The EO-1 Mission and the Advanced Land Imager the EO-1 Mission and the Advanced Land Imager Constantine J

Total Page:16

File Type:pdf, Size:1020Kb

The EO-1 Mission and the Advanced Land Imager the EO-1 Mission and the Advanced Land Imager Constantine J • DIGENIS The EO-1 Mission and the Advanced Land Imager The EO-1 Mission and the Advanced Land Imager Constantine J. Digenis n The Advanced Land Imager (ALI) was developed at Lincoln Laboratory under the sponsorship of the National Aeronautics and Space Administration (NASA). The purpose of ALI was to validate in space new technologies that could be utilized in future Landsat satellites, resulting in significant economies of mass, size, power consumption, and cost, and in improved instrument sensitivity and image resolution. The sensor performance on orbit was verified through the collection of high-quality imagery of the earth as seen from space. ALI was launched onboard the Earth Observing 1 (EO-1) satellite in November 2000 and inserted into a 705 km circular, sun-synchronous orbit, flying in formation with Landsat 7. Since then, ALI has met all its performance objectives and continues to provide good science data long after completing its original mission duration of one year. This article serves as a brief introduction to ALI and to six companion articles on ALI in this issue of the Journal. nder the landsat program, a series of sat- in the cross-track direction, covering a ground swath ellites have provided an archive of multispec- width of 185 km. The typical image is also 185 km Utral images of the earth. The first Landsat long along the flight path. satellite was launched in 1972 in a move to explore The Advanced Land Imager (ALI) was developed at the earth from space as the manned exploration of the Lincoln Laboratory under the sponsorship of the Na- moon was ending. There have been six more Landsat tional Aeronautics and Space Administration (NASA) satellites since then, the most recent one—Landsat and their New Millennium Program. The purpose of 7—launched in 1999. The data acquired by the Land- ALI was to validate in space new technologies that sat satellites are a unique resource for global-change could be utilized in future Landsat satellites, resulting research, with applications in agriculture (e.g., crop in significant economies of mass, size, power consump- discrimination and assessment), geology (e.g., volcanic tion and cost, and in improved instrument sensitivity eruption monitoring), forestry (e.g., canopy water- and image resolution. The resolution improvement content estimation and species composition), regional applies only to the panchromatic band (10 m), while planning (e.g., monitoring land use and urbaniza- all other bands are at the standard Landsat imager res- tion), hydrology (e.g., monitoring snow accumulation olution of 30 m to provide data continuity. ALI has and melt), and national security. Landsat data provide been designed to produce images directly comparable an extraordinary image resource that has been used for to those from the imager on Landsat 7. years to meet the many important needs of business, ALI achieves a reduction in size by employing a government, science, and education. fixed planar array of more than fifteen thousand detec- Landsat satellites fly in a polar orbit at about 700 tors operating in push-broom mode, replacing the me- km altitude. The Landsat imagers have relatively few chanically scanned linear array of earlier imagers. The detectors in a linear array that is mechanically scanned planar detector array is coupled to a wide field-of-view VOLUME 15, NUMBER 2, 2005 LINCOLN LABORATORY JOURNAL 161 • DIGENIS The EO-1 Mission and the Advanced Land Imager FIGURE 1. Artist’s rendering of the Earth Observing 1 (EO-1) satellite in flight, shown without the protective space cloth for a better view of the instruments. The Advanced Land Imager (ALI) is on the lower right with the white cover and two radiators (the light-color rectangles). Two other imagers—the Linear Etalon Imaging Spectrometer Array (LEISA) atmospheric corrector and the hyperspectral Hyperion sensor—are also onboard EO-1. (Image courtesy of NASA Goddard Space Flight Center.) optical system (15°) that covers the full swath width instrument on EO-1. Other imagers on EO-1 are the of a typical Landsat image (185 km). Lightweight sili- Linear Etalon Imaging Spectrometer Array (LEISA) con carbide mirrors are used in ALI to reduce weight. atmospheric corrector developed by GSFC; and Hy- In addition, the HgCdTe detectors are formulated for perion, a hyperspectral imager with 220 spectral chan- operation at a higher temperature (220 K) than earlier nels and a 7.6 km swath width, developed by TRW for detectors, making possible passive radiator cooling that GSFC*. Figure 1 shows an artist’s rendering of EO-1 also saves weight and power. The focal-plane detector in flight, with its protective space cloth removed for il- arrays cover a total of ten spectral bands spanning the lustration. The history of the development of the ALI 