Bristlecone Chapter of the California Native Plant Society
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Outline of Angiosperm Phylogeny
Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese -
Population Genetics of the Narrow Endemic Hladnikia Pastinacifolia Rchb
ACTA BIOLOGICA CRACOVIENSIA Series Botanica 54/1: 84–96, 2012 DOI: 10.2478/v10182-012-0009-8 POPULATION GENETICS OF THE NARROW ENDEMIC HLADNIKIA PASTINACIFOLIA RCHB. (APIACEAE) INDICATES SURVIVAL IN SITU DURING THE PLEISTOCENE NINA ŠAJNA1*, TATJANA KAVAR2, JELKA ŠUŠTAR-VOZLIÈ2, and MITJA KALIGARIÈ1 1University of Maribor, Biology Department, Faculty of Natural Sciences and Mathematics, Koroška c. 160, SI – 2000 Maribor, Slovenia 2Agricultural Institute of Slovenia, Field Crop and Seed Production Department, Hacquetova 17, SI-1000 Ljubljana, Slovenia Received July 15, 2011; revision accepted April 6, 2012 Hladnikia pastinacifolia Rchb., a narrow endemic, has an extremely restricted distribution in Trnovski gozd (Slovenia), despite the presence of many sites with suitable habitats. We compared the morphological traits of plants from different populations and habitats. The overall pattern showed that the smallest plants, with low fruit number, are found on Èaven (locus classicus or type locality); the largest individuals, with high fruit number, grow in the Golobnica gorge. As judged by plant size and seed set, the optimal habitats are screes. We used RAPD mark- ers to estimate genetic variation between and within populations, as well as between and within the northern and the southern parts of the distribution area. Hladnikia showed only a low level of RAPD variability. AMOVA parti- tioned the majority of genetic diversity within selected populations. The low genetic differentiation between popu- lations and their genetic depauperation indicates survival in situ, since the Trnovski gozd plateau most likely was a nunatak region in the southern Prealps during Pleistocene glaciations. Later range expansion of extant popula- tions was limited by poor seed dispersal. -
Apiaceae) Based on Phylogenetic Analyses of Nuclear (ITS) and Plastid (Rps16 Intron) DNA Sequences
South African Journal of Botany 2004, 70(3): 407–416 Copyright © NISC Pty Ltd Printed in South Africa — All rights reserved SOUTH AFRICAN JOURNAL OF BOTANY ISSN 0254–6299 A molecular systematic investigation of Cymopterus and its allies (Apiaceae) based on phylogenetic analyses of nuclear (ITS) and plastid (rps16 intron) DNA sequences F-J Sun and SR Downie* Department of Plant Biology, University of Illinois, Urbana 61801, United States of America * Corresponding author, email: [email protected] Received 5 September 2003, accepted in revised form 7 November 2003 Considerable controversy exists with regard to the maximum likelihood methods. For those trees exhibit- proper delimitation of Cymopterus (Apiaceae subfamily ing the greatest resolution, the results revealed that the Apioideae) and its relationship to the other perennial perennial, endemic apioid genera of North America endemic umbellifers of western North America. (north of Mexico) comprise a weakly supported mono- Previous molecular systematic studies using nuclear phyletic group, with Angelica constituting its sister line- (rDNA ITS) and, for subsets of taxa, plastid (rps16 intron age. Cymopterus is confirmed as highly polyphyletic. and trnF-trnL-trnT) DNA sequences have revealed that The rps16 intron yielded substantially fewer parsimony the genus Cymopterus is polyphyletic, with its species informative characters than those of the ITS region and inextricably linked with those of Aletes, Lomatium, when analysed, separately or in combination, with ITS Musineon, Oreoxis, Pseudocymopterus, Pteryxia, data, resulted in trees of poor resolution. Only one pre- Tauschia, and several other genera of the region. viously identified species group of Cymopterus is sup- Herein, in an effort to increase resolution of relation- ported as monophyletic; this group coincides with sec- ships, we procured rps16 intron sequence data from 74 tion Phellopterus, and is recognised by its showy, accessions of Cymopterus and its allies so that ITS and basally connate bractlets. -
Apiaceae, Apioideae) and Its Taxonomic Implications in Korea
Bangladesh J. Plant Taxon. 25(2): 175-186, 2018 (December) © 2018 Bangladesh Association of Plant Taxonomists MERICARP MORPHOLOGY OF THE TRIBE SELINEAE (APIACEAE, APIOIDEAE) AND ITS TAXONOMIC IMPLICATIONS IN KOREA 1 2 2 CHANGYOUNG LEE , JINKI KIM, ASHWINI M. DARSHETKAR , RITESH KUMAR CHOUDHARY , 3 4 5 SANG-HONG PARK , JOONGKU LEE AND SANGHO CHOI International Biological Material Research Center, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, South Korea Keywords: Mericarp surface characters; SEM; NMDS; UPGMA. Abstract Mericarp morphology of 24 taxa belonging to nine genera of the tribe Selineae (Family: Apiaceae) in Korea was studied by Scanning Electron Microscopy. UPGMA and NMDS analyses were performed based on 12 morphological characters. The mericarp surface characters like mericarp shape, rib number and shape, surface pattern, surface appendages and