Invasive Alien Species Fact Sheet
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Mark of the Japanese Murrelet (Synthliboramphus Wumizusume): a Study of Song and Stewardship in Japan’S Inland Sea
Claremont Colleges Scholarship @ Claremont Pomona Senior Theses Pomona Student Scholarship 2019 The aM rk of the Japanese Murrelet (Synthliboramphus wumizusume): A study of song and stewardship in Japan’s Inland Sea Charlotte Hyde The Mark of the Japanese Murrelet (Synthliboramphus wumizusume): A study of song and stewardship in Japan’s Inland Sea Charlotte Hyde In partial fulfillment of the Bachelor of Arts Degree in Environmental Analysis, 2018-2019 academic year, Pomona College, Claremont, California Readers: Nina Karnovsky Wallace Meyer Acknowledgements I would first like to thank Professor Nina Karnovsky for introducing me to her work in Kaminoseki and for allowing me to join this incredible project, thereby linking me to a community of activists and scientists around the world. I am also so appreciative for her role as my mentor throughout my years as an undergraduate and for helping me develop my skills and confidence as a scholar and ecologist. Thank you also to my reader Wallace Meyer for his feedback on my writing and structure. I am so thankful for the assistance of Char Miller, who has worked tirelessly to give valuable advice and support to all seniors in the Environmental Analysis Department throughout their thesis journeys. Thank you to Marc Los Huertos for his assistance with R and data analysis, without which I would be hopelessly lost. I want to thank my peers in the Biology and Environmental Analysis departments for commiserating with me during stressful moments and for providing a laugh, hug, or shoulder to cry on, depending on the occasion. Thank you so much to my parents, who have supported me unconditionally throughout my turbulent journey into adulthood and who have never doubted my worth as a person or my abilities as a student. -
Baylisascariasis
Baylisascariasis Importance Baylisascaris procyonis, an intestinal nematode of raccoons, can cause severe neurological and ocular signs when its larvae migrate in humans, other mammals and birds. Although clinical cases seem to be rare in people, most reported cases have been Last Updated: December 2013 serious and difficult to treat. Severe disease has also been reported in other mammals and birds. Other species of Baylisascaris, particularly B. melis of European badgers and B. columnaris of skunks, can also cause neural and ocular larva migrans in animals, and are potential human pathogens. Etiology Baylisascariasis is caused by intestinal nematodes (family Ascarididae) in the genus Baylisascaris. The three most pathogenic species are Baylisascaris procyonis, B. melis and B. columnaris. The larvae of these three species can cause extensive damage in intermediate/paratenic hosts: they migrate extensively, continue to grow considerably within these hosts, and sometimes invade the CNS or the eye. Their larvae are very similar in appearance, which can make it very difficult to identify the causative agent in some clinical cases. Other species of Baylisascaris including B. transfuga, B. devos, B. schroeder and B. tasmaniensis may also cause larva migrans. In general, the latter organisms are smaller and tend to invade the muscles, intestines and mesentery; however, B. transfuga has been shown to cause ocular and neural larva migrans in some animals. Species Affected Raccoons (Procyon lotor) are usually the definitive hosts for B. procyonis. Other species known to serve as definitive hosts include dogs (which can be both definitive and intermediate hosts) and kinkajous. Coatimundis and ringtails, which are closely related to kinkajous, might also be able to harbor B. -
Phylogeographic and Diversification Patterns of the White-Nosed Coati
