Ancylostoma Ceylanicum
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Hookworm (Ancylostomiasis)
Hookworm (ancylostomiasis) Hookworm (ancylostomiasis) rev Jan 2018 BASIC EPIDEMIOLOGY Infectious Agent Hookworm is a soil transmitted helminth. Human infections are caused by the nematode parasites Necator americanus and Ancylostoma duodenale. Transmission Transmission primarily occurs via direct contact with fecal contaminated soil. Soil becomes contaminated with eggs shed in the feces of an individual infected with hookworm. The eggs must incubate in the soil for several days before they become infectious and are able to be transmitted to another person. Oral transmission can sometimes occur from consuming improperly washed food grown or exposed to fecal contaminated soil. Transmission can also occur (rarely) between a mother and her fetus/infant via infected placental or mammary tissue. Incubation Period Eggs must incubate in the soil for 5-10 days before they mature into infectious filariform larvae that can penetrate the skin. Within the first 10 days following penetration of the skin filariform larvae will migrate to the lungs and occasionally cause respiratory symptoms. Three to five weeks after skin penetration the larvae will migrate to the intestinal tract where they will mature into an adult worm. Adult worms may live in the intestine for 1-5 years depending on the species. Communicability Human to human transmission of hookworm does NOT occur because part of the worm’s life cycle must be completed in soil before becoming infectious. However, vertical transmission of dormant filariform larvae can occur between a mother and neonate via contaminated breast milk. These dormant filariform larvae can remain within in a host for months to years. Soil contamination is perpetuated by fecal contamination from infected individuals who can shed eggs in feces for several years after infection. -
Lecture 5: Emerging Parasitic Helminths Part 2: Tissue Nematodes
Readings-Nematodes • Ch. 11 (pp. 290, 291-93, 295 [box 11.1], 304 [box 11.2]) • Lecture 5: Emerging Parasitic Ch.14 (p. 375, 367 [table 14.1]) Helminths part 2: Tissue Nematodes Matt Tucker, M.S., MSPH [email protected] HSC4933 Emerging Infectious Diseases HSC4933. Emerging Infectious Diseases 2 Monsters Inside Me Learning Objectives • Toxocariasis, larva migrans (Toxocara canis, dog hookworm): • Understand how visceral larval migrans, cutaneous larval migrans, and ocular larval migrans can occur Background: • Know basic attributes of tissue nematodes and be able to distinguish http://animal.discovery.com/invertebrates/monsters-inside- these nematodes from each other and also from other types of me/toxocariasis-toxocara-roundworm/ nematodes • Understand life cycles of tissue nematodes, noting similarities and Videos: http://animal.discovery.com/videos/monsters-inside- significant difference me-toxocariasis.html • Know infective stages, various hosts involved in a particular cycle • Be familiar with diagnostic criteria, epidemiology, pathogenicity, http://animal.discovery.com/videos/monsters-inside-me- &treatment toxocara-parasite.html • Identify locations in world where certain parasites exist • Note drugs (always available) that are used to treat parasites • Describe factors of tissue nematodes that can make them emerging infectious diseases • Be familiar with Dracunculiasis and status of eradication HSC4933. Emerging Infectious Diseases 3 HSC4933. Emerging Infectious Diseases 4 Lecture 5: On the Menu Problems with other hookworms • Cutaneous larva migrans or Visceral Tissue Nematodes larva migrans • Hookworms of other animals • Cutaneous Larva Migrans frequently fail to penetrate the human dermis (and beyond). • Visceral Larva Migrans – Ancylostoma braziliense (most common- in Gulf Coast and tropics), • Gnathostoma spp. Ancylostoma caninum, Ancylostoma “creeping eruption” ceylanicum, • Trichinella spiralis • They migrate through the epidermis leaving typical tracks • Dracunculus medinensis • Eosinophilic enteritis-emerging problem in Australia HSC4933. -
Studies Show That Fecal Dx Antigen Tests Allow for Earlier Detection of More Intestinal Parasites
