Perspectives

Total Page:16

File Type:pdf, Size:1020Kb

Perspectives Perspectives Mechanisms of Viral Pathogenesis Distinct Forms of Reoviruses and Their Roles during Replication in Cells and Host Max L. Nibert,** Deirdre B. Furlong,* and Bernard N. Fields*"1 *Department ofMicrobiology and Molecular Genetics and OShipley Institute ofMedicine, Harvard Medical School, and Departments oftPathology and I1Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115 Recent years have seen a resurgent interest in mechanisms by mal viruses infect complex host organisms in the natural world, which viruses cause disease, or viral pathogenesis. Studies of however, considerations beyond the level of the cell are needed viral pathogenesis often address the capacity of a virus to cause for identifying other steps in viral replication. In this perspec- injuries to cells and tissues; yet, injuries are secondary conse- tive we wish to emphasize that viral growth in the host is a quences of many fundamental interactions that occur between complex process, involving multiple cycles of replication virus and single cells, as well as between virus and host organ- within cells as well as other uniquely host-level steps (illustrated ism, during infection. For example the tropism ofa virus, or its for reoviruses in Fig. 2). We therefore refer to the complete capacity to grow within particular cells in the host, reflects sev- process as the replication program of an animal virus. eral of these interactions. Studies of more basic aspects of viral Features specific to viral replication in the host have been infection are therefore critical for understanding viral pathogen- reviewed elsewhere (5, 6). Briefly, viruses infect their hosts in esis. We begin this perspective by introducing some general three general patterns: local, "local + systemic," and systemic concepts in regard to the replication and structure of animal infections (5). Local infection refers to growth of virus near its viruses. site of entry into the host, and systemic infection refers to Infections with mammalian reoviruses provide useful mod- growth at sites distant from the entry site. The pattern exhib- els for characterizing mechanisms of viral pathogenesis (re- ited by reoviruses depends on numerous factors, but in infec- viewed in references 1 and 2). Mammalian reoviruses (reovi- tions by the enteric route, reoviruses often exhibit local + sys- ruses for short) are medium-sized nonenveloped viruses that temic infection (7, 8). Host-level steps in viral replication in- have a genome consisting of 10 segments of double-stranded clude entry into the host, primary replication, spread to distant (ds)' RNA. In humans, reoviruses are not linked definitively sites, and secondary replication (6) (Fig. 2). Viral tropism is with any disease more severe than a mild enteric or respiratory reflected in both primary and secondary replication but is often illness, but in mice and rats they cause a number of disease discussed in regard to secondary replication because at that syndromes involving major organs like brain (3) and heart (4). step virus grows in only some ofthe many cells it encounters in Studies with reoviruses demonstrate that facts obtained at mul- the host (Fig. 2). tiple levels of inquiry can be integrated in the attempt to under- Two additional steps that can be identified as essential to stand viral pathogenesis (1, 2). In the major part ofthis perspec- viral replication in the host are release of virus from the in- tive, we describe how the structure of reoviruses relates to their fected host and survival in the environment between hosts (9) strategy for replication in cells and host organisms and discuss (Fig. 2). These steps highlight the fact that a virus must be several similarities in this regard between reoviruses and other capable of spreading between hosts to survive in the natural animal viruses. world. Survival and spread between hosts are formally similar to survival and spread between sites of replication within the Some general concepts regarding the replication and host: outside the host, virus must contend with the barrier of structure ofanimal viruses distance and physicochemical challenges like drying and radia- Defining the replication program of an animal virus. Animal tion; inside the host, there are anatomical barriers and chal- viruses proceed through an