Molecular Phylogenetics and Evolution 131 (2019) 149–163 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Phylogeographic and diversification patterns of the white-nosed coati (Nasua narica): Evidence for south-to-north colonization of North America T ⁎ Sergio F. Nigenda-Moralesa, , Matthew E. Gompperb, David Valenzuela-Galvánc, Anna R. Layd, Karen M. Kapheime, Christine Hassf, Susan D. Booth-Binczikg, Gerald A. Binczikh, Ben T. Hirschi, Maureen McColginj, John L. Koprowskik, Katherine McFaddenl,1, Robert K. Waynea, ⁎ Klaus-Peter Koepflim,n, a Department of Ecology & Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA b School of Natural Resources, University of Missouri, Columbia, MO 65211, USA c Departamento de Ecología Evolutiva, Centro de Investigación en Biodiversidad y Conservación, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos 62209, Mexico d Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA e Department of Biology, Utah State University, Logan, UT 84322, USA f Wild Mountain Echoes, Vail, AZ 85641, USA g New York State Department of Environmental Conservation, Albany, NY 12233, USA h Amsterdam, New York 12010, USA i Zoology and Ecology, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia j Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA k School of Natural Resources and the Environment, The University of Arizona, Tucson, AZ 85721, USA l College of Agriculture, Forestry and Life Sciences, Clemson University, Clemson, SC 29634, USA m Smithsonian Conservation Biology Institute, National Zoological Park, Washington, D.C. -
Ancient Murrelet Synthliboramphus Antiquus
Major: Ancient Murrelet Synthliboramphus antiquus colony attendance at Langara 233 ANCIENT MURRELET SYNTHLIBORAMPHUS ANTIQUUS COLONY ATTENDANCE AT LANGARA ISLAND ASSESSED USING OBSERVER COUNTS AND RADAR IN RELATION TO TIME AND ENVIRONMENTAL CONDITIONS HEATHER L. MAJOR1,2 1Centre for Wildlife Ecology, Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada 2Current address: Department of Biological Sciences, University of New Brunswick, P.O. Box 5050, Saint John, NB E2L 4L5, Canada ([email protected]) Received 10 June 2016, accepted 26 July 2016 SUMMARY MAJOR, H.L. 2016. Ancient Murrelet Synthliboramphus antiquus colony attendance at Langara Island assessed using observer counts and radar in relation to time and environmental conditions. Marine Ornithology 44: 233–240. The decision to attend a colony on any given day or night is arguably the result of a trade-off between survival and reproductive success. It is often difficult to study this trade-off, as monitoring patterns of colony attendance for nocturnal burrow-nesting seabirds is challenging. Here, I 1) examined the effectiveness of monitoring Ancient Murrelet colony arrivals using marine radar, and 2) evaluated differences in colony attendance behavior in relation to time, light, and weather. I found a strong correlation between the number of Ancient Murrelets counted by observers in the colony and the number of radar targets counted, with estimated radar target counts being ~95 times higher than observer counts. My hypothesis that patterns of colony attendance are related to environmental conditions (i.e. light and weather) and that this relationship changes with time after sunset was supported. -
The Retriever, Issue 1, Volume 39
18 Features August 31, 2004 THE RETRIEVER Alien vs. Predator: as usual, humans screwed it up Courtesy of 20th Century Fox DOUGLAS MILLER After some groundbreaking discoveries on Retriever Weekly Editorial Staff the part of the humans, three Predators show up and it is revealed that the temple functions as prov- Many of the staple genre franchises that chil- ing ground for young Predator warriors. As the dren of the 1980’s grew up with like Nightmare on first alien warriors are born, chaos ensues – with Elm street or Halloween are now over twenty years Weyland’s team stuck right in the middle. Of old and are beginning to loose appeal, both with course, lots of people and monsters die. their original audience and the next generation of Observant fans will notice that Anderson’s filmgoers. One technique Hollywood has been story is very similar his own Resident Evil, but it exploiting recently to breath life into dying fran- works much better here. His premise is actually chises is to combine the keystone character from sort of interesting – especially ideas like Predator one’s with another’s – usually ending up with a involvement in our own development. Anderson “versus” film. Freddy vs. Jason was the first, and tries to allow his story to unfold and build in the now we have Alien vs. Predator, which certainly style of Alien, withholding the monsters almost will not be the last. Already, the studios have toyed altogether until the second half of the film. This around with making Superman vs. Batman, does not exactly work. -