Research update Studies show that Fecal Dx antigen tests allow for earlier detection of more intestinal parasites Antigen detection is commonly used today to diagnose Results heartworm and Giardia infections, and now it is available for In the 1,156 field fecal samples for the roundworm and hookworm additional parasites. IDEXX Reference Laboratories, as a leader study and the 1,000 field fecal samples for the whipworm study, in pet healthcare innovation, has developed immunoassays for egg-positive roundworm, hookworm, and whipworm results were the detection of hookworm, roundworm, and whipworm antigens noted in 23, 13, and 27 samples, respectively. In contrast, 26, 19, in feces of dogs and cats. These antigens are secreted from the and 35 samples were antigen positive for roundworm, hookworm, adult worm and are not present in their eggs, which allows for and whipworm. The T. canis ELISA detected T. cati coproantigen in detection of prepatent stages as well as the ability to overcome the feline samples. Fecal antigens detected more infections than did challenges of intermittent egg laying. Earlier detection during the fecal flotation. prepatent period will also reduce the frequency of environmental contamination with potentially infectious eggs. Roundworm Hookworm Whipworm Two recent papers describing the performance of the Fecal Dx™ antigen tests, enzyme-linked immunosorbent assays (ELISAs) Fecal flotation 23 13 27 developed by IDEXX for coproantigen detection of Trichuris vulpis, positive Ancylostoma caninum and Toxocara canis in dogs and Toxocara cati in cats, are summarized below. Fecal Dx antigen 26 19 35 • Enzyme-linked immunosorbent assay for coproantigen detection test positive of Trichuris vulpis in dogs1 • Enzyme-linked immunosorbent assays for coproantigen Table 1. -
Performance of Two Serodiagnostic Tests for Loiasis in A
Performance of two serodiagnostic tests for loiasis in a Non-Endemic area Federico Gobbi, Dora Buonfrate, Michel Boussinesq, Cédric Chesnais, Sébastien Pion, Ronaldo Silva, Lucia Moro, Paola Rodari, Francesca Tamarozzi, Marco Biamonte, et al. To cite this version: Federico Gobbi, Dora Buonfrate, Michel Boussinesq, Cédric Chesnais, Sébastien Pion, et al.. Perfor- mance of two serodiagnostic tests for loiasis in a Non-Endemic area. PLoS Neglected Tropical Dis- eases, Public Library of Science, 2020, 14 (5), pp.e0008187. 10.1371/journal.pntd.0008187. inserm- 02911633 HAL Id: inserm-02911633 https://www.hal.inserm.fr/inserm-02911633 Submitted on 4 Aug 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. PLOS NEGLECTED TROPICAL DISEASES RESEARCH ARTICLE Performance of two serodiagnostic tests for loiasis in a Non-Endemic area 1 1 2 2 Federico GobbiID *, Dora Buonfrate , Michel Boussinesq , Cedric B. Chesnais , 2 1 1 1 3 Sebastien D. Pion , Ronaldo Silva , Lucia Moro , Paola RodariID , Francesca Tamarozzi , Marco Biamonte4, Zeno Bisoffi1,5 1 IRCCS Sacro -
Environmental Characteristics Around the Household and Their Association with Hookworm Infection in Rural Communities from Bahir Dar, Amhara Region, Ethiopia
RESEARCH ARTICLE Environmental characteristics around the household and their association with hookworm infection in rural communities from Bahir Dar, Amhara Region, Ethiopia Melaku Anegagrie1,2☯, SofõÂa Lanfri3,4☯, Aranzazu Amor Aramendia1,2, Carlos 3,5 2 2 4 MatõÂas ScavuzzoID , Zaida HerradorID , AgustõÂn BenitoID , Maria Victoria PeriagoID * 1 FundacioÂn Mundo Sano, Madrid, Spain, 2 National Centre for Tropical Medicine, Institute of Health Carlos III, Madrid, Spain, 3 Instituto de Altos Estudios Espaciales Mario Gulich, ComisioÂn Nacional de Actividades Espaciales, Universidad Nacional de CoÂrdoba, CoÂrdoba, Argentina, 4 FundacioÂn Mundo Sano, Buenos a1111111111 Aires, Argentina, 5 Consejo Nacional de Investigaciones CientõÂficas y TeÂcnicas (CONICET), Buenos Aires, a1111111111 Argentina a1111111111 ☯ These authors contributed equally to this work. a1111111111 * [email protected] a1111111111 Abstract OPEN ACCESS Soil-Transmitted Helminths (STH) are highly prevalent Neglected Tropical Disease in Ethio- pia, an estimated 26 million are infected. Geographic Information