mericarp symmetry proved useful in distinguishing the genera of the tribe Selineae. Introduction The family Apiaceae comprises about 455 genera and is widely distributed across temperate regions of the world (Pimenov and Leonov, 1993). Many members of Apiaceae can be easily distinguished by umbellate inflorescence, fruits consisting of two one-seeded mericarps suspended from a split central column or carpophore and numerous minute epigynous flowers (Downie et al., 1998). Fruits of Apiaceae are known as cremocarps which in the dry state split into two mericarps. Each mericarp has a flat commissural and convex dorsal surface. Drude (1898) proposed a sound system of classification of Apiaceae with three subfamilies Hydrocotiloideae, Saniculoideae and Apioideae and 12 tribes. Apioideae is the largest subfamily consisting of 404 genera and about 2,935 species (Pimenov and Leonov, 1993) and can be distinguished from the other two subfamilies by the synapomorphies like the presence of compound umbels, well-developed vittae (secretory canals) and free carpophores. -
Flora-Lab-Manual.Pdf
LabLab MManualanual ttoo tthehe Jane Mygatt Juliana Medeiros Flora of New Mexico Lab Manual to the Flora of New Mexico Jane Mygatt Juliana Medeiros University of New Mexico Herbarium Museum of Southwestern Biology MSC03 2020 1 University of New Mexico Albuquerque, NM, USA 87131-0001 October 2009 Contents page Introduction VI Acknowledgments VI Seed Plant Phylogeny 1 Timeline for the Evolution of Seed Plants 2 Non-fl owering Seed Plants 3 Order Gnetales Ephedraceae 4 Order (ungrouped) The Conifers Cupressaceae 5 Pinaceae 8 Field Trips 13 Sandia Crest 14 Las Huertas Canyon 20 Sevilleta 24 West Mesa 30 Rio Grande Bosque 34 Flowering Seed Plants- The Monocots 40 Order Alistmatales Lemnaceae 41 Order Asparagales Iridaceae 42 Orchidaceae 43 Order Commelinales Commelinaceae 45 Order Liliales Liliaceae 46 Order Poales Cyperaceae 47 Juncaceae 49 Poaceae 50 Typhaceae 53 Flowering Seed Plants- The Eudicots 54 Order (ungrouped) Nymphaeaceae 55 Order Proteales Platanaceae 56 Order Ranunculales Berberidaceae 57 Papaveraceae 58 Ranunculaceae 59 III page Core Eudicots 61 Saxifragales Crassulaceae 62 Saxifragaceae 63 Rosids Order Zygophyllales Zygophyllaceae 64 Rosid I Order Cucurbitales Cucurbitaceae 65 Order Fabales Fabaceae 66 Order Fagales Betulaceae 69 Fagaceae 70 Juglandaceae 71 Order Malpighiales Euphorbiaceae 72 Linaceae 73 Salicaceae 74 Violaceae 75 Order Rosales Elaeagnaceae 76 Rosaceae 77 Ulmaceae 81 Rosid II Order Brassicales Brassicaceae 82 Capparaceae 84 Order Geraniales Geraniaceae 85 Order Malvales Malvaceae 86 Order Myrtales Onagraceae -
The Status and Distribution of Christ's Indian
THE STATUS AND DISTRIBUTION OF CHRIST'S INDIAN PAINTBRUSH (CASTILLEJA CHRISTII) AND DAVIS' WAVEWING (CYMOPTERUS DAVISII) IN THE ALBION MOUNTAINS, SAWTOOTH NATIONAL FOREST AND CITY OF ROCKS NATIONAL RESERVE by Robert K. Moseley Conservation Data Center Natural Resource Policy Bureau October 1993 Idaho Department of Fish and Game 600 South Walnut, P.O. Box 25 Boise, Idaho 83707 Jerry M. Conley, Director Cooperative Challenge Cost-share Project Sawtooth National Forest Idaho Department of Fish and Game Purchase Order No. 43-0267-3-0188 ABSTRACT The Albion Mountains of Cassia County, Idaho, are an isolated massif rising over 5,000 feet above the eastern Snake River Plain. This high elevation "island" contains two endemic plants along its crest, Castilleja christii (Christ's Indian paintbrush) and Cymopterus davisii (Davis' wavewing). Due to their very restricted range, both are candidates for federal listing under the Endangered Species Act and are Intermountain Region Forest Service Sensitive Species. Castilleja christii occurs only on the summit of Mount Harrison at the north end of the Albion Mountains. Cymopterus davisii is somewhat more widespread, occurring on Mount Harrison with Castilleja christii and on Independence Mountain and Graham Peak at the southern end of the range. In late July 1993, I delineated the known populations of these two species, as well as thoroughly searched potential habitat for additional populations. I found no new populations, although I greatly expanded the Independence Mountain population of Cymopterus davisii. The single paintbrush population occupies approximately 200 acres on the summit plateau of Mount Harrison and consists of several thousand individuals. I estimate that over 100,000 Davis' wavewing individuals occupy around 314 acres on Mount Harrison, several hundred thousand occupy at least 370 acres on Independence Mountain, and the small population on Graham Peak contains between 500-1000 individuals. -
FERNS and FERN ALLIES Dittmer, H.J., E.F
FERNS AND FERN ALLIES Dittmer, H.J., E.F. Castetter, & O.M. Clark. 1954. The ferns and fern allies of New Mexico. Univ. New Mexico Publ. Biol. No. 6. Family ASPLENIACEAE [1/5/5] Asplenium spleenwort Bennert, W. & G. Fischer. 1993. Biosystematics and evolution of the Asplenium trichomanes complex. Webbia 48:743-760. Wagner, W.H. Jr., R.C. Moran, C.R. Werth. 1993. Aspleniaceae, pp. 228-245. IN: Flora of North America, vol.2. Oxford