Mammalia, Carnivora) from the Blancan of Florida
THREE NEW PROCYONIDS (MAMMALIA, CARNIVORA) FROM THE BLANCAN OF FLORIDA Laura G. Emmert1,2 and Rachel A. Short1,3 ABSTRACT Fossils of the mammalian family Procyonidae are relatively abundant at many fossil localities in Florida. Analysis of specimens from 16 late Blancan localities from peninsular Florida demonstrate the presence of two species of Procyon and one species of Nasua. Procyon gipsoni sp. nov. is slightly larger than extant Procyon lotor and is distinguished by five dental characters including a lack of a crista between the para- cone and hypocone on the P4, absence of a basin at the lingual intersection of the hypocone and protocone on the P4, and a reduced metaconule on the M1. Procyon megalokolos sp. nov. is significantly larger than extant P. lotor and is characterized primarily by morphology of the postcrania, such as an expanded and posteriorly rotated humeral medial epicondyle, more prominent tibial tuberosity, and more pronounced radioulnar notch. Other than larger size, the dentition of P. megalokolos falls within the range of variation observed in extant P. lotor, suggesting that it may be an early member of the P. lotor lineage. Nasua mast- odonta sp. nov. has a unique accessory cusp on the m1 as well as multiple morphological differences in the dentition and postcrania, such as close appression of the trigonid of the m1 and a less expanded medial epicondyle of the humerus. We also synonymize Procyon rexroadensis, formerly the only known Blancan Procyon species in North America, with P. lotor due to a lack of distinct dental morphological features observed in specimens from its type locality in Kansas. -
Biological Monitoring at Aiktak Island, Alaska in 2016
AMNWR 2017/02 BIOLOGICAL MONITORING AT AIKTAK ISLAND, ALASKA IN 2016 Sarah M. Youngren, Daniel C. Rapp, and Nora A. Rojek Key words: Aiktak Island, Alaska, Aleutian Islands, ancient murrelet, Cepphus columba, common murre, double-crested cormorant, fork-tailed storm-petrel, Fratercula cirrhata, Fratercula corniculata, glaucous-winged gull, horned puffin, Larus glaucescens, Leach’s storm-petrel, Oceanodroma furcata, Oceanodroma leucorhoa, pelagic cormorant, Phalacrocorax auritus, Phalacrocorax pelagicus, Phalacrocorax urile, pigeon guillemot, population trends, productivity, red-faced cormorant, Synthliboramphus antiquus, thick-billed murre, tufted puffin, Uria aalge, Uria lomvia. U.S. Fish and Wildlife Service Alaska Maritime National Wildlife Refuge 95 Sterling Highway, Suite 1 Homer, AK 99603 January 2017 Cite as: Youngren, S. M., D. C. Rapp, and N. A. Rojek. 2017. Biological monitoring at Aiktak Island, Alaska in 2016. U.S. Fish and Wildl. Serv. Rep., AMNWR 2017/02. Homer, Alaska. Tufted puffins flying along the southern coast of Aiktak Island, Alaska. TABLE OF CONTENTS Page INTRODUCTION ........................................................................................................................................... 1 STUDY AREA ............................................................................................................................................... 1 METHODS ................................................................................................................................................... -
Educator's Guide: Orion
