Neglected Tropical Diseases: Epidemiology and Global Burden
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Functional Parasitic Worm Secretome: Mapping the Place of Onchocerca Volvulus Excretory Secretory Products
pathogens Review The Functional Parasitic Worm Secretome: Mapping the Place of Onchocerca volvulus Excretory Secretory Products Luc Vanhamme 1,*, Jacob Souopgui 1 , Stephen Ghogomu 2 and Ferdinand Ngale Njume 1,2 1 Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM, Université Libre de Bruxelles, Rue des Professeurs Jeener et Brachet 12, 6041 Gosselies, Belgium; [email protected] (J.S.); [email protected] (F.N.N.) 2 Molecular and Cell Biology Laboratory, Biotechnology Unit, University of Buea, Buea P.O Box 63, Cameroon; [email protected] * Correspondence: [email protected] Received: 28 October 2020; Accepted: 18 November 2020; Published: 23 November 2020 Abstract: Nematodes constitute a very successful phylum, especially in terms of parasitism. Inside their mammalian hosts, parasitic nematodes mainly dwell in the digestive tract (geohelminths) or in the vascular system (filariae). One of their main characteristics is their long sojourn inside the body where they are accessible to the immune system. Several strategies are used by parasites in order to counteract the immune attacks. One of them is the expression of molecules interfering with the function of the immune system. Excretory-secretory products (ESPs) pertain to this category. This is, however, not their only biological function, as they seem also involved in other mechanisms such as pathogenicity or parasitic cycle (molting, for example). Wewill mainly focus on filariae ESPs with an emphasis on data available regarding Onchocerca volvulus, but we will also refer to a few relevant/illustrative examples related to other worm categories when necessary (geohelminth nematodes, trematodes or cestodes). -
Baylisascariasis
Baylisascariasis Importance Baylisascaris procyonis, an intestinal nematode of raccoons, can cause severe neurological and ocular signs when its larvae migrate in humans, other mammals and birds. Although clinical cases seem to be rare in people, most reported cases have been Last Updated: December 2013 serious and difficult to treat. Severe disease has also been reported in other mammals and birds. Other species of Baylisascaris, particularly B. melis of European badgers and B. columnaris of skunks, can also cause neural and ocular larva migrans in animals, and are potential human pathogens. Etiology Baylisascariasis is caused by intestinal nematodes (family Ascarididae) in the genus Baylisascaris. The three most pathogenic species are Baylisascaris procyonis, B. melis and B. columnaris. The larvae of these three species can cause extensive damage in intermediate/paratenic hosts: they migrate extensively, continue to grow considerably within these hosts, and sometimes invade the CNS or the eye. Their larvae are very similar in appearance, which can make it very difficult to identify the causative agent in some clinical cases. Other species of Baylisascaris including B. transfuga, B. devos, B. schroeder and B. tasmaniensis may also cause larva migrans. In general, the latter organisms are smaller and tend to invade the muscles, intestines and mesentery; however, B. transfuga has been shown to cause ocular and neural larva migrans in some animals. Species Affected Raccoons (Procyon lotor) are usually the definitive hosts for B. procyonis. Other species known to serve as definitive hosts include dogs (which can be both definitive and intermediate hosts) and kinkajous. Coatimundis and ringtails, which are closely related to kinkajous, might also be able to harbor B. -
2018 Guideline Document on Chagas Disease
GUIDELINES AND STANDARDS Recommendations for Multimodality Cardiac Imaging in Patients with Chagas Disease: A Report from the American Society of Echocardiography in Collaboration With the InterAmerican Association of Echocardiography (ECOSIAC) and the Cardiovascular Imaging Department of the Brazilian Society of Cardiology (DIC-SBC) Harry Acquatella, MD, FASE (Chair), Federico M. Asch, MD, FASE (Co-Chair), Marcia M. Barbosa, MD, PhD, FASE, Marcio Barros, MD, PhD, Caryn Bern, MD, MPH, Joao L. Cavalcante, MD, FASE, Luis Eduardo Echeverria Correa, MD, Joao Lima, MD, Rachel Marcus, MD, Jose Antonio Marin-Neto, MD, PhD, Ricardo Migliore, MD, PhD, Jose Milei, MD, PhD, Carlos