The Periodic Table: a Window to the History of Chemistry! Savita Ladage & Tejas Joshi

Total Page:16

File Type:pdf, Size:1020Kb

The Periodic Table: a Window to the History of Chemistry! Savita Ladage & Tejas Joshi 8- ANNALS OF HISTORY THE PERIODIC TABLE: A WINDOW TO THE HISTORY OF CHEMISTRY! SAVITA LADAGE & TEJAS JOSHI The periodic table is central he periodic table is an integral part Early attempts to identify to chemistry education, of the chemistry we study today. natural elements and it can be just as central TBut, have you ever wondered how in exploring the inspiring elements were discovered? Or, how the The belief that all matter in the world history and evolution of periodic table has evolved to its present around us is made up of a limited pool of chemistry as a subject. This structure and format – especially in the building blocks has persisted since ancient article embarks on this absence of advanced analytical techniques, times. This has led to numerous attempts, historical journey, with the instruments or accessible literature? The from different civilisations, to identify these objective of showcasing its answers to these questions lie in the building blocks. value for both teachers and unflinching human quest for knowledge, One such attempt identified four students. a logical approach, and a great deal of elementary substances – Water, Air, Fire and foresight. As lucid and organized as it Earth. Aristotle added one more element – may appear today, the periodic table is in ‘Aether’, the element of the heavens, to this fact a reflection of the challenging and list. These finite building blocks were put uphill evolution of the very subject of together in a preliminary, but convincing, chemistry. Thus, learning about its history ‘table’ – becoming one of the first efforts is as invaluable for a teacher as it is for a to classify elements. Even back then, these learner… elementary substances were used to make sense of natural phenomena (refer Fig1)! Fig. 1. A preliminary table of natural elements. This very old precursor, by Aristotle, to the modern periodic table might have been a modest beginning, but it worked well in explaining natural phenomena. For example, the presence/absence of fire explained hot and cold respectively. The absence of water implied a solid. Thus observing ash and experiencing heat following the burning of wood, wood was believed to be made up of earth and fire. Credits: Tejas Joshi. License: CC-BY-NC REDISCOVERING SCHOOL SCIENCE 37 This simple, but reasonably rational, However, the first written record unique means of decomposition. It was classification prevailed for many documenting the discovery of an successfully deployed by Sir Humphry centuries. However, beginning with element dates back to 1669. The Davy to isolate the extremely reactive the work of alchemists (ancestors of element it describes is Phosphorus, Sodium and Potassium in 1807 and modern chemists), and later as a result discovered from urine, a natural source other alkaline earths like Calcium, of progress in experimental sciences, the of phosphates. Magnesium and Barium subsequently. concept of chemical elements began The reducing ability of potassium, While it is possible that many more witnessing a considerable change. in turn, helped Jöns Jacob Berzelius elements were discovered in this period, discover Selenium, Silicon, and it is difficult for us to establish the Zirconium etc. What are chemical existence of this knowledge. Alchemists elements? of this period relied heavily on trial and The gradual increase in the number of The discovery of chemical elements error. Also, given the potential economic known elements was accompanied by dates back to prehistoric times, when benefits that their discoveries might the evolution of ideas regarding the humans observed charcoal (Carbon) bring them, they tended to refrain from atom and atomic mass in the early being left behind from the burning of disclosing their learning. This meant that nineteenth century. Both these aspects wood in forest fires. knowledge was more likely to remain became important stepping stones An awareness of as many as seven isolated, and its development did not in subsequent attempts to classify metals – Gold, Silver, Copper, Lead, Iron, progress methodically. elements. The atomic theory proposed Tin and Mercury, and the non-metal by John Dalton in the beginning of Sulphur (apart from Carbon) – can Experimental science and the nineteenth century is particularly be traced back to ancient times. This the new concept of the significant in this context. Dalton may have been because many of these element suggested that elements were made up elements occur naturally, either in of indivisible particles, called ‘atoms’. The first significant shift in our ideas free (elemental) forms or in ores like His idea that all atoms of a particular sulphides and oxides, and are easily about elements came from the work element were identical – in terms decomposed by simple heating or of Robert Boyle in the seventeenth of their mass, size and properties – heating in the presence of charcoal. century. Boyle defined an element as focussed attention