0.4 mm to 2.5 mm wavelength region. To reduce cost, concept and an overview of the instrument design and the focal plane was partially populated, providing 3° performance are recounted in this issue by Donald E. cross-track coverage that corresponds to 37 km on the Lencioni et al. in the article entitled “The EO-1 Ad- ground. The focal-plane detector array was designed in vanced Land Imager: An Overview.” a modular fashion so that the full 15° coverage could Lincoln Laboratory developed ALI with New Mil- be achieved by simply replicating the current module lennium Program instrument team members from four more times. Raytheon Santa Barbara Remote Sensing (SBRS), The Earth Observing 1 (EO-1) satellite is the first who developed the focal-plane system; and with team of the earth-orbiting missions under the New Millen- members from SSG, Inc., of Wilmington, Massachu- nium Program that was conceived as a series of lean, less-expensive missions to validate new instrument and * In addition to six articles on the development and performance of spacecraft technologies in flight. The NASA Goddard ALI, this issue of the Journal has a companion article on the Hyperion hyperspectral imager and its use for surface feature discrimination and Space Flight Center (GSFC) has overall responsibility coastal characterization. For more information, please see “Examples for the EO-1 mission. ALI was selected as the main of EO-1 Hyperion Data Analysis,” by Michael K. Griffin et al. 162 LINCOLN LABORATORY JOURNAL VOLUME 15, NUMBER 2, 2005 • DIGENIS The EO-1 Mission and the Advanced Land Imager setts, who developed the optical system. Lincoln Labo- Concurrent with the development of ALI, the nec- ratory was responsible for the design, fabrication, test, essary ground instrumentation was assembled and and calibration of ALI; the development of the instru- software was written to acquire and process the ALI ment control and calibration software and databases; data. This ground-based system was utilized extensive- and the initial on-orbit performance assessment. ly during the ground testing of ALI and also to process Under the motto “faster, cheaper, better,” NASA the subsequent flight data. The system is described in allowed some shortcuts in documentation and in the the article by Herbert E.M. Viggh et al. entitled “An review process, and a reduction in hardware proto- Automated Ground Data Acquisition and Processing type models, in exchange for an increased emphasis on System for the Advanced Land Imager.” schedule, cost, and performance. The engineering de- The unfortunate coincidence of several mission velopment unit was eliminated, and the qualification failures from 1997 to 1999 led NASA to a marked and flight units were combined into one, known as change of approach to mission assurance. EO-1 was the protoflight unit. Single-point failure modes were subjected to a rigorous “Red Team” review by a pan- allowed in non-critical components. NASA established el of experts in March 2000, about a year after ALI strict schedules and budgets, which were enforced un- had been delivered to NASA. Additional technical re- der penalty of mission cancellation. sources were made available, and the schedule was al- The development of ALI began in this environment. lowed to slip to solve certain challenging engineering A small team of unit engineers and scientists was as- problems. A thorough risk analysis was conducted and sembled at the Laboratory to carry out the instrument guidelines were established for the acceptable overall development and testing. To stay within schedule, it mission risk. While the revised approach primarily was often necessary to work long hours on weekdays benefited other elements of EO-1, it also contributed and weekends. The project organization within the to the thoroughness of the preparation and the overall Laboratory was as follows: program manager Costas mission success. Digenis; instrument scientist Don Lencioni; system The EO-1 satellite was launched on 21 November engineers Dave Harrison (1996–1997), Ed Bicknell 2000, on a Delta II rocket from Vandenberg Air Force (1997–1999), and Jeff Mendenhall (1999–2001); and Base, California, and inserted into a 705 km circular, payload engineering manager Steve Forman. sun-synchronous orbit. Within a month, after a series Some of the lead engineers on the project are repre- of orbital maneuvers, EO-1 achieved its intended po- sented as authors of the following articles in this issue. sition in formation with Landsat 7. In this position, Others are acknowledged in the article by Steven E. EO-1 covers the same ground track one minute later Forman entitled “Advanced Land Imager: Mechanical than Landsat 7. Images of the same ground areas, at Design, Integration, and Testing.” nearly the same time, have been collected by the two In addition to the tight schedule and budget, an- satellites for direct comparison. other challenge was the calibration of more than fif- EO-1 had a primary mission duration of one year teen thousand detectors in the focal plane.