A. Morillo, MD, Maria Carmo Pereira Nunes, MD, PhD, Marcelo Luiz Campos Vieira, MD, PhD, and Rodolfo Viotti, MD*, Caracas, Venezuela; Washington, District of Columbia; Belo Horizonte and Sao~ Paulo, Brazil; San Francisco, California; Pittsburgh, Pennsylvania; Floridablanca, Colombia; Baltimore, Maryland; San Martin and Buenos Aires, Argentina; and Hamilton, Ontario, Canada In addition to the collaborating societies listed in the title, this document is endorsed by the following American Society of Echocardiography International Alliance Partners: the Argentinian Federation of Cardiology, the Argentinian Society of Cardiology, the British Society of Echocardiography, the Chinese Society of Echocardiography, the Echocardiography Section of the Cuban Society of Cardiology, the Echocardiography Section of the Venezuelan Society of Cardiology, the Indian Academy of Echocardiography, -
Chagas Disease Fact Sheet
Chagas Disease Fact Sheet What is Chagas disease? What are the symptoms? ■ A disease that can cause serious heart and stomach ■ A few weeks or months after people first get bitten, illnesses they may have mild symptoms like: ■ A disease spread by contact with an infected • Fever and body aches triatomine bug also called “kissing bug,” “benchuca,” • Swelling of the eyelid “vinchuca,” “chinche,” or “barbeiro” • Swelling at the bite mark ■ After this first part of the illness, most people have no Who can get Chagas disease? symptoms and many don’t ever get sick Anyone. However, people have a greater chance if they: ■ But some people (less than half) do get sick later, and they may have: ■ Have lived in rural areas of Mexico, Central America or South America, in countries such as: Argentina, • Irregular heart beats that can cause sudden death Belize, Bolivia, Brazil, Chile, Colombia, Costa Rica, • An enlarged heart that doesn’t pump blood well El Salvador, Ecuador, French Guiana, Guatemala, • Problems with digestion and bowel movements Guyana, Honduras, Mexico, Nicaragua, Panama, • An increased chance of having a stroke Paraguay, Peru, Suriname, Uruguay or Venezuela What should I do if I think I might have ■ Have seen the bug, especially in these areas Chagas disease? ■ Have stayed in a house with a thatched roof or with ■ See a healthcare provider, who will examine you walls that have cracks or crevices ■ Your provider may take a sample of your blood for testing How does someone get Chagas disease? ■ Usually from contact with a kissing bug Why should I get tested for Chagas disease? ■ After the kissing bug bites, it poops. -
Better Together TNVR and Public Health APHA 11-13-18.Pdf
Better Together: TNVR and Public Health 11/13/2018 Presenter Disclosures Introduction Better Together TNVR and public health Peter J. Wolf and G. Robert Weedon • TNVR: trap-neuter-vaccinate-return G. Robert Weedon, DVM, MPH Clinical Assistant Professor and Service Head (Retired) Shelter Medicine, College of Veterinary Medicine University of Illinois • Emphasis on the “V” Peter J. Wolf, MS Research/Policy Analyst – Vaccination Best Friends Animal Society Have no relationships to disclose • Emphasizes the public health aspect of TNVR programs • Vaccinating against rabies as a means of protecting the health of the public Introduction TNVR TNVR • Why TNVR? • Why TNVR? – The only humane way to – More than half of impounded cats are euthanized deal with the problem of due to shelter crowding, shelter-acquired disease free-roaming (feral, or feral behavior animal welfareTNVR public health community) cats – TNVR, an alternative to shelter impoundment, – When properly applied, improves cat welfare and reduces the size of cat TNVR has been shown to colonies control/reduce populations rabies prevention of free-roaming cats Levy, J. K., Isaza, N. M., & Scott, K. C. (2014). Effect of high-impact targeted trap-neuter-return and adoption Levy, J. K., Isaza, N. M., & Scott, K. C. (2014). Effect of high-impact targeted trap-neuter-return and adoption of community cats on cat intake to a shelter. The Veterinary Journal, 201(3), 269–274. of community cats on cat intake to a shelter. The Veterinary Journal, 201(3), 269–274. TNVR TNVR TNVR • Why TNVR? • Why -
Comparison Laboratory Methods for Detection of Hookworms Infection
Advances in Health Sciences Research, volume 1 1st Public Health International Conference (PHICo 2016) Comparison Laboratory Methods for Detection of Hookworms Infection Merina Panggabean1, Lambok Siahaan2, Yoan Carolina Panggabean3 1.2.3Department of Parasitology, Faculty of Medicine, University Sumatera Utara, Indonesia [email protected] [email protected] [email protected] Abstract— Intestinal parasitic infections are globally endemic in transmitted Helminths (STH) or worms are the world. In Indonesia, intestinal parasitic infections transmitted through by the soil. They are particularly helminthes is one of the public health problems. It can cause malnutrition and anemia so can be disturbing growth transmitted by eggs present in human faeces which and development children. Intestinal parasitic infections with in turn contaminate soil [1]. STH infections belong soil-transmitted helminths (STH) such as Ascaris lumbricoides, to the neglected tropical diseases (NTDs) that affect Trichuris trichiura and hookworms (Necator americanus and Ancylostoma duodenale) diagnosed by detection of helminth eggs human populations in poorer regions of the world in stool samples. Stool samples commonly examine by using [4]. Their presence is a typical marker of poverty microscopic with conventional techniques as direct wet smear where access to sanitation and clean water is limited stain like Lugol stain, sedimentation methods like formol ether concentration (FEC). Stool examination for hookworm with and, concomitantly, standards of hygiene are low conventional techniques often miss opportunity in laboratory. [5]–[7]. There are four main species of STH; Therefore we used modified Harada Mori culture to detect namely, Ascaris lumbricoides (roundworm), hookworms infection. The objective of this study was to compare modified Harada Mori culture method and others laboratory Trichuris trichiura (whipworm) and the methods like direct wet smear Lugol stain and FEC to detect hookworms (Ancylostoma duodenale and Necator hookworm infections. -
Hookworm (Ancylostomiasis)
Hookworm (ancylostomiasis) Hookworm (ancylostomiasis) rev Jan 2018 BASIC EPIDEMIOLOGY Infectious Agent Hookworm is a soil transmitted helminth. Human infections are caused by the nematode parasites Necator americanus and Ancylostoma duodenale. Transmission Transmission primarily occurs via direct contact with fecal contaminated soil. Soil becomes contaminated with eggs shed in the feces of an individual infected with hookworm. The eggs must incubate in the soil for several days before they become infectious and are able to be transmitted to another person. Oral transmission can sometimes occur from consuming improperly washed food grown or exposed to fecal contaminated soil. Transmission can also occur (rarely) between a mother and her fetus/infant via infected placental or mammary tissue. Incubation Period Eggs must incubate in the soil for 5-10 days before they mature into infectious filariform larvae that can penetrate the skin. Within the first 10 days following penetration of the skin filariform larvae will migrate to the lungs and occasionally cause respiratory symptoms. Three to five weeks after skin penetration the larvae will migrate to the intestinal tract where they will mature into an adult worm. Adult worms may live in the intestine for 1-5 years depending on the species. Communicability Human to human transmission of hookworm does NOT occur because part of the worm’s life cycle must be completed in soil before becoming infectious. However, vertical transmission of dormant filariform larvae can occur between a mother and neonate via contaminated breast milk. These dormant filariform larvae can remain within in a host for months to years. Soil contamination is perpetuated by fecal contamination from infected individuals who can shed eggs in feces for several years after infection. -
Lecture 5: Emerging Parasitic Helminths Part 2: Tissue Nematodes
Readings-Nematodes • Ch. 11 (pp. 290, 291-93, 295 [box 11.1], 304 [box 11.2]) • Lecture 5: Emerging Parasitic Ch.14 (p. 375, 367 [table 14.1]) Helminths part 2: Tissue Nematodes Matt Tucker, M.S., MSPH [email protected] HSC4933 Emerging Infectious Diseases HSC4933. Emerging Infectious Diseases 2 Monsters Inside Me Learning Objectives • Toxocariasis, larva migrans (Toxocara canis, dog hookworm): • Understand how visceral larval migrans, cutaneous larval migrans, and ocular larval migrans can occur Background: • Know basic attributes of tissue nematodes and be able to distinguish http://animal.discovery.com/invertebrates/monsters-inside- these nematodes from each other and also from other types of me/toxocariasis-toxocara-roundworm/ nematodes • Understand life cycles of tissue nematodes, noting similarities and Videos: http://animal.discovery.com/videos/monsters-inside- significant difference me-toxocariasis.html • Know infective stages, various hosts involved in a particular cycle • Be familiar with diagnostic criteria, epidemiology, pathogenicity, http://animal.discovery.com/videos/monsters-inside-me- &treatment toxocara-parasite.html • Identify locations in world where certain parasites exist • Note drugs (always available) that are used to treat parasites • Describe factors of tissue nematodes that can make them emerging infectious diseases • Be familiar with Dracunculiasis and status of eradication HSC4933. Emerging Infectious Diseases 3 HSC4933. Emerging Infectious Diseases 4 Lecture 5: On the Menu Problems with other hookworms • Cutaneous larva migrans or Visceral Tissue Nematodes larva migrans • Hookworms of other animals • Cutaneous Larva Migrans frequently fail to penetrate the human dermis (and beyond). • Visceral Larva Migrans – Ancylostoma braziliense (most common- in Gulf Coast and tropics), • Gnathostoma spp. Ancylostoma caninum, Ancylostoma “creeping eruption” ceylanicum, • Trichinella spiralis • They migrate through the epidermis leaving typical tracks • Dracunculus medinensis • Eosinophilic enteritis-emerging problem in Australia HSC4933. -
Dr. Donald L. Price Center for Parasite Repository and Education College of Public Health, University of South Florida
Dr. Donald L. Price Center For Parasite Repository and Education College of Public Health, University of South Florida PRESENTS Sources of Infective Stages and Modes of Transmission of Endoparasites Epidemiology is the branch of science that deals with the distribution and spread of disease. How diseases are transmitted, i.e. how they are passed from an infected individual to a susceptible one is a major consideration. Classifying and developing terminology for what takes place has been approached in a variety of ways usually related to specific disease entities such as viruses, bacteria, etc. The definitions that follow apply to those disease entities usually classified as endoparasites i.e. those parasites that reside in a body passage or tissue of the definitive host or in some cases the intermediate host. When the definition of terms for the “Source of Infection” or “Mode of Infection” relate to prevention and/or control of an endoparasitic disease, they should be clearly described. For the source of infection, the medium (water, soil, utensils, etc.) or the host organism (vector, or intermediate host) on which or in which the infective stage can be found should be precisely identified. For the mode of transmission, the precise circumstances and means by which the infective stage is able to come in contact with, enter, and initiate an infection in the host should be described. SOURCE OF INFECTION There are three quite distinct and importantly different kinds of sources of the infective stage of parasites: Contaminated Sources, Infested Sources, and Infected Sources. CONTAMINATE SOURCES Contaminated Source, in parasitology, implies something that has come in contact with raw feces and is thereby polluted with feces or organisms that were present in it. -
Monophyly of Clade III Nematodes Is Not Supported by Phylogenetic Analysis of Complete Mitochondrial Genome Sequences
UC Davis UC Davis Previously Published Works Title Monophyly of clade III nematodes is not supported by phylogenetic analysis of complete mitochondrial genome sequences Permalink https://escholarship.org/uc/item/7509r5vp Journal BMC Genomics, 12(1) ISSN 1471-2164 Authors Park, Joong-Ki Sultana, Tahera Lee, Sang-Hwa et al. Publication Date 2011-08-03 DOI http://dx.doi.org/10.1186/1471-2164-12-392 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Park et al. BMC Genomics 2011, 12:392 http://www.biomedcentral.com/1471-2164/12/392 RESEARCHARTICLE Open Access Monophyly of clade III nematodes is not supported by phylogenetic analysis of complete mitochondrial genome sequences Joong-Ki Park1*, Tahera Sultana2, Sang-Hwa Lee3, Seokha Kang4, Hyong Kyu Kim5, Gi-Sik Min2, Keeseon S Eom6 and Steven A Nadler7 Abstract Background: The orders Ascaridida, Oxyurida, and Spirurida represent major components of zooparasitic nematode diversity, including many