orderly series ofsteps when replicat- lenges like those imposed by the host immune response. The ing within cells (illustrated for reoviruses in Fig. 1). These steps relevance of studying viral survival in the face of specific chal- are said to define the replication cycle of a virus. Because ani- lenges is not immediately apparent when thinking only about viral replication in isolated cells. A schematic description ofthe structure ofanimal viruses. Address correspondence to Dr. Bernard N. Fields, Dept. of Microbiol- The design of a viral particle is simple, but it permits the virus ogy and Molecular Genetics, Harvard Medical School, 260 Longwood to participate in a series of complex interactions with cells and Ave., Boston, MA 02115. hosts. Although it is easy to recognize that viral structure has Receivedfor publication 12 March 1991. been molded by requirements for growth in cells, it is likely that distinct requirements for growth in the host have also contrib- 1. Abbreviations used in this paper: ds, double-stranded; ISVP, inter- uted selective viral The mediate (or infections subviral particle; M cell, microfold (or mem- pressures determining structures. latter branous) cell. pressures include, but are not limited to, those posed by the host response. J. Clin. Invest. We prefer to consider that the structural components with © The American Society for Clinical Investigation, Inc. which mature viral particles are built fall into two functional 0021-9738/91/09/0727/08 $2.00 categories: the delivery system and thepayload(Fig. 3). Compo- Volume 88, September 1991, 727-734 nents of the delivery system initiate the replication cycle by Structure and Replication ofReoviruses 727 STEP FORM PROTEIN STEP FUNCTION FORM PROTEIN (GENE) (GENE) -_. Attachment Virions or ISVPs al (Si) n F- Environment Stability Virions cr3 a 'I (S4) . Penetration ISVPs Iz1 (M2) i and Uncoating Entry into host Activation Virions l. al and Targetting (L2,(2 M2, Sl) e in GI tract lSVPs Transcription Cores )2. M3 on -0 I (L2. Li) Primary Multiplication ISVPs Multiple E c0 replication (Gl) t e< 0 Cores Translation, Assembly Multiple 0 Assembly, and Intermediates 01 Genome replication Spread Pathway Virions? al s and Stability ISVPs? (S1) 0 -Rlase Virions Tropism Targettlng to Virions? ol distant sites ISVPs? (Si) 0 Figure 1. Replication of reoviruses in cells (replication cycle). Indi- I cated are identifiable steps in the replication of reoviruses in cells, Secondary Multiplication ISVPs Multiple Is replication (targets) t 0 the particular viral forms (virions, ISVPs, and cores) that are asso- Cores ciated with these steps, and individual viral proteins that have specific 0. functions during these steps. The al protein is the cell-attachment Figure 2. Replication of reoviruses in the host (replication pro- protein that binds viral particles to specific receptors on the cell sur- gram). This figure parallels Fig. 1. Indicated are steps in the rep- face. The gsl protein is thought to mediate the penetration of cell membranes by viral particles, and its removal from particles permits lication of reoviruses in the host after infection by the enteric route and a description of viral functions associated with these activation of the viral transcriptase. The X2 and X3 proteins are steps. Also indicated are the particular viral forms associated known components of the viral transcriptase apparatus: X2 is the with the steps and individual viral proteins that have been indi- guanylyltransferase and X3 is a catalytic component of the RNA-de- cated by genetic and biochemical studies to play specific roles pendent RNA polymerase. Attachment and penetration are effected during replication in the host (described in the text). Replication by the delivery system contained in both virions and ISVPs as indi- in the host is schematized as consisting of two rounds of repli- cated at right. Cores are proposed to represent the payload of reovir- cation: primary replication associated with the portal of entry uses, whose immediate function after penetration consists of tran- into the host tract in this case) and secondary scribing the viral mRNAs. (gastrointestinal replication at distant sites. Both rounds of replication have functions of the viral delivery system and viral payload asso- ciated with them as indicated at right. An important aspect of delivering the payload to an