Recommended publications
  • The Earth Observer. July
    National Aeronautics and Space Administration The Earth Observer. July - August 2012. Volume 24, Issue 4. Editor’s Corner Steve Platnick obser ervth EOS Senior Project Scientist The joint NASA–U.S. Geological Survey (USGS) Landsat program celebrated a major milestone on July 23 with the 40th anniversary of the launch of the Landsat-1 mission—then known as the Earth Resources and Technology Satellite (ERTS). Landsat-1 was the first in a series of seven Landsat satellites launched to date. At least one Landsat satellite has been in operation at all times over the past four decades providing an uninter- rupted record of images of Earth’s land surface. This has allowed researchers to observe patterns of land use from space and also document how the land surface is changing with time. Numerous operational applications of Landsat data have also been developed, leading to improved management of resources and informed land use policy decisions. (The image montage at the bottom of this page shows six examples of how Landsat data has been used over the last four decades.) To commemorate the anniversary, NASA and the USGS helped organize and participated in several events on July 23. A press briefing was held over the lunch hour at the Newseum in Washington, DC, where presenta- tions included the results of a My American Landscape contest. Earlier this year NASA and the USGS sent out a press release asking Americans to describe landscape change that had impacted their lives and local areas. Of the many responses received, six were chosen for discussion at the press briefing with the changes depicted in time series or pairs of Landsat images.
    [Show full text]
  • Landsat Data: Community Standard for Data Calibration
    LANDSAT DATA: COMMUNITY STANDARD FOR DATA CALIBRATION A Report of the National Geospatial Advisory Committee Landsat Advisory Group October 2020 Landsat Data: Community Standard for Data Calibration October 2020 LANDSAT DATA: COMMUNITY STANDARD FOR DATA CALIBRATION Executive Summary Landsat has become a widely recognized “gold” reference for Earth observation satellites. Landsat’s extensive historical record of highly calibrated data is a public good and exploited by other satellite operators to improve their data and products, and is becoming an open standard. However, the significance, value, and use case description of highly calibrated satellite data are typically not presented in a way that is understandable to general audiences. This paper aims to better communicate the fundamental importance of Landsat in making Earth observation data more accessible and interoperable for global users. The U.S. Geological Survey (USGS), in early 2020, requested the Landsat Advisory Group (LAG), subcommittee of the National Geospatial Advisory Committee (NGAC) to prepare this paper for a general audience, clearly capturing the essence of Landsat’s “gold” standard standing. Terminology, descriptions, and specific examples are presented at a layperson’s level. Concepts emphasize radiometric, geometric, spectral, and cross-sensor calibration, without complex algorithms. Referenced applications highlight change detection, time-series analysis, crop type mapping and data fusion/harmonization/integration. Introduction The National Land Imaging Program leadership from the U.S. Geological Survey (USGS) requested that the Landsat Advisory Group (LAG), a subcommittee of the National Geospatial Advisory Committee (NGAC), prepare a paper that accurately and coherently describes how Landsat data have become widely recognized as a radiometric and geometric calibration standard or “good-as-gold” reference for other multi-spectral satellite data.