on the important It is also possible that once they were being a substance that could not be concept of atomic mass. According to discovered, their utility or importance broken down into simpler constituents, Dalton, the exact value for the atomic to humans may have driven their and could combine with other elements mass of an element could be thought of further identification. However, we to form a mixture (today’s compound). as being the signature of that element. have little documentation of either – Extensive work by scientists like This idea led to the question: how do their discovery, or their recognition as Henry Cavendish, Joseph Priestley and we calculate the atomic mass of an elements. Antoine Lavoisier in the eighteenth element? Dalton displayed remarkable century demonstrated this concept foresight in calculating this value In this context, the history of Gold experimentally. is particularly significant. Due to its relative to another element whose mass attractive lustre, Gold (along with Silver) Cavendish discovered a flammable gas was known (i.e. Hydrogen as a reference became a symbol of wealth (ornaments) (produced by the reaction of acid and element to predict relative masses of and beauty, gradually assuming metal), christened Hydrogen, at around other elements). significance as a medium of exchange the same time that Priestley discovered and international trade. Consequently, a gas, christened Oxygen, which many alchemists began to seek this supported burning. Lavoisier’s milestone ‘Philosopher’s Stone’ by attempting to synthesis of water using the two was convert other base metals, like Iron, the first major blow to Aristotle’s choice into Gold. It was these attempts by of elements. Lavoisier also established alchemists from the Middle Ages that the conservation of mass in chemical led to the discovery of many other reactions and provided a basis for elements, like Antimony, Arsenic and writing chemical reactions. Bismuth. It also led to the development of a variety of glassware as well as An invention that played a vital role the discovery of three major acids – in the discovery of new elements was sulphuric, hydrochloric and nitric, all of the construction of the Volta’s cell in which have been crucial for subsequent 1800. The Volta’s cell provided a steady experimental research. source of electricity and, thereby, a 38 Box 1. Atoms or molecules? Periodicity in chemical Remarkably, at this point of time, the chemical formulae of compounds was not known, properties of elements nor was the concept of valence. However, the law of conservation of mass (Lavoisier) and Following the 1860 Congress, the the law of constant proportion (Proust) had already been established. The law of constant considerable number of known elements proportion by Proust states that irrespective of its source, a particular compound (say water) is made up of the same elements (hydrogen and oxygen) present in a constant (63) and clarifications about their mass ratio (1:8) throughout. Keeping hydrogen as a reference, and assuming the simplest atomic masses, valence etc. provided the formula of water to be HO, Dalton concluded the atomic mass of oxygen to be 8. appropriate reference points needed to Gay-Lussac was working with chemical reactions in gaseous phase, and suggested that organize this information. atoms need not be the smallest particles in an element to have independent existence. Gay-Lussac’s results were in conflict with Dalton’s postulate of the indivisibility of an John Newlands was the first to identify atom. This conflict was finally resolved by Avogadro who proposed the idea of ‘molecules’. a certain ‘periodicity’ in the chemical properties of elements. Newlands The concept of atomic mass and its calculating them, based on Avogadro’s observed that when arranged in order determination was further developed hypothesis, was presented at the of their increasing atomic masses in the period between 1800 and 1860 Congress. This landmark gathering thus (as calculated by Cannizzaro), every by Gay-Lussac, Amedeo Avogadro, laid the foundation for serious and eighth element to appear in sequence Berzelius, Jean Stas and Stanislao concerted efforts to reflect on existing from a given starting element in his Cannizzaro. Berzelius changed the knowledge about elements and their arrangement was similar to each other reference element from Hydrogen to properties. (refer Figure 2). He called this peculiar Oxygen, broadening the canvas of property the ‘Law of Octaves’ given its chemical assays by making use of readily Box 3. Triads of elements. similarity to the musical octave. available oxides. This historic notion of Even though most attempts at The fact that Newlands relied more on using some reference for calculating classifying elements happened after atomic masses of elements, rather than atomic masses is still very much in use – the Karlsruhe Congress, there were with the 12C isotope being the standard some noteworthy attempts prior to it, their physical and chemical properties, today. notably Dobereiner’s work. Dobereiner’s resulted in some limitations in his categorization of elements was arrangement.