Systems and Remote Citation: Anegagrie M, Lanfri S, Aramendia AA, Scavuzzo CM, Herrador Z, Benito A, et al. (2021) Sensing (RS) technologies assist data mapping and analysis, and the prediction of the spa- Environmental characteristics around the tial distribution of infection in relation to environmental variables. The influence of socioeco- household and their association with hookworm nomic, environmental and soil characteristics on hookworm infection at the individual and infection in rural communities from Bahir Dar, household level is explored in order to identify spatial patterns of infection in rural villages Amhara Region, Ethiopia. PLoS Negl Trop Dis 15(6): e0009466. https://doi.org/10.1371/journal. from Zenzelema (Amhara region). Inhabitants greater than 5 years old were recruited in pntd.0009466 order to assess the presence of STH. -
Heterogeneity in Transmission Parameters of Hookworm Infection Within the Baseline Data from the TUMIKIA Study in Kenya James E
Truscott et al. Parasites Vectors (2019) 12:442 https://doi.org/10.1186/s13071-019-3686-2 Parasites & Vectors RESEARCH Open Access Heterogeneity in transmission parameters of hookworm infection within the baseline data from the TUMIKIA study in Kenya James E. Truscott1,2,3*, Alison K. Ower1,2, Marleen Werkman1,2,3, Katherine Halliday3,4, William E. Oswald3,4, Paul M. Gichuki5, Carlos Mcharo5, Simon Brooker6, Sammy M. Njenga5, Charles Mwandariwo5, Judd L. Walson1,3,7, Rachel Pullan4 and Roy Anderson1,2,3 Abstract Background: As many countries with endemic soil-transmitted helminth (STH) burdens achieve high coverage levels of mass drug administration (MDA) to treat school-aged and pre-school-aged children, understanding the detailed efects of MDA on the epidemiology of STH infections is desirable in formulating future policies for morbidity and/or transmission control. Prevalence and mean intensity of infection are characterized by heterogeneity across a region, leading to uncertainty in the impact of MDA strategies. In this paper, we analyze this heterogeneity in terms of factors that govern the transmission dynamics of the parasite in the host population. Results: Using data from the TUMIKIA study in Kenya (cluster STH prevalence range at baseline: 0–63%), we esti- mated these parameters and their variability across 120 population clusters in the study region, using a simple para- site transmission model and Gibbs-sampling Monte Carlo Markov chain techniques. We observed great heterogeneity in R0 values, with estimates ranging from 1.23 to 3.27, while k-values (which vary inversely with the degree of parasite aggregation within the human host population) range from 0.007 to 0.29 in a positive association with increasing prevalence. -
Prevalence, Risk Factors, and Geographical Distribution of Zoonotic Pathogens Carried by Peri-Urban Wild Dogs
Prevalence, risk factors, and geographical distribution of zoonotic pathogens carried by peri-urban wild dogs Lana Claire Harriott BSc (Hons I) A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland in 2017 School of Veterinary Science Abstract Established wildlife populations within peri-urban and urban environments provide an opportunity for the spread of zoonotic pathogens to and from human-associated environments. Wild dogs, including dingoes (Canis lupus dingo), feral domestic dogs (Canis lupus familiaris), and their cross breeds (hybrids) are common across the Australian mainland, and hybrid populations are particularly frequent within peri-urban environments. Previous studies have shown that wild dogs carry zoonotic pathogens of public health significance, however, data relating to peri-urban wild dogs has been limited to a few studies with a small geographical range and / or small sample size. To address the potential public health implications of peri-urban wild dogs, information regarding pathogen diversity, prevalence, risk factors and geographical distribution are required. To investigate the diversity and prevalence of zoonotic pathogens in peri-urban wild dogs, a cross sectional survey was undertaken. Utilising council management programs and private trappers, 201 wild dogs were collected for necropsy. Analysis of faecal and blood samples indicated that helminth parasites were common, detected within 79.6 5.4 % of wild dogs tested, however bacterial pathogens were much less prevalent. Echinococcus granulosus was the most prevalent parasite detected by necropsy, (prevalence 50.7 6.9 %). Hookworms were found to comprise the second most common pathogen of zoonotic significance with an overall prevalence of 28.8% ( 7.1%). -