    [Show full text]
  • Civilian Satellite Remote Sensing: a Strategic Approach
    Civilian Satellite Remote Sensing: A Strategic Approach September 1994 OTA-ISS-607 NTIS order #PB95-109633 GPO stock #052-003-01395-9 Recommended citation: U.S. Congress, Office of Technology Assessment, Civilian Satellite Remote Sensing: A Strategic Approach, OTA-ISS-607 (Washington, DC: U.S. Government Printing Office, September 1994). For sale by the U.S. Government Printing Office Superintendent of Documents, Mail Stop: SSOP. Washington, DC 20402-9328 ISBN 0-16 -045310-0 Foreword ver the next two decades, Earth observations from space prom- ise to become increasingly important for predicting the weather, studying global change, and managing global resources. How the U.S. government responds to the political, economic, and technical0 challenges posed by the growing interest in satellite remote sensing could have a major impact on the use and management of global resources. The United States and other countries now collect Earth data by means of several civilian remote sensing systems. These data assist fed- eral and state agencies in carrying out their legislatively mandated pro- grams and offer numerous additional benefits to commerce, science, and the public welfare. Existing U.S. and foreign satellite remote sensing programs often have overlapping requirements and redundant instru- ments and spacecraft. This report, the final one of the Office of Technolo- gy Assessment analysis of Earth Observations Systems, analyzes the case for developing a long-term, comprehensive strategic plan for civil- ian satellite remote sensing, and explores the elements of such a plan, if it were adopted. The report also enumerates many of the congressional de- cisions needed to ensure that future data needs will be satisfied.
    [Show full text]
  • Users, Uses, and Value of Landsat Satellite Imagery— Results from the 2012 Survey of Users
    Users, Uses, and Value of Landsat Satellite Imagery— Results from the 2012 Survey of Users By Holly M. Miller, Leslie Richardson, Stephen R. Koontz, John Loomis, and Lynne Koontz Open-File Report 2013–1269 U.S. Department of the Interior U.S. Geological Survey i U.S. Department of the Interior SALLY JEWELL, Secretary U.S. Geological Survey Suzette Kimball, Acting Director U.S. Geological Survey, Reston, Virginia 2013 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Suggested citation: Miller, H.M., Richardson, Leslie, Koontz, S.R., Loomis, John, and Koontz, Lynne, 2013, Users, uses, and value of Landsat satellite imagery—Results from the 2012 survey of users: U.S. Geological Survey Open-File Report 2013–1269, 51 p., http://dx.doi.org/10.3133/ofr20131269. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted material contained within this report. Contents Contents ......................................................................................................................................................... ii Acronyms and Initialisms ...............................................................................................................................
    [Show full text]
  • The Earth Observer.The Earth May -June 2017
    National Aeronautics and Space Administration The Earth Observer. May - June 2017. Volume 29, Issue 3. Editor’s Corner Steve Platnick EOS Senior Project Scientist At present, there are nearly 22 petabytes (PB) of archived Earth Science data in NASA’s Earth Observing System Data and Information System (EOSDIS) holdings, representing more than 10,000 unique products. The volume of data is expected to grow significantly—perhaps exponentially—over the next several years, and may reach nearly 247 PB by 2025. The primary services provided by NASA’s EOSDIS are data archive, man- agement, and distribution; information management; product generation; and user support services. NASA’s Earth Science Data and Information System (ESDIS) Project manages these activities.1 An invaluable tool for this stewardship has been the addition of Digital Object Identifiers (DOIs) to EOSDIS data products. DOIs serve as unique identifiers of objects (products in the specific case of EOSDIS). As such, a DOI enables a data user to rapidly locate a specific EOSDIS product, as well as provide an unambiguous citation for the prod- uct. Once registered, the DOI remains unchanged and the product can still be located using the DOI even if the product’s online location changes. Because DOIs have become so prevalent in the realm of NASA’s Earth 1 To learn more about EOSDIS and ESDIS, see “Earth Science Data Operations: Acquiring, Distributing, and Delivering NASA Data for the Benefit of Society” in the March–April 2017 issue of The Earth Observer [Volume 29, Issue 2, pp. 4-18]. continued on page 2 Landsat 8 Scenes Top One Million How many pictures have you taken with your smartphone? Too many to count? However many it is, Landsat 8 probably has you beat.