intracellular site (cytoplasm or replication in the host are delivery functions that precede at- nucleus) within cells appropriate for replication; components tachment to the cells in which viral multiplication occurs. ofthe payload then participate in the intracellular steps of repli- cation. As might be predicted from the order of their functions, the delivery system is located more externally in viral particles though payload components act intracellularly, considerations and the payload more internally. Thus, the basic organization of replication in the host are important for understanding their of a viral particle has a simple logic (Fig. 3). functions. For example, nonspecific host-response proteins The two best known delivery functions are attachment of (e.g., interferon) can stimulate cellular activities that affect in- virus to
Recommended publications
  • Understanding Human Astrovirus from Pathogenesis to Treatment
    University of Tennessee Health Science Center UTHSC Digital Commons Theses and Dissertations (ETD) College of Graduate Health Sciences 6-2020 Understanding Human Astrovirus from Pathogenesis to Treatment Virginia Hargest University of Tennessee Health Science Center Follow this and additional works at: https://dc.uthsc.edu/dissertations Part of the Diseases Commons, Medical Sciences Commons, and the Viruses Commons Recommended Citation Hargest, Virginia (0000-0003-3883-1232), "Understanding Human Astrovirus from Pathogenesis to Treatment" (2020). Theses and Dissertations (ETD). Paper 523. http://dx.doi.org/10.21007/ etd.cghs.2020.0507. This Dissertation is brought to you for free and open access by the College of Graduate Health Sciences at UTHSC Digital Commons. It has been accepted for inclusion in Theses and Dissertations (ETD) by an authorized administrator of UTHSC Digital Commons. For more information, please contact [email protected]. Understanding Human Astrovirus from Pathogenesis to Treatment Abstract While human astroviruses (HAstV) were discovered nearly 45 years ago, these small positive-sense RNA viruses remain critically understudied. These studies provide fundamental new research on astrovirus pathogenesis and disruption of the gut epithelium by induction of epithelial-mesenchymal transition (EMT) following astrovirus infection. Here we characterize HAstV-induced EMT as an upregulation of SNAI1 and VIM with a down regulation of CDH1 and OCLN, loss of cell-cell junctions most notably at 18 hours post-infection (hpi), and loss of cellular polarity by 24 hpi. While active transforming growth factor- (TGF-) increases during HAstV infection, inhibition of TGF- signaling does not hinder EMT induction. However, HAstV-induced EMT does require active viral replication.
    [Show full text]
  • Reflection Paper Quality, Non-Clinical and Clinical Issues
    European Medicines Agency 1 London, 19 March 2009 2 EMEA/CHMP/GTWP/587488/2007 3 4 COMMITTEE FOR MEDICINAL PRODUCTS FOR HUMAN USE 5 (CHMP) 6 REFLECTION PAPER 7 QUALITY, NON-CLINICAL AND CLINICAL ISSUES RELATING SPECIFICALLY TO 8 RECOMBINANT ADENO-ASSOCIATED VIRAL VECTORS 9 DRAFT AGREED BY GENE THERAPY WORKING PARTY (GTWP) January 2009 PRESENTATION TO THE COMMITTEE FOR ADVANCED February 2009 THERAPIES (CAT) AND CHMP ADOPTION BY CHMP FOR RELEASE FOR CONSULTATION March 2009 END OF CONSULTATION (DEADLINE FOR COMMENTS) September 2009 10 Comments should be provided electronically in word format using this template to [email protected] 11 12 KEYWORDS Adeno-associated virus, self complementary adeno-associated virus, recombinant adeno-associated virus, production systems, quality, non-clinical, clinical, follow-up, tissue tropism, germ-line transmission, environmental risk, immunogenicity, biodistribution, shedding, animal models, persistence, reactivation. 13 7 Westferry Circus, Canary Wharf, London, E14 4HB, UK Tel. (44-20) 7418 8400 Fax (44-20) 7418 8613 E-mail: [email protected] http://www.emea.europa.eu ©EMEA 2009 Reproduction and/or distribution of this document is authorised for non commercial purposes only provided the EMEA is acknowledged 14 15 REFLECTION PAPER ON QUALITY, NON-CLINICAL AND CLINICAL ISSUES 16 RELATING SPECIFICALLY TO RECOMBINANT ADENO-ASSOCIATED VIRAL 17 VECTORS 18 19 TABLE OF CONTENTS 20 1. INTRODUCTION........................................................................................................................
