymers to foods, nutraceuticals, and pharmaceuticals, and the demand for such products has been projected to continue to increase at national and global levels.
    [Show full text]
  • All Enzymes in BRENDA™ the Comprehensive Enzyme Information System
    All enzymes in BRENDA™ The Comprehensive Enzyme Information System http://www.brenda-enzymes.org/index.php4?page=information/all_enzymes.php4 1.1.1.1 alcohol dehydrogenase 1.1.1.B1 D-arabitol-phosphate dehydrogenase 1.1.1.2 alcohol dehydrogenase (NADP+) 1.1.1.B3 (S)-specific secondary alcohol dehydrogenase 1.1.1.3 homoserine dehydrogenase 1.1.1.B4 (R)-specific secondary alcohol dehydrogenase 1.1.1.4 (R,R)-butanediol dehydrogenase 1.1.1.5 acetoin dehydrogenase 1.1.1.B5 NADP-retinol dehydrogenase 1.1.1.6 glycerol dehydrogenase 1.1.1.7 propanediol-phosphate dehydrogenase 1.1.1.8 glycerol-3-phosphate dehydrogenase (NAD+) 1.1.1.9 D-xylulose reductase 1.1.1.10 L-xylulose reductase 1.1.1.11 D-arabinitol 4-dehydrogenase 1.1.1.12 L-arabinitol 4-dehydrogenase 1.1.1.13 L-arabinitol 2-dehydrogenase 1.1.1.14 L-iditol 2-dehydrogenase 1.1.1.15 D-iditol 2-dehydrogenase 1.1.1.16 galactitol 2-dehydrogenase 1.1.1.17 mannitol-1-phosphate 5-dehydrogenase 1.1.1.18 inositol 2-dehydrogenase 1.1.1.19 glucuronate reductase 1.1.1.20 glucuronolactone reductase 1.1.1.21 aldehyde reductase 1.1.1.22 UDP-glucose 6-dehydrogenase 1.1.1.23 histidinol dehydrogenase 1.1.1.24 quinate dehydrogenase 1.1.1.25 shikimate dehydrogenase 1.1.1.26 glyoxylate reductase 1.1.1.27 L-lactate dehydrogenase 1.1.1.28 D-lactate dehydrogenase 1.1.1.29 glycerate dehydrogenase 1.1.1.30 3-hydroxybutyrate dehydrogenase 1.1.1.31 3-hydroxyisobutyrate dehydrogenase 1.1.1.32 mevaldate reductase 1.1.1.33 mevaldate reductase (NADPH) 1.1.1.34 hydroxymethylglutaryl-CoA reductase (NADPH) 1.1.1.35 3-hydroxyacyl-CoA
    [Show full text]