    [Show full text]
  • 8 7 Outcomes Towards
    GEO Forest Carbon Tracking Task Draft section to the CEOS High Profile Publicationi 1. Forests, CO2 and biodiversity Deforestation, degradation and peat fires represent up to 20% of the global anthropogenic CO2 emissions according to the Intergovernmental Panel on Climate Change (IPCC). Compared with other measures, reducing deforestation and forest degradation is a relatively straight-forward action to rapidly reduce global CO2 emissions, which in addition would bring positive side-effects in terms of environmental conservation and protecting biological diversity. This is the essence of the UNFCCC programme on Reducing Emissions from Deforestation and Forest Degradation (REDD+), which aims to engage developing countries, in particular in the tropical zone, to reduce emissions from deforestation and forest degradation, manage the role of conservation and sustainable management and enhance their forest carbon stocks. One of the main challenges to the inclusion of forest protection in the post-Kyoto framework has been the question about the capacity to consistently monitor the vast areas required and to establish reliable systems for national measuring, reporting and verification (MRV) of forest carbon stocks and their changes. Both technology and political willingness have matured and the COP-15 Copenhagen Accord called for the “immediate establishment of a mechanism including REDD+”, to be in operation by 2013. Furthermore, COP-15 draft decision 1(d) requests developing country Parties to establish robust and transparent national forest monitoring systems using a combination of remote sensing and ground-based forest carbon inventory approaches. The GEO Forest Carbon Tracking Task was established to provide satellite-based observation support to countries on the path towards the establishment of sovereign national MRV systems, forming a global network of MRV systems that comply with IPCC guidelines and support REDD+.
    [Show full text]
  • 2008 Landsat Data Continuity Mission (LDCM)
    NASA Report to Congress regarding Landsat Data Continuity Mission (LDCM) Data Continuity July 2008 NASA Report to Congress Regarding Landsat Data Continuity Mission (LDCM) Data Continuity Contents Page I. INTRODUCTION 3 II. HISTORICAL BACKGROUND OF LANDSAT MEASUREMENTS 4 II A. STRATEGIC IMPORTANCE 4 II B. LANDSAT SENSORS AND DATA 5 II C. HISTORY OF LANDSAT SATELUTE OPERATlONS 8 lID. LAND REMOTE SENSING POLICY ACT OF 1992 AND DATA CONTINUITY 9 IlL LANDSAT DATA CONTINUITY 10 III A. ACQUISlTlONGEOMETRY 10 HI B. COVERAGE CHARACTERISTICS 11 III C. SPECTRAL CHARACTERISTICS 11 III D. THERMAL L 'FRARED 13 IV. LANDSAT DATA CONTINUITY MISSION 14 IV A. SCHEDULE URGE CY 15 IV B. LDCM ACQUISITION STRATEGY AND STATUS 15 V. CONCLUSION ,' 16 APPENDIX A. OPTIONS FOR A THERMAL CAPABILITY 18 I. BACKGROUND 18 LA. CURRENT LANDSAT THERMAL IMAGING DATA CHARACTERISTICS 18 LB. CURRENT AND PLANNED EARTH REMOTE SENSING THERMAL IMAGlNG SYSTEMS 19 II. POTENTIAL LANDSAT THERMAL INFRARED IMAGING CONTINUITY OPTIONS 19 Il.A. LDCM 19 11.B. FREE-FLYER DEDICATED TO THERMAL IMAGING (LOWER RISK) 20 H.C. FREE FLYER DEDrCATED TO THERMAL IMAGING (HIGHER RISK) 20 [1.0. Mrssro S OF OPPORTUNITY 21 [1.0.1. INTERNATIONAL SPACE STATION (ISS) 21 n.D.2. COMMERCIAL MISSION OF OPPORTUNITY 22 II.D.3. NSS FLIGHT OR MISSION OF OpPORTUNITy 23 [l.DA. r TERNATIONAL PARTNERSHIP 23 III. ASSESSMENT AND SUMMARY 24 II. La G TERM EARTH SCIENCE DECADAL SURVEY HyspIRI MISSION 27 2 I. Introduction The following direction for NASA is included in the Explanatory Statement accompanying the FY 2008 Omnibus Appropriations Act (P.L.