Recommended publications
  • The Practice of Chemistry Education (Paper)
    CHEMISTRY EDUCATION: THE PRACTICE OF CHEMISTRY EDUCATION RESEARCH AND PRACTICE (PAPER) 2004, Vol. 5, No. 1, pp. 69-87 Concept teaching and learning/ History and philosophy of science (HPS) Juan QUÍLEZ IES José Ballester, Departamento de Física y Química, Valencia (Spain) A HISTORICAL APPROACH TO THE DEVELOPMENT OF CHEMICAL EQUILIBRIUM THROUGH THE EVOLUTION OF THE AFFINITY CONCEPT: SOME EDUCATIONAL SUGGESTIONS Received 20 September 2003; revised 11 February 2004; in final form/accepted 20 February 2004 ABSTRACT: Three basic ideas should be considered when teaching and learning chemical equilibrium: incomplete reaction, reversibility and dynamics. In this study, we concentrate on how these three ideas have eventually defined the chemical equilibrium concept. To this end, we analyse the contexts of scientific inquiry that have allowed the growth of chemical equilibrium from the first ideas of chemical affinity. At the beginning of the 18th century, chemists began the construction of different affinity tables, based on the concept of elective affinities. Berthollet reworked this idea, considering that the amount of the substances involved in a reaction was a key factor accounting for the chemical forces. Guldberg and Waage attempted to measure those forces, formulating the first affinity mathematical equations. Finally, the first ideas providing a molecular interpretation of the macroscopic properties of equilibrium reactions were presented. The historical approach of the first key ideas may serve as a basis for an appropriate sequencing of
    [Show full text]
  • The History of the Concept of Element, with Particular Reference to Humphry Davy
    The Physical Sciences Initiative The history of the concept of element, with particular reference to Humphry Davy One of the problems highlighted when the recently implemented chemistry syllabus was being developed was the difficulty caused by starting the teaching of the course with atoms. The new syllabus offers a possible alternative teaching order that starts at the macroscopic level, and deals with elements. If this is done, the history of the idea of elements is dealt with at a very early stage. The concept of element originated with the ancient Greeks, notably Empedocles, who around 450 BC defined elements as the basic building blocks from which all other materials are made. He stated that there were four elements: earth, air, fire and water. Substances were said to change when elements break apart and recombine under the action of the forces of strife and love. Little progress was made in this area until the seventeenth century AD. The fruitless attempts of the alchemists to change base metals such as lead into gold and to find the “elixir of life” held back progress, although much chemical knowledge and expertise was gained. In 1661, 1 The Physical Sciences Initiative The Physical Sciences Initiative Robert Boyle defined an element as a substance that cannot be broken down into simpler materials. He cast doubt on the Greek elements, and provided a criterion for showing that a material was not an element. Robert Boyle Many elements were discovered during the next 100 years, but progress was delayed by the phlogiston hypothesis. According to this hypothesis, when a substance was burned it lost a substance called phlogiston to the air.
    [Show full text]
  • Milestone in the History of Chemistry
    Press Release No. 094 | ele | August 12, 2010 Milestone in the History of Chemistry After 150 Years, the World Congress Returns to Karlsruhe – An Exhibition at the KIT Library Looks Back Dr. Elisabeth Zuber-Knost Press Officer Kaiserstraße 12 76131 Karlsruhe, Germany Phone: +49 721 608-7414 Fax: +49 721 608-3658 Upturn: With the construction of the chemical laboratory in 1851, Karlsruhe climbed up to the top of German university chemistry. (Photo: KIT archive) For further information, please contact: 150 years ago, chemists from German, England, and overseas met at Karlsruhe for the first international specialized congress Klaus Rümmele on chemistry worldwide. Now, the World Congress of Che- Public Relations and Marketing (PKM) mistry returns. It will be organized by the KIT Department of Phone: +49 721 608-8153 Chemistry and Biosciences on September 3 and 4. On the oc- Fax: +49 721 608-5681 casion of this anniversary, the KIT library will exhibit selected E-mail: [email protected] contemporary standard works of chemistry and publications of congress participants. Opening times of the exhibition: Monday to Friday, 9 to 19, Satur- In the middle of the 19th century, chemistry had just formed as a day, 9 - 12.30 hrs scientific discipline. “There were new discoveries and new analytical (until February 2011) methods, which gave rise to competing theoretical schools,” ex- plains Dr. Michael Mönnich from the KIT library, who has conceived More information on the exhibi- and designed the exhibition. In particular, opinions on the atomic tion: and molecular structure varied. The nomenclature and use of formu- www.bibliothek.kit.edu/chemiker- las also were highly heterogeneous.