Legends of the Night Sky Orion Educator’s Guide Grades K - 8 Written By: Dr. Phil Wymer, Ph.D. & Art Klinger Legends of the Night Sky: Orion Educator’s Guide Table of Contents Introduction………………………………………………………………....3 Constellations; General Overview……………………………………..4 Orion…………………………………………………………………………..22 Scorpius……………………………………………………………………….36 Canis Major…………………………………………………………………..45 Canis Minor…………………………………………………………………..52 Lesson Plans………………………………………………………………….56 Coloring Book…………………………………………………………………….….57 Hand Angles……………………………………………………………………….…64 Constellation Research..…………………………………………………….……71 When and Where to View Orion…………………………………….……..…77 Angles For Locating Orion..…………………………………………...……….78 Overhead Projector Punch Out of Orion……………………………………82 Where on Earth is: Thrace, Lemnos, and Crete?.............................83 Appendix………………………………………………………………………86 Copyright©2003, Audio Visual Imagineering, Inc. 2 Legends of the Night Sky: Orion Educator’s Guide Introduction It is our belief that “Legends of the Night sky: Orion” is the best multi-grade (K – 8), multi-disciplinary education package on the market today. It consists of a humorous 24-minute show and educator’s package. The Orion Educator’s Guide is designed for Planetarians, Teachers, and parents. The information is researched, organized, and laid out so that the educator need not spend hours coming up with lesson plans or labs. This has already been accomplished by certified educators. The guide is written to alleviate the fear of space and the night sky (that many elementary and middle school teachers have) when it comes to that section of the science lesson plan. It is an excellent tool that allows the parents to be a part of the learning experience. The guide is devised in such a way that there are plenty of visuals to assist the educator and student in finding the Winter constellations. -
Universidade De Lisboa
UNIVERSIDADE DE LISBOA Faculdade de Medicina Veterinária RASTREIO DE PARASITAS GASTROINTESTINAIS E PULMONARES EM MAMÍFEROS DE UM PARQUE ZOOLÓGICO EM ABRANTES, PORTUGAL SUSANA MARGARIDA BRITO ESCUSA CONSTITUIÇÃO DO JÚRI ORIENTADOR Doutora Isabel Maria Soares Pereira da Doutor Luís Manuel Madeira de Carvalho Fonseca de Sampaio Doutor Luís Manuel Madeira de Carvalho COORIENTADORA Doutor José Augusto Farraia e Silva Meireles Dra. Vera Purificação Carvalho Pessoa 2018 LISBOA UNIVERSIDADE DE LISBOA Faculdade de Medicina Veterinária RASTREIO DE PARASITAS GASTROINTESTINAIS E PULMONARES EM MAMÍFEROS DE UM PARQUE ZOOLÓGICO EM ABRANTES, PORTUGAL DISSERTAÇÃO DE MESTRADO INTEGRADO EM MEDICINA VETERINÁRIA SUSANA MARGARIDA BRITO ESCUSA CONSTITUIÇÃO DO JÚRI ORIENTADOR Doutora Isabel Maria Soares Pereira da Doutor Luís Manuel Madeira de Carvalho Fonseca de Sampaio Doutor Luís Manuel Madeira de Carvalho COORIENTADORA Doutor José Augusto Farraia e Silva Meireles Dra. Vera Purificação Carvalho Pessoa 2018 LISBOA Agradecimentos Ao terminar esta etapa tenho consciência que tudo teria sido impossível sem a contribuição das seguintes pessoas. A todos, os meus sentidos agradecimentos. Um sincero agradecimento ao Professor Doutor Luís Madeira de Carvalho, por aceitar ser meu orientador, pela confiança e por me ter ajudado em todos os passos desta aventura. Também pelo seu bom humor e gosto contagiante pela parasitologia. À Dra. Vera Pessoa, por aceitar ser minha coorientadora e pelas oportunidades que me proporcionou. À Dra Lídia Gomes, pela enorme ajuda prestada no laboratório e pelas brilhantes ideias que com toda a certeza melhoraram esta tese. Obrigada pelas conversas, por me “obrigar” a sair da casca e pelos momentos de descontração. Ao Professor Mestre Telmo Nunes, pela ajuda no tratamento estatístico dos dados. -
Gastrointestinal Helminths of Feral Raccoons (Procyon Lotor) in Wakayama Prefecture, Japan
FULL PAPER Parasitology Gastrointestinal Helminths of Feral Raccoons (Procyon lotor) in Wakayama Prefecture, Japan Hiroshi SATO1) and Kazuo SUZUKI2) 1)Laboratory of Veterinary Parasitology, Faculty of Agriculture, Yamaguchi University, 1677–1 Yoshida, Yamaguchi 753–8515 and 2)Hikiiwa Park Center, 1629 Inari-cho, Tanabe 646–0051, Japan (Received 30 May 2005/Accepted 1 December 2005) ABSTRACT. The population and distribution of feral raccoons (Procyon lotor) are expanding in Japan after escape or release from animal- owners. Wakayama Prefecture is one of the most typically devastated areas by this exotic carnivore, particularly in the last five years after a latent distribution for more than ten years. Official control measures of feral raccoons commenced in the summer of 2002 by several municipalities, and 531 animals collected in 12 municipalities between May 2003 and April 2005 were submitted for parasito- logical examination of gastrointestinal helminths. Detected parasites included six