    [Show full text]
  • Moderate Resolution Remote Sensing Alternatives: a Review of Landsat-Like Sensors and Their Applications
    Journal of Applied Remote Sensing, Vol. 1, 012506 (9 November 2007) Moderate resolution remote sensing alternatives: a review of Landsat-like sensors and their applications Scott L. Powella*, Dirk Pflugmacherb, Alan A. Kirschbaumb, Yunsuk Kimb, and Warren B. Cohena a USDA Forest Service, Pacific Northwest Research Station, Corvallis Forestry Sciences Laboratory, Corvallis, OR, 97331, USA b Oregon State University, Department of Forest Science, Corvallis, OR, 97331, USA * Corresponding Author USDA Forest Service, Pacific Northwest Research Station, Corvallis Forestry Sciences Laboratory, Corvallis, OR, 97331, USA [email protected] Abstract. Earth observation with Landsat and other moderate resolution sensors is a vital component of a wide variety of applications across disciplines. Despite the widespread success of the Landsat program, recent problems with Landsat 5 and Landsat 7 create uncertainty about the future of moderate resolution remote sensing. Several other Landsat- like sensors have demonstrated applicability in key fields of earth observation research and could potentially complement or replace Landsat. The objective of this paper is to review the range of applications of 5 satellite suites and their Landsat-like sensors: SPOT, IRS, CBERS, ASTER, and ALI. We give a brief overview of each sensor, and review the documented applications in several earth observation domains, including land cover classification, forests and woodlands, agriculture and rangelands, and urban. We conclude with suggestions for further research into the fields of cross-sensor comparison and multi-sensor fusion. This paper is significant because it provides the remote sensing community a concise synthesis of Landsat-like sensors and research demonstrating their capabilities. It is also timely because it provides a framework for evaluating the range of Landsat alternatives, and strategies for minimizing the impact of a possible Landsat data gap.
    [Show full text]
  • Landsat—Earth Observation Satellites
    Landsat—Earth Observation Satellites Since 1972, Landsat satellites have continuously acquired space- In the mid-1960s, stimulated by U.S. successes in planetary based images of the Earth’s land surface, providing data that exploration using unmanned remote sensing satellites, the serve as valuable resources for land use/land change research. Department of the Interior, NASA, and the Department of The data are useful to a number of applications including Agriculture embarked on an ambitious effort to develop and forestry, agriculture, geology, regional planning, and education. launch the first civilian Earth observation satellite. Their goal was achieved on July 23, 1972, with the launch of the Earth Resources Landsat is a joint effort of the U.S. Geological Survey (USGS) Technology Satellite (ERTS-1), which was later renamed and the National Aeronautics and Space Administration (NASA). Landsat 1. The launches of Landsat 2, Landsat 3, and Landsat 4 NASA develops remote sensing instruments and the spacecraft, followed in 1975, 1978, and 1982, respectively. When Landsat 5 then launches and validates the performance of the instruments launched in 1984, no one could have predicted that the satellite and satellites. The USGS then assumes ownership and operation would continue to deliver high quality, global data of Earth’s land of the satellites, in addition to managing all ground reception, surfaces for 28 years and 10 months, officially setting a new data archiving, product generation, and data distribution. The Guinness World Record for “longest-operating Earth observation result of this program is an unprecedented continuing record of satellite.” Landsat 6 failed to achieve orbit in 1993; however, natural and human-induced changes on the global landscape.