    [Show full text]
  • Historical Development of the Periodic Classification of the Chemical Elements
    THE HISTORICAL DEVELOPMENT OF THE PERIODIC CLASSIFICATION OF THE CHEMICAL ELEMENTS by RONALD LEE FFISTER B. S., Kansas State University, 1962 A MASTER'S REPORT submitted in partial fulfillment of the requirements for the degree FASTER OF SCIENCE Department of Physical Science KANSAS STATE UNIVERSITY Manhattan, Kansas 196A Approved by: Major PrafeLoor ii |c/ TABLE OF CONTENTS t<y THE PROBLEM AND DEFINITION 0? TEH-IS USED 1 The Problem 1 Statement of the Problem 1 Importance of the Study 1 Definition of Terms Used 2 Atomic Number 2 Atomic Weight 2 Element 2 Periodic Classification 2 Periodic Lav • • 3 BRIEF RtiVJiM OF THE LITERATURE 3 Books .3 Other References. .A BACKGROUND HISTORY A Purpose A Early Attempts at Classification A Early "Elements" A Attempts by Aristotle 6 Other Attempts 7 DOBEREBIER'S TRIADS AND SUBSEQUENT INVESTIGATIONS. 8 The Triad Theory of Dobereiner 10 Investigations by Others. ... .10 Dumas 10 Pettehkofer 10 Odling 11 iii TEE TELLURIC EELIX OF DE CHANCOURTOIS H Development of the Telluric Helix 11 Acceptance of the Helix 12 NEWLANDS' LAW OF THE OCTAVES 12 Newlands' Chemical Background 12 The Law of the Octaves. .........' 13 Acceptance and Significance of Newlands' Work 15 THE CONTRIBUTIONS OF LOTHAR MEYER ' 16 Chemical Background of Meyer 16 Lothar Meyer's Arrangement of the Elements. 17 THE WORK OF MENDELEEV AND ITS CONSEQUENCES 19 Mendeleev's Scientific Background .19 Development of the Periodic Law . .19 Significance of Mendeleev's Table 21 Atomic Weight Corrections. 21 Prediction of Hew Elements . .22 Influence
    [Show full text]
  • The Development of the Periodic Table and Its Consequences Citation: J
    Firenze University Press www.fupress.com/substantia The Development of the Periodic Table and its Consequences Citation: J. Emsley (2019) The Devel- opment of the Periodic Table and its Consequences. Substantia 3(2) Suppl. 5: 15-27. doi: 10.13128/Substantia-297 John Emsley Copyright: © 2019 J. Emsley. This is Alameda Lodge, 23a Alameda Road, Ampthill, MK45 2LA, UK an open access, peer-reviewed article E-mail: [email protected] published by Firenze University Press (http://www.fupress.com/substantia) and distributed under the terms of the Abstract. Chemistry is fortunate among the sciences in having an icon that is instant- Creative Commons Attribution License, ly recognisable around the world: the periodic table. The United Nations has deemed which permits unrestricted use, distri- 2019 to be the International Year of the Periodic Table, in commemoration of the 150th bution, and reproduction in any medi- anniversary of the first paper in which it appeared. That had been written by a Russian um, provided the original author and chemist, Dmitri Mendeleev, and was published in May 1869. Since then, there have source are credited. been many versions of the table, but one format has come to be the most widely used Data Availability Statement: All rel- and is to be seen everywhere. The route to this preferred form of the table makes an evant data are within the paper and its interesting story. Supporting Information files. Keywords. Periodic table, Mendeleev, Newlands, Deming, Seaborg. Competing Interests: The Author(s) declare(s) no conflict of interest. INTRODUCTION There are hundreds of periodic tables but the one that is widely repro- duced has the approval of the International Union of Pure and Applied Chemistry (IUPAC) and is shown in Fig.1.