PARASITIC WORMS FOUND in STOMACH WHILE DOING UPPER GASTRO- IJCRR Section: Healthcare INTESTINAL ENDOSCOPY and STUDY Sci
Research Article PARASITIC WORMS FOUND IN STOMACH WHILE DOING UPPER GASTRO- IJCRR Section: Healthcare INTESTINAL ENDOSCOPY AND STUDY Sci. Journal Impact Factor 4.016 OF THE DIFFERENCES BETWEEN ADULT HOOKWORMS AND LARVA OF ANISAKIS SIMPLEX INFECTING STOMACH Govindarajalu Ganesan Associate Professor, Department of General Surgery, Aarupadai Veedu Medical College and Hospital, Puducherry- 607402, India. ABSTRACT Objective: To diagnose parasitic worms found in stomach while doing upper gastro-intestinal endoscopy in our patients. There have not been many studies in India which discuss about the presence and the type of parasitic worms present in stomach while doing upper gastro-intestinal endoscopy. Hence this present study was carried out to study about the presence and the type of parasitic worms present in stomach while doing upper gastro-intestinal endoscopy in our institute. Methods: A study of 707 patients who had undergone upper gastro-intestinal endoscopy for a period of two years and eight months from May 2009 to December 2011 was carried out in our institute. In each of the 707 patients, the stomach was carefully examined to find out the presence of parasitic worms. The results were found as given below. Results: Of the 707 patients, one patient was found to have hookworm in stomach instead of its usual site in duodenum while doing upper gastro-intestinal endoscopy. Conclusion: Hence upper gastro-intestinal endoscopy is a very useful investigation to diagnose parasitic infection like hook- worm infection of stomach . Hence it is extremely important to carefully look for the presence of parasitic worms like hookworms in stomach while doing upper gastro-intestinal endoscopy. -
Ancylostomiasis (Hookworm Disease)
EAZWV Transmissible Disease Fact Sheet Sheet No. 104 ANCYLOSTOMIASIS (HOOKWORM DISEASE) ANIMAL TRANS- CLINICAL FATAL TREATMENT PREVENTION GROUP MISSION SIGNS DISEASE ? & CONTROL AFFECTED Percutaneous- rarely In houses Pongidae, ly Larva migrans Mebendazol Cercopitheci (in man also symptoms, dae, perorally via dyspnea, in zoos Cebidae. breast milk). diarrhea. Fact sheet compiled by Last update Manfred Brack, formerly German Primate Center, 22.11..2008 Göttingen/Germany. Susceptible animal groups Gorilla gorilla,Pan troglodytes, Hylobates sp.,Papio sp.,Macaca mulatta,Cercopithecus mona : A.duodenale ; Cebus capucinus, Ateles sp.,Erythrocebus patas, Cercopithecus mona : Necator americanus. Causative organism Ancylostoma duodenale, Necator americanus (Nematoda, Strongylina: Ancylostomatidae). Zoonotic potential Yes. Distribution A.duodenale : world-wide, predominantly in tropical/subtropical S.E.Asia and America; N.americanus : tropical and subtropical rain forests. Transmission Percutaneously by filariform ( 3 rd stage) larvae. Incubation period Clinical symptoms Pot belly syndrome, apnea, cutaneous larva migrans, persistent diarrhea, in man also anemia. Post mortem findings Not reported in nonhuman primates. Diagnosis Ovodiagnosis ( cave: ancylostomatid eggs may be confused with the very similar oesophagostomid eggs!), followed by fecoculture of filariform larvae (Harada-Mori technique). Material required for laboratory analysis Relevant diagnostic laboratories Treatment Mebendazole (2 x 15 mg / kg or 10 x 3 mg / kg). Ivermectin is almost -
Anisakiosis and Pseudoterranovosis
National Wildlife Health Center Anisakiosis and Pseudoterranovosis Circular 1393 U.S. Department of the Interior U.S. Geological Survey 1 2 3 4 5 6 7 8 Cover: 1. Common seal, by Andreas Trepte, CC BY-SA 2.5; 2. Herring catch, National Oceanic and Atmospheric Administration; 3. Larval Pseudoterranova sp. in muscle of an American plaice, by Dr. Lena Measures; 4. Salmon sashimi, by Blu3d, Lilyu, GFDL CC BY-SA3.0; 5. Beluga whale, by Jofre Ferrer, CC BY-NC-ND 2.0; 6. Dolphin, National Aeronautics and Space Administration; 7. Squid, National Oceanic and Atmospheric Administration; 8. Krill, by Oystein Paulsen, CC BY-SA 3.0. Anisakiosis and Pseudoterranovosis By Lena N. Measures Edited by Rachel C. Abbott and Charles van Riper, III USGS National Wildlife Health Center Circular 1393 U.S. Department of the Interior U.S. Geological Survey ii U.S. Department of the Interior SALLY JEWELL, Secretary U.S. Geological Survey Suzette M. Kimball, Acting Director U.S. Geological Survey, Reston, Virginia: 2014 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit http://www.usgs.gov or call 1–888–ASK–USGS For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod To order this and other USGS information products, visit http://store.usgs.gov Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials as noted in the text. -
Hookworm Ancylostoma Sp. Adult (3X) ILLINOIS RANGE
hookworm Ancylostoma sp. Kingdom: Animalia FEATURES Phylum: Nematoda The hookworm is a roundworm parasite of the small Class: Chromadorea intestine of the raccoon, fox and coyote. It has a Order: Rhabditida cylindrical body. The male is about one-half inch long while the female is about one-half to three- Family: Ancylostomatidae fourths inch in length. The anterior end of the worm ILLINOIS STATUS is bent upward. Three pairs of teeth are present on the edge of the mouth area. The ovoid eggs are thin- common, native shelled. The female produces 7,000 to 28,000 eggs per day. BEHAVIORS The hookworm may be found statewide in Illinois wherever its hosts live. The adult hookworm lives in the small intestine of the host. Its eggs are passed out of the host’s body with the host’s feces. Under favorable conditions, the larva can hatch from the egg within 24 to 48 hours. The infective larval stage is reached within a week. This stage forms a cyst and can survive in the ground for several weeks. Hookworms infect their host through the skin or digestive tract. If through the skin, the larvae enter the lymph or blood and travel to the lungs. Here they enter the lungs, move to the epiglottis and are swallowed. They molt and reach maturity in the adult (3x) intestine. One to two months after infection, female hookworms begin producing eggs. If the infection is ILLINOIS RANGE through the digestive tract, the hookworms go through the intestinal wall to the blood, then the liver, the heart and the lungs. -
Hookworms Family: Ancylostomatidae Ancylostoma Duodenale
Lect: 5 Nematoda 3rd class Dr.Omaima I. M. Hookworms Family: Ancylostomatidae Ancylostoma duodenale Along with its range of definitive hosts, Ancylostoma duodenale also has a range of paratenic hosts of canids and felids, where it may remain for intervals of time until it reaches the definitive host. In the paratenic host it may survive in the muscles where it is then transferred to humans via undercooked meat, including rabbit, lamb, beef, and pork. The eggs of Ancylostoma duodenale are still within the muscle and are ingested with the meat, allowing for the adults to develop within the intestinal tract. Main properties Ancylostoma duodenale is an S-shaped worm because of its flexure at the frontal end. The worm is pinkish-white. Adult male hookworms range in size from 8-11 mm long, whereas adult females range in size from 10- 13 mm long. This species is dimorphic, with the males having bursa characteristics and needle-like spicules with small tips, which are distally fused. Females have a vulva located approximately one-third of the body length from the posterior end. Both male and female hookworms have two powerful ventral teeth in the adult forms of the parasite, one along each side of the buccal capsule; smaller pairs of teeth are located deeper in the capsule. http://cvet.tu.edu.iq Hookworm eggs have a thin shell and the larvae possess amphids, large paired sensilla on each side of the mouth, which allow them to locate their host. The larvae are rod-shaped and are about 0.004 cm long.