    [Show full text]
  • Characteristics and Timing of Initial Virus Shedding in Severe Acute Respiratory Syndrome Coronavirus 2, Utah, USA Nathaniel M
    SYNOPSIS Characteristics and Timing of Initial Virus Shedding in Severe Acute Respiratory Syndrome Coronavirus 2, Utah, USA Nathaniel M. Lewis, Lindsey M. Duca, Perrine Marcenac, Elizabeth A. Dietrich, Christopher J. Gregory, Victoria L. Fields, Michelle M. Banks, Jared R. Rispens, Aron Hall, Jennifer L. Harcourt, Azaibi Tamin, Sarah Willardson, Tair Kiphibane, Kimberly Christensen, Angela C. Dunn, Jacqueline E. Tate, Scott Nabity, Almea M. Matanock, Hannah L. Kirking Virus shedding in severe acute respiratory syndrome others has been documented (4–8). In addition, stud- coronavirus 2 (SARS-CoV-2) can occur before onset ies suggest that virus shedding can begin before the of symptoms; less is known about symptom progres- onset of symptoms (7,8) and extend beyond the reso- sion or infectiousness associated with initiation of viral lution of symptoms (9). However, data on the initia- shedding. We investigated household transmission in tion and progression of viral shedding in relation to 5 households with daily specimen collection for 5 con- symptom onset and infectiousness are limited. Inten- secutive days starting a median of 4 days after symptom sive early monitoring of household members through onset in index patients. Seven contacts across 2 house- serial (i.e., daily) collection of a respiratory tract spec- holds implementing no precautionary measures were in- imen for testing by real-time reverse transcription fected. Of these 7, 2 tested positive for SARS-CoV-2 by PCR (rRT-PCR), which could clarify the characteris- reverse transcription PCR on day 3 of 5. Both had mild, nonspecific symptoms for 1–3 days preceding the first tics of initial viral shedding, has rarely been imple- positive test.SARS-CoV-2 was cultured from the fourth- mented, although serial self-collection of nasal and day specimen in 1 patient and from the fourth- and fifth- saliva samples was used in a recent study (10).
    [Show full text]
  • RIVM Reprot 320001001 Effect of Administration Route On
    Report 320001001/2008 E.F.A. Brandon | B. Tiesjema | J.C.H. van Eijkeren | H.P.H. Hermsen Effect of administration route on biodistribution and shedding of replication-deficient viral vectors used in gene therapy A literature study RIVM Report 320001001/2008 Effect of administration route on biodistribution and shedding of replication-deficient viral vectors used in gene therapy A literature study E.F.A. Brandon B. Tiesjema J.C.H. van Eijkeren H.P.H. Hermsen Contact: E.F.A. Brandon Centre for Substances and Integrated Risk Assessment [email protected] This investigation has been performed by order and for the account of Office for Genetically Modified Organisms of the National Institute for Public Health and the Environment RIVM, P.O. Box 1, 3720 BA Bilthoven, telephone: +31 – 30 – 274 91 11; telefax: +31 – 30 – 274 29 71 © RIVM 2008 Parts of this publication may be reproduced, provided acknowledgement is given to the 'National Institute for Public Health and the Environment', along with the title and year of publication. 2 RIVM report 320001001 Abstract Effect of administration route on biodistribution and shedding of replication-deficient viral vectors used in gene therapy A literature study In gene therapy, genes (heredity material) are introduced in patients to treat diseases caused by deletions or alterations in genes. With adapted viruses it is possible to direct the gene of interest to a desired place in the body. This modified virus is called a viral vector. The gene of interest can also spread, via the viral vector, to a site outside the patient.
    [Show full text]
  • Re-Infection and Viral Shedding
    // Threat Assessment Brief Reinfection with SARS-CoV-2: considerations for public health response 21 September 2020 Introduction Cases with suspected or possible reinfection with SARS-CoV-2 have been recently reported in different countries [1-4]. In many of these cases, it is uncertain if the individual’s Polymerase Chain Reaction (PCR) test remained positive for a long period of time following the first episode of infection or whether it represents a true reinfection. The aim of this Threat Assessment Brief is to elucidate the characteristics and frequency of confirmed SARS-CoV-2 reinfection in the literature, to summarise the findings about SARS-CoV-2 infection and antibody development, and to consider the following questions: • How can a SARS-CoV-2 reinfection be identified? • How common are SARS-CoV-2 reinfections? • What is known about the role of reinfection in onward transmission? • What do these observations mean for acquired immunity? Finally, options for public health response are proposed. Issues to be considered • Some patients with laboratory-confirmed SARS-CoV-2 infection have been identified to be PCR-positive over prolonged periods of time after infection and clinical recovery [5,6]. • The duration of viral RNA detection (identification of viral RNA through PCR testing in a patient) has been shown to be variable, with the detection of RNA in upper respiratory specimens shown up to 104 days after the onset of symptoms [7-9]. • Of note, patients have also been reported to have intermittent negative PCR tests, especially when the virus concentration in the sampled material becomes low or is around the detection limit of a test [4].