    [Show full text]
  • Badania Kazimierza Fajansa* W Dziedzinie Promieniotwórczości I Izotopii
    A R TYKUŁY Józej Hurvoic (Marsylia) BADANIA KAZIMIERZA FAJANSA * W DZIEDZINIE PROMIENIOTWÓRCZOŚCI I IZOTOPII W 10 rocznicą śmierci Był to rok 1910. Sława 39-letniego wtedy Ernesta Rutherforda, już od dwóch lat laureata nagrody Nobla, ściągała do jego pracowni w Man­ chesterze badaczy z różnych krajów. Znajdowali się tu w tym okresie: Anglicy J. Chadwick, Charles Galton Darwin — wnuk słynnego twórcy teorii ewolucji, W. Makower, H. G. J. Moseley i J. M. Nuttal, Australij­ czyk D. C. H. Florance, Kanadyjczyk R. W. Boyle, Nowozelandczyk J. A. Gray, Amerykanin ze Stanów Zjednoczonych Alois F. Kowarik, Niemiec H. Geiger, Rosjanin G. N. Amltonow (Anitonoff) i Węgier G. von Hevesy. Do tego grona przybył Kazimierz Fajans. Urodzony 27 maja 1887 ro­ ku w Warszawie, po ukończeniu tamże gimnazjum studiował chemię na uniwersytecie w Lipsku, następnie w Heidelbergu uzyskał doktorat za pracę z zakresu chemii fizycznej organicznej wykonaną pod opieką pro­ fesora Georga Brediga, a w Zurychu odbył uzupełniający staż podoklor­ ski w dziedzinie chemii organicznej. Tam jednak, stwierdziwszy, że ze względu na empiryczny charakter ówczesnej chemii organicznej nie znajduje upodobania w tej gałęzi wiedzy, postanawia zająć się badaniem promieniotwórczości. Wraz ze świeżo poślubioną Salomeą Kapłan, war­ szawianką studiującą na uniwersytecie w Heidelbergu, wybiera się na rok akademicki 1910—1911 do Manchesteru. Najbliższym współpracownikiem Rutherforda był wtedy Hans Geiger, którego imię nosi licznik do pomiarów promieniotwórczości, wynalezio­ ny w 1912 r., a później przy udziale W. Müllera ulepszony. Dla Fajansa Geiger stał się głównym przewodnikiem i doradcą. Złożyły się na to * ur. 27 maja 1887 r., Warszawa — zm. 18 maja 1975 r., Ann Arbor.
    [Show full text]
  • Sterns Lebensdaten Und Chronologie Seines Wirkens
    Sterns Lebensdaten und Chronologie seines Wirkens Diese Chronologie von Otto Sterns Wirken basiert auf folgenden Quellen: 1. Otto Sterns selbst verfassten Lebensläufen, 2. Sterns Briefen und Sterns Publikationen, 3. Sterns Reisepässen 4. Sterns Züricher Interview 1961 5. Dokumenten der Hochschularchive (17.2.1888 bis 17.8.1969) 1888 Geb. 17.2.1888 als Otto Stern in Sohrau/Oberschlesien In allen Lebensläufen und Dokumenten findet man immer nur den VornamenOt- to. Im polizeilichen Führungszeugnis ausgestellt am 12.7.1912 vom königlichen Polizeipräsidium Abt. IV in Breslau wird bei Stern ebenfalls nur der Vorname Otto erwähnt. Nur im Emeritierungsdokument des Carnegie Institutes of Tech- nology wird ein zweiter Vorname Otto M. Stern erwähnt. Vater: Mühlenbesitzer Oskar Stern (*1850–1919) und Mutter Eugenie Stern geb. Rosenthal (*1863–1907) Nach Angabe von Diana Templeton-Killan, der Enkeltochter von Berta Kamm und somit Großnichte von Otto Stern (E-Mail vom 3.12.2015 an Horst Schmidt- Böcking) war Ottos Großvater Abraham Stern. Abraham hatte 5 Kinder mit seiner ersten Frau Nanni Freund. Nanni starb kurz nach der Geburt des fünften Kindes. Bald danach heiratete Abraham Berta Ben- der, mit der er 6 weitere Kinder hatte. Ottos Vater Oskar war das dritte Kind von Berta. Abraham und Nannis erstes Kind war Heinrich Stern (1833–1908). Heinrich hatte 4 Kinder. Das erste Kind war Richard Stern (1865–1911), der Toni Asch © Springer-Verlag GmbH Deutschland 2018 325 H. Schmidt-Böcking, A. Templeton, W. Trageser (Hrsg.), Otto Sterns gesammelte Briefe – Band 1, https://doi.org/10.1007/978-3-662-55735-8 326 Sterns Lebensdaten und Chronologie seines Wirkens heiratete.