nematodes (Physaloptera sp. [prevalence; 5.1%], Con- tracaecum spiculigerum [0.9%], Strongyloides procyonis [25.5%], Ancylostoma kusimaense [0.8%], Arthrostoma miyazakiense [0.4%], and Molineus legerae [1.1%]), seven trematodes (Isthmiophora hortensis [4.9%], echinostomatid sp. with 34–39 collar spines [1.7%], Metagonimus takahashii [12.4%], M. yokogawai [0.8%], Plagiorchis muris [0.2%], Macroorchis spinulosus [1.9%], and Consinium ten [0.2%]), one cestode (Mesocestoides sp. [0.2%]), and six acanthocephalan spp. (Centrorhynchus bazalenticus [0.2%], Centrorhynchus teres [5.5%], Sphaerirostris lanceoides [2.4%], Plagiorhynchus ogatai [0.6%], Porrorchis oti [1.5%], and Southwelina hispida [1.9%]). Most of the collected parasites are food-borne, indigenous helminth species. Physaloptera sp. has never been recorded in indigenous wild carnivores in Japan, and resembles closely P. -
Alien Vs. Predator Table Guide by Shoryukentothechin
Page 1 of 36 Alien vs. Predator Table Guide By ShoryukenToTheChin 6 7 5 8 9 3 4 2 10 11 1 Page 2 of 36 Key to Table Overhead Image – 1. Egg Sink Holes 2. Left Orbit 3. Left Ramp 4. Glyph Targets 5. Alien Target 6. Sink Hole 7. Plasma Mini – Orbit 8. Wrist Blade Target 9. Pyramid Mini – Orbit 10. Right Ramp 11. Right Orbit In this guide when I mention a Ramp, Lane, Hole etc. I will put a number in brackets which will correspond to the above Key, so that you know where on the Table that particular feature is located. Page 3 of 36 TABLE SPECIFICS Notice: This Guide is based off of the Zen Pinball 2 (PS4/PS3/Vita) version of the Table on default controls. Some of the controls will be different on the other versions (Pinball FX 2, etc...), but everything else in the Guide remains the same. INTRODUCTION Zen Studios has teamed up with Fox to give us an Alien vs. Predator Pinball Table. The Table was released within a pack titled “Aliens vs. Pinball” which featured 3 Pinball Tables based on Aliens Cinematic Universe. Alien vs. Predator Pinball sees you play through various Modes which see you play out key scenes in the blockbuster movie. The Table incorporates the art style of the movie, and various audio works from the movie itself. I hope my Guide will help you understand the Table better. Page 4 of 36 Skill Shot - *1 Million Points, can be raised* Depending on the launch strength you used on the Ball. -
Ancylostoma Ceylanicum
Wei et al. Parasites & Vectors (2016) 9:518 DOI 10.1186/s13071-016-1795-8 RESEARCH Open Access The hookworm Ancylostoma ceylanicum intestinal transcriptome provides a platform for selecting drug and vaccine candidates Junfei Wei1, Ashish Damania1, Xin Gao2, Zhuyun Liu1, Rojelio Mejia1, Makedonka Mitreva2,3, Ulrich Strych1, Maria Elena Bottazzi1,4, Peter J. Hotez1,4 and Bin Zhan1* Abstract Background: The intestine of hookworms contains enzymes and proteins involved in the blood-feeding process of the parasite and is therefore a promising source of possible vaccine antigens. One such antigen, the hemoglobin-digesting intestinal aspartic protease known as Na-APR-1 from the human hookworm Necator americanus, is currently a lead candidate antigen in clinical trials, as is Na-GST-1 a heme-detoxifying glutathione S-transferase. Methods: In order to discover additional hookworm vaccine antigens, messenger RNA was obtained from the intestine of male hookworms, Ancylostoma ceylanicum, maintained in hamsters. RNA-seq was performed using Illumina high-throughput sequencing technology. The genes expressed in the hookworm intestine were compared with those expressed in the whole worm and those genes overexpressed in the parasite intestine transcriptome were further analyzed. Results: Among the lead transcripts identified were genes encoding for proteolytic enzymes including an A. ceylanicum APR-1, but the most common proteases were cysteine-, serine-, and metallo-proteases. Also in abundance were specific transporters of key breakdown metabolites, including amino acids, glucose, lipids, ions and water; detoxifying and heme-binding glutathione S-transferases; a family of cysteine-rich/antigen 5/pathogenesis-related 1 proteins (CAP) previously found in high abundance in parasitic nematodes; C-type lectins; and heat shock proteins.