    [Show full text]
  • A Brief History of the Landsat Program
    Landsat Data A Brief History of the The Land Remote Sensing Policy Act of the thematic mapper (TM) sensors; Landsat Program 1992 (Public Law 102-5555) officially however, routine collection of MSS data authorized the National Satellite Land was terminated in late 1992. They orbit In the mid-1960’s, the National Remote Sensing Data Archive and at an altitude of 705 km and provide a Aeronautics and Space Administration assigned responsibility to the Department 16-day, 233-orbit cycle with a swath (NASA) embarked on an initiative to of the Interior. In addition to its Landsat overlap that varies from 7 percent at the develop and launch the first Earth- data management responsibility, the EDC Equator to nearly 84 percent at 81 monitoring satellite to meet the needs of investigates new methods of degrees north or south latitude. These resource managers and earth scientists. characterizing and studying changes on satellites were also designed to collect The U.S. Geological Survey (USGS) the land surface with Landsat data. data over a 185 km swath. The MSS entered into a partnership with NASA in sensors on board Landsats 4 and 5 are the early 1970’s to assume responsibility Characteristics of the identical to the ones that were carried on for archiving data and distributing data Landsat System Landsats 1, 2, and 3. The MSS and TM products. On July 23, 1972, NASA sensors primarily detect reflected launched the first in a series of satellites Landsats 1 through 3 operated in a near- radiation from the Earth in the visible designed to provide repetitive global polar orbit at an altitude of 920 km with and IR wavelengths, but the TM sensor coverage of the Earth’s land masses.
    [Show full text]
  • The 2019 Joint Agency Commercial Imagery Evaluation—Land Remote
    2019 Joint Agency Commercial Imagery Evaluation— Land Remote Sensing Satellite Compendium Joint Agency Commercial Imagery Evaluation NASA • NGA • NOAA • USDA • USGS Circular 1455 U.S. Department of the Interior U.S. Geological Survey Cover. Image of Landsat 8 satellite over North America. Source: AGI’s System Tool Kit. Facing page. In shallow waters surrounding the Tyuleniy Archipelago in the Caspian Sea, chunks of ice were the artists. The 3-meter-deep water makes the dark green vegetation on the sea bottom visible. The lines scratched in that vegetation were caused by ice chunks, pushed upward and downward by wind and currents, scouring the sea floor. 2019 Joint Agency Commercial Imagery Evaluation—Land Remote Sensing Satellite Compendium By Jon B. Christopherson, Shankar N. Ramaseri Chandra, and Joel Q. Quanbeck Circular 1455 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior DAVID BERNHARDT, Secretary U.S. Geological Survey James F. Reilly II, Director U.S. Geological Survey, Reston, Virginia: 2019 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit https://www.usgs.gov or call 1–888–ASK–USGS. For an overview of USGS information products, including maps, imagery, and publications, visit https://store.usgs.gov. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials JACIE as noted in the text.
    [Show full text]
  • Landsat's Earth Observation Data Support Disease Prediction
    How can open access to Earth imagery help predict disease spread or identify Landsat’s Earth solutions to toxic waterways? The Landsat program–the longest-standing continuous Observation Data global record of the Earth’s surface through satellite imagery–has enabled Support Disease these and other solutions in support of people, planet, and prosperity since its Prediction, launch in the 1970s. Beyond its social and environmental impacts, Landsat is also an Solutions to economic boon; it has produced annual cost savings in the United States ranging from Pollution, and US$350 million to $436 million for federal and state governments, nongovernmental More organizations, and the private sector, as well as an estimated worldwide economic A Case Study of Landsat benefit as high as $2.19 billion as of Prepared by SDSN TReNDS 2011. Landsat is a powerful example of the benefits of long-term investing to build robust data systems for sustained, longitudinal monitoring of environmental, social, and economic conditions. Landsat’s Earth Observation Data Support Disease Prediction, Solutions to Pollution, and More 2 A Case Study of Landsat Context There are approximately 150 million square kilometers of land worldwide, of which humans occupy or use roughly 80 percent. 40 percent of that is used for the purposes of agriculture, feeding our rapidly growing population; in 2011, the global population reached 7 billion, and it is projected to increase to more than 9 billion by 2050 (United Nations Population Division 2017). As demand grows, our planet’s capacity to sustain needed food and fiber production and fresh water supply diminishes (NASA, n.d.).
    [Show full text]