    [Show full text]
  • Inorganic Chemistry for Dummies® Published by John Wiley & Sons, Inc
    Inorganic Chemistry Inorganic Chemistry by Michael L. Matson and Alvin W. Orbaek Inorganic Chemistry For Dummies® Published by John Wiley & Sons, Inc. 111 River St. Hoboken, NJ 07030-5774 www.wiley.com Copyright © 2013 by John Wiley & Sons, Inc., Hoboken, New Jersey Published by John Wiley & Sons, Inc., Hoboken, New Jersey Published simultaneously in Canada No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permis- sion of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley. com/go/permissions. Trademarks: Wiley, the Wiley logo, For Dummies, the Dummies Man logo, A Reference for the Rest of Us!, The Dummies Way, Dummies Daily, The Fun and Easy Way, Dummies.com, Making Everything Easier, and related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates in the United States and other countries, and may not be used without written permission. All other trade- marks are the property of their respective owners. John Wiley & Sons, Inc., is not associated with any product or vendor mentioned in this book.
    [Show full text]
  • Sylwetka Naukowa Kazimierza Fajansa
    POLSKA AKADEMIA UMIEJĘTNOŚCI TOM II PRACE KOMISJI HISTORII NAUKI 2000 Józef HURWIC SYLWETKA NAUKOWA KAZIMIERZA FAJANSA Kazimierz Fajans był jednym z najwybitniejszych fizykochemików pierw­ szej połowy naszego stulecia. W 1929 r. został wybrany na członka czynnego Wydziału Matematyczno-Przyrodniczego Polskiej Akademii Umiejętności. Mimo dużej różnicy wieku miałem zaszczyt i szczęście utrzymywać z nim i jego rodziną stosunki przyjaźni. W 1991 r. Instytut Historii Nauki, Oświaty i Techniki PAN wydał nakładem Ossolineum opracowaną przeze mnie dość obszerną biografię Fajansa1 do której odsyłam bliżej zainteresowanych jego osobą i dziełem. W niniejszym referacie postaram się zwięźle przedstawić najważniejsze jego dokonania naukowe. Kazimierz Fajans urodził się 27 maja 1887 r. w Warszawie w spolonizo­ wanej rodzinie żydowskiej bardzo dla Polski zasłużonej. Po ukończeniu w 1904 r. szkoły średniej w rodzinnym mieście wyjeżdża na studia chemiczne do Lipska, które następnie kontynuuje w Heidelbergu. Tu pod opieką Georga Brediga wykonuje pracę doktorską na temat katalizy stereospecyficznej2. Pracę obronił w 1909 r. Do jej tematu więcej nie wrócił. Bardziej zainteresowała go promie­ niotwórczość. W roku akademickim 1910-1911 odbył staż w sławnej pracowni Ernesta Rutherforda w Manchesterze. Przebywali tam wówczas m.in.: James Chadwick, Hans Geiger, Georg von Hevesy, H. J. G. Moseley, J. M. Nuttal. Fajans znalazł się w centrum badań, które w 1911 r. doprowadziły Rutherforda do odkrycia jądra atomowego na podstawie analizy rozpraszania cząstek a przez cienką folię metalową3. Fajans był obecny na historycznym posiedzeniu Man- chesterskiego Towarzystwa Filozoficznego, gdy Rutherford referował to epoko­ we odkrycie. Na sali znajdowali się przeważnie młodzi rówieśnicy Fajansa. Po 1 J. Hurwic, Kazimierz Fajans (1887-1975). Sylwetka Uczonego, Ossolineum, Wro- cław-Warszawa-Kraków-Gdańsk-Łódź 1991.