    [Show full text]
  • Module1: General Concepts
    NPTEL – Biotechnology – General Virology Module1: General Concepts Lecture 1: Virus history The history of virology goes back to the late 19th century, when German anatomist Dr Jacob Henle (discoverer of Henle’s loop) hypothesized the existence of infectious agent that were too small to be observed under light microscope. This idea fails to be accepted by the present scientific community in the absence of any direct evidence. At the same time three landmark discoveries came together that formed the founding stone of what we call today as medical science. The first discovery came from Louis Pasture (1822-1895) who gave the spontaneous generation theory from his famous swan-neck flask experiment. The second discovery came from Robert Koch (1843-1910), a student of Jacob Henle, who showed for first time that the anthrax and tuberculosis is caused by a bacillus, and finally Joseph Lister (1827-1912) gave the concept of sterility during the surgery and isolation of new organism. The history of viruses and the field of virology are broadly divided into three phases, namely discovery, early and modern. The discovery phase (1886-1913) In 1879, Adolf Mayer, a German scientist first observed the dark and light spot on infected leaves of tobacco plant and named it tobacco mosaic disease. Although he failed to describe the disease, he showed the infectious nature of the disease after inoculating the juice extract of diseased plant to a healthy one. The next step was taken by a Russian scientist Dimitri Ivanovsky in 1890, who demonstrated that sap of the leaves infected with tobacco mosaic disease retains its infectious property even after its filtration through a Chamberland filter.
    [Show full text]
  • Risk Groups: Viruses (C) 1988, American Biological Safety Association
    Rev.: 1.0 Risk Groups: Viruses (c) 1988, American Biological Safety Association BL RG RG RG RG RG LCDC-96 Belgium-97 ID Name Viral group Comments BMBL-93 CDC NIH rDNA-97 EU-96 Australia-95 HP AP (Canada) Annex VIII Flaviviridae/ Flavivirus (Grp 2 Absettarov, TBE 4 4 4 implied 3 3 4 + B Arbovirus) Acute haemorrhagic taxonomy 2, Enterovirus 3 conjunctivitis virus Picornaviridae 2 + different 70 (AHC) Adenovirus 4 Adenoviridae 2 2 (incl animal) 2 2 + (human,all types) 5 Aino X-Arboviruses 6 Akabane X-Arboviruses 7 Alastrim Poxviridae Restricted 4 4, Foot-and- 8 Aphthovirus Picornaviridae 2 mouth disease + viruses 9 Araguari X-Arboviruses (feces of children 10 Astroviridae Astroviridae 2 2 + + and lambs) Avian leukosis virus 11 Viral vector/Animal retrovirus 1 3 (wild strain) + (ALV) 3, (Rous 12 Avian sarcoma virus Viral vector/Animal retrovirus 1 sarcoma virus, + RSV wild strain) 13 Baculovirus Viral vector/Animal virus 1 + Togaviridae/ Alphavirus (Grp 14 Barmah Forest 2 A Arbovirus) 15 Batama X-Arboviruses 16 Batken X-Arboviruses Togaviridae/ Alphavirus (Grp 17 Bebaru virus 2 2 2 2 + A Arbovirus) 18 Bhanja X-Arboviruses 19 Bimbo X-Arboviruses Blood-borne hepatitis 20 viruses not yet Unclassified viruses 2 implied 2 implied 3 (**)D 3 + identified 21 Bluetongue X-Arboviruses 22 Bobaya X-Arboviruses 23 Bobia X-Arboviruses Bovine 24 immunodeficiency Viral vector/Animal retrovirus 3 (wild strain) + virus (BIV) 3, Bovine Bovine leukemia 25 Viral vector/Animal retrovirus 1 lymphosarcoma + virus (BLV) virus wild strain Bovine papilloma Papovavirus/
    [Show full text]
  • Introduction to Viroids and Prions
    Harriet Wilson, Lecture Notes Bio. Sci. 4 - Microbiology Sierra College Introduction to Viroids and Prions Viroids – Viroids are plant pathogens made up of short, circular, single-stranded RNA molecules (usually around 246-375 bases in length) that are not surrounded by a protein coat. They have internal base-pairs that cause the formation of folded, three-dimensional, rod-like shapes. Viroids apparently do not code for any polypeptides (proteins), but do cause a variety of disease symptoms in plants. The mechanism for viroid replication is not thoroughly understood, but is apparently dependent on plant enzymes. Some evidence suggests they are related to introns, and that they may also infect animals. Disease processes may involve RNA-interference or activities similar to those involving mi-RNA. Prions – Prions are proteinaceous infectious particles, associated with a number of disease conditions such as Scrapie in sheep, Bovine Spongiform Encephalopathy (BSE) or Mad Cow Disease in cattle, Chronic Wasting Disease (CWD) in wild ungulates such as muledeer and elk, and diseases in humans including Creutzfeld-Jacob disease (CJD), Gerstmann-Straussler-Scheinker syndrome (GSS), Alpers syndrome (in infants), Fatal Familial Insomnia (FFI) and Kuru. These diseases are characterized by loss of motor control, dementia, paralysis, wasting and eventually death. Prions can be transmitted through ingestion, tissue transplantation, and through the use of comtaminated surgical instruments, but can also be transmitted from one generation to the next genetically. This is because prion proteins are encoded by genes normally existing within the brain cells of various animals. Disease is caused by the conversion of normal cell proteins (glycoproteins) into prion proteins.
    [Show full text]
  • Influenza Viral Shedding in a Prospective Cohort of HIV-Infected and Uninfected Children and Adults in 2 Provinces of South Africa, 2012–2014
    HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author J Infect Manuscript Author Dis. Author manuscript; Manuscript Author available in PMC 2019 May 03. Published in final edited form as: J Infect Dis. 2018 September 08; 218(8): 1228–1237. doi:10.1093/infdis/jiy310. Influenza Viral Shedding in a Prospective Cohort of HIV-Infected and Uninfected Children and Adults in 2 Provinces of South Africa, 2012–2014 Claire von Mollendorf1,2, Orienka Hellferscee1,3, Ziyaad Valley-Omar1,6, Florette K. Treurnicht1, Sibongile Walaza1,2, Neil A. Martinson4, Limakatso Lebina4, Katlego Mothlaoleng4, Gethwana Mahlase7, Ebrahim Variava5,8, Adam L. Cohen9,10,a, Marietjie Venter11, Cheryl Cohen1,2, and Stefano Tempia9,10 1Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, University of the Witwatersrand, Johannesburg 2School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 3School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 4Perinatal HIV Research Unit, Medical Research Council Soweto Matlosana Collaborating Centre for HIV/AIDS and TB, University of the Witwatersrand, Johannesburg 5School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 6Department of Pathology, Division of Medical Virology, University of Cape Town 7Pietermaritzburg Metropolitan, KwaZulu-Natal, Atlanta, Georgia 8Department of Medicine, Klerksdorp Tshepong Hospital, North West Province, Atlanta, Georgia 9Influenza Division, Centers for Disease Control and Prevention, Pretoria, Atlanta, Georgia 10Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia 11Department of Medical Virology, University of Pretoria, Pretoria, South Africa Abstract Background—Prolonged shedding of influenza viruses may be associated with increased transmissibility and resistance mutation acquisition due to therapy.
    [Show full text]
  • Early Prognosis of Respiratory Virus Shedding in Humans M
    www.nature.com/scientificreports OPEN Early prognosis of respiratory virus shedding in humans M. Aminian3, T. Ghosh2, A. Peterson1, A. L. Rasmussen4,5, S. Stiverson1, K. Sharma2 & M. Kirby1,2* This paper addresses the development of predictive models for distinguishing pre-symptomatic infections from uninfected individuals. Our machine learning experiments are conducted on publicly available challenge studies that collected whole-blood transcriptomics data from individuals infected with HRV, RSV, H1N1, and H3N2. We address the problem of identifying discriminatory biomarkers between controls and eventual shedders in the frst 32 h post-infection. Our exploratory analysis shows that the most discriminatory biomarkers exhibit a strong dependence on time over the course of the human response to infection. We visualize the feature sets to provide evidence of the rapid evolution of the gene expression profles. To quantify this observation, we partition the data in the frst 32 h into four equal time windows of 8 h each and identify all discriminatory biomarkers using sparsity-promoting classifers and Iterated Feature Removal. We then perform a comparative machine learning classifcation analysis using linear support vector machines, artifcial neural networks and Centroid-Encoder. We present a range of experiments on diferent groupings of the diseases to demonstrate the robustness of the resulting models. Transmission routes of human respiratory virus infections are typically via respiratory droplets that arise as a consequence of speaking, sneezing, and coughing. Such infections include a broad range of pathogens including infuenza virus, human rhinovirus (HRV), respiratory syncytial virus (RSV), severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV) and the novel coro- navirus SARS-CoV-2.
    [Show full text]
  • The SARS-Coronavirus Infection Cycle: a Survey of Viral Membrane Proteins, Their Functional Interactions and Pathogenesis
    International Journal of Molecular Sciences Review The SARS-Coronavirus Infection Cycle: A Survey of Viral Membrane Proteins, Their Functional Interactions and Pathogenesis Nicholas A. Wong * and Milton H. Saier, Jr. * Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA * Correspondence: [email protected] (N.A.W.); [email protected] (M.H.S.J.); Tel.: +1-650-763-6784 (N.A.W.); +1-858-534-4084 (M.H.S.J.) Abstract: Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is a novel epidemic strain of Betacoronavirus that is responsible for the current viral pandemic, coronavirus disease 2019 (COVID- 19), a global health crisis. Other epidemic Betacoronaviruses include the 2003 SARS-CoV-1 and the 2009 Middle East Respiratory Syndrome Coronavirus (MERS-CoV), the genomes of which, particularly that of SARS-CoV-1, are similar to that of the 2019 SARS-CoV-2. In this extensive review, we document the most recent information on Coronavirus proteins, with emphasis on the membrane proteins in the Coronaviridae family. We include information on their structures, functions, and participation in pathogenesis. While the shared proteins among the different coronaviruses may vary in structure and function, they all seem to be multifunctional, a common theme interconnecting these viruses. Many transmembrane proteins encoded within the SARS-CoV-2 genome play important roles in the infection cycle while others have functions yet to be understood. We compare the various structural and nonstructural proteins within the Coronaviridae family to elucidate potential overlaps Citation: Wong, N.A.; Saier, M.H., Jr.
    [Show full text]
  • Developing a Quantitative PCR Assay for Detecting Viral Vector Shedding from Animals
    Wright State University CORE Scholar Browse all Theses and Dissertations Theses and Dissertations 2011 Developing a Quantitative PCR Assay for Detecting Viral Vector Shedding from Animals Swathee Chinnasamy Wright State University Follow this and additional works at: https://corescholar.libraries.wright.edu/etd_all Part of the Immunology and Infectious Disease Commons, and the Microbiology Commons Repository Citation Chinnasamy, Swathee, "Developing a Quantitative PCR Assay for Detecting Viral Vector Shedding from Animals" (2011). Browse all Theses and Dissertations. 1073. https://corescholar.libraries.wright.edu/etd_all/1073 This Thesis is brought to you for free and open access by the Theses and Dissertations at CORE Scholar. It has been accepted for inclusion in Browse all Theses and Dissertations by an authorized administrator of CORE Scholar. For more information, please contact [email protected]. DEVELOPING A QUANTITATIVE PCR ASSAY FOR DETECTING VIRAL VECTOR SHEDDING FROM ANIMALS A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science By SWATHEE CHINNASAMY M.Sc BIOTECHNOLOGY, BHARATHIAR UNIVERSITY, 2009 2011 WRIGHT STATE UNIVERSITY WRIGHT STATE UNIVERSITY SCHOOL OF GRADUATE STUDIES DECEMBER 13, 2011 I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVISION BY Swathee Chinnasamy ENTITLED Developing a quantitative PCR assay for detecting viral vector shedding from animals BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master of Science. ________________________ Dawn P. Wooley, Ph.D. Thesis Director ________________________ Barbara E. Hull, Ph.D. Program Director Committee on Final Examination _______________________ Dawn P. Wooley, Ph.D. ______________________ Adrian Corbett, Ph.D. _______________________ Katherine Excoffon, Ph.D.
    [Show full text]