species of veterinary and medical importance. Phylum-wide nematode phylogenetic hypotheses have mainly been based on nuclear rDNA sequences, but more recently complete mitochondrial (mtDNA) gene sequences have provided another source of molecular information to evaluate relationships. Although there is much agreement between nuclear rDNA and mtDNA phylogenies, relationships among certain major clades are different. In this study we report that mtDNA sequences do not support the monophyly of Ascaridida, Oxyurida and Spirurida (clade III) in contrast to results for nuclear rDNA. Results from mtDNA genomes show promise as an additional independently evolving genome for developing phylogenetic hypotheses for nematodes, although substantially increased taxon sampling is needed for enhanced comparative value with nuclear rDNA. -
Visceral and Cutaneous Larva Migrans PAUL C
Visceral and Cutaneous Larva Migrans PAUL C. BEAVER, Ph.D. AMONG ANIMALS in general there is a In the development of our concepts of larva II. wide variety of parasitic infections in migrans there have been four major steps. The which larval stages migrate through and some¬ first, of course, was the discovery by Kirby- times later reside in the tissues of the host with¬ Smith and his associates some 30 years ago of out developing into fully mature adults. When nematode larvae in the skin of patients with such parasites are found in human hosts, the creeping eruption in Jacksonville, Fla. (6). infection may be referred to as larva migrans This was followed immediately by experi¬ although definition of this term is becoming mental proof by numerous workers that the increasingly difficult. The organisms impli¬ larvae of A. braziliense readily penetrate the cated in infections of this type include certain human skin and produce severe, typical creep¬ species of arthropods, flatworms, and nema¬ ing eruption. todes, but more especially the nematodes. From a practical point of view these demon¬ As generally used, the term larva migrans strations were perhaps too conclusive in that refers particularly to the migration of dog and they encouraged the impression that A. brazil¬ cat hookworm larvae in the human skin (cu¬ iense was the only cause of creeping eruption, taneous larva migrans or creeping eruption) and detracted from equally conclusive demon¬ and the migration of dog and cat ascarids in strations that other species of nematode larvae the viscera (visceral larva migrans). In a still have the ability to produce similarly the pro¬ more restricted sense, the terms cutaneous larva gressive linear lesions characteristic of creep¬ migrans and visceral larva migrans are some¬ ing eruption. -
Eisai Announces Results and Continued Support Of
No.17-18 April 19, 2017 Eisai Co., Ltd. EISAI ANNOUNCES RESULTS AND CONTINUED SUPPORT OF INITIATIVES FOR ELIMINATION OF LYMPHATIC FILARIASIS 5 YEAR ANNIVERSARY OF LONDON DECLARATION ON NEGLECTED TROPICAL DISEASES Eisai Co., Ltd. (Headquarters: Tokyo, CEO: Haruo Naito, “Eisai”) has announced the results of its initiatives for the elimination of lymphatic filariasis (LF), and its continued support of this cause in the future. This announcement was made at an event held in Geneva, Switzerland, on April 18, marking the 5th anniversary of the London Declaration on Neglected Tropical Diseases (NTDs), an international public-private partnership. Announced in January 2012, the London Declaration is the largest public-private partnership in the field of global health, and represents a coordinated effort by global pharmaceutical companies, the Bill & Melinda Gates Foundation, the World Health Organization (WHO), the United States, United Kingdom and NTD-endemic country governments, as well as other partners, to eliminate 10 NTDs by the year 2020. Since the signing of the London Declaration, donations of medical treatments by pharmaceutical companies have increased by 70 percent, and these treatments contribute to the prevention and cure of disease in approximately 1 billion people every year. Under the London Declaration, Eisai signed an agreement with WHO to supply 2.2 billion high-quality diethylcarbamazine (DEC) tablets, which were running in short supply worldwide, at Price Zero (free of charge) by the year 2020. These DEC tablets are manufactured at Eisai’s Vizag Plant in India. As of the end of March 2017, 1 billion tablets have been supplied to 27 endemic countries.