    [Show full text]
  • May 2016 Alan J. Rocke EDUCATION BA, 1969, Chemistry, Beloit College
    -1- May 2016 Alan J. Rocke EDUCATION B.A., 1969, Chemistry, Beloit College, Beloit, Wisconsin M.A., 1973, History of Science, University of Wisconsin-Madison Thesis: “Isaac Newton’s Theory of Matter” University of Munich, West Germany, 1974-75 Ph.D., 1975, History of Science, University of Wisconsin-Madison Dissertation: “Origins of the Structural Theory in Organic Chemistry” ACADEMIC EMPLOYMENT University of Wisconsin-Madison 1969-74 Teaching Assistant, Depts. of Chemistry and History of Science 1975-78 Lecturer, Depts. of Chemistry and Integrated Liberal Studies Case Western Reserve University 1978-84 Assistant Professor of History of Science and Technology, Department of Interdisciplinary Studies 1984-93 Associate Professor of History of Technology and Science 1993-2016 Professor of History 1995-2016 Henry Eldridge Bourne Professor of History 2012- Distinguished University Professor AWARDS AND HONORS Jack Youden Prize (American Society for Quality Control, Chemical Division), 1982 Carl F. Wittke Award for Excellence in Undergraduate Teaching, 1988 Outstanding Paper Award (American Chemical Society, History Division), 1992 Dexter Award for Outstanding Lifetime Contributions to the History of Chemistry (American Chemical Society), 2000 Fellow of the American Association for the Advancement of Science, 2000 Liebig-Wöhler Freundschafts-Preis, Lewicki Foundation, Göttingen, 2002 Membre correspondant, Académie Internationale d’Histoire des Sciences, 2007 Fellow of the American Chemical Society, 2012 Distinguished University Professor, 2012
    [Show full text]
  • Listening to Black Holes
    Issue 03 Feb 2017 REDISCOVERING SCHOOL SCIENCE Page 4 LISTENING TO BLACK HOLES A publication from Azim Premji University i wonder No. 134, Doddakannelli Next to Wipro Corporate Office Sarjapur Road, Bangalore - 560 035. India Tel: +91 80 6614 9000/01/02 Fax: +91 806614 4903 www.azimpremjifoundation.org Also visit Azim Premji University website at www.azimpremjiuniversity.edu.in A soft copy of this issue can be downloaded from www.http://azimpremjiuniversity.edu.in/SitePages/resources-iwonder.aspx Editors Ramgopal (RamG) Vallath Chitra Ravi Editorial Committee REDISCOVERING SCHOOL SCIENCE Anand Narayanan Chandrika Muralidhar Geetha Iyer Hridaykant Dewan Editor’s Desk Jayalekshmy Ayyer Julfikar Ali Propelled by science, humanity is at the cusp of becoming a spacefaring Radha Gopalan civilisation, with ‘eyes’ firmly set on distant stars and feet taking the first Rajaram Nityananda baby steps towards other planets in the Solar system. At this juncture, it Reeteka Sud is important to remember that science education can no longer be limited Richard Fernandes to telling students a plethora of facts, as if they are a given. Rather, the role of science education, as emphasized in the article Why Science Saurav Shome Matters, is to enable children understand and appreciate the scientific Sushil Joshi process that has led to the most plausible hypotheses being proven with Yasmin Jayathirtha hard data and then being presented as theories. It is also about Advisors encouraging children to make use of this process, not only in scientific Falguni Sarangi quests, but also in their day-to-day life. Effective science teachers can convey the beauty of this process and share the wonder it brings with Manoj P their students.
    [Show full text]
  • International the News Magazine of IUPAC
    CHEMISTRY International The News Magazine of IUPAC November-December 2013 Volume 35 No. 6 A Look Back at Ernest Solvay InChI, the Chemical Identifier INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY Suffixes and the Naming of Elements From the Editor A Heartfelt Congratulations to OPCW CHEMISTRY International n 11 October 2013, the Norwegian Nobel Committee announced that The News Magazine of the International Union of Pure and Othis year’s Nobel Peace Prize will be awarded to the Organization for Applied Chemistry (IUPAC) the Prohibition of Chemical Weapons (OPCW) for its extensive efforts to eliminate chemical weapons. www.iupac.org/publications/ci This is a great and important recognition for an organization that works so diligently to make the world a safer place. I am humbled to Managing Editor: Fabienne Meyers relay IUPAC’s heartfelt congratulations to our Production Editor: Chris Brouwer OPCW colleagues for this fantastic and well- Design: pubsimple deserved recognition for their tireless work to free the world of chemical weapons. All correspondence to be addressed to: In recent years, IUPAC has been privileged Fabienne Meyers to work with OPCW, both in contributing IUPAC, c/o Department of Chemistry technical expertise to the review conferences Boston University of the Chemical Weapons Convention (CWC) Metcalf Center for Science and Engineering and in developing educational resources on the multiple uses of chemi- 590 Commonwealth Ave. cals. As recently as the July-Aug 2013 issue of Chemistry International, Boston, MA 02215, USA Leiv K. Sydnes contributed a feature outlining IUPAC’s involvement with OPCW over the last 12 years. That feature was triggered by the recent E-mail: [email protected] IUPAC Technical Report (in the April 2013 Pure and Applied Chemistry) Phone: +1 617 358 0410 titled “Impact of Scientific Developments on the Chemical Weapons Fax: +1 617 353 6466 Convention,” released in advance of the Third Review Conference of the CWC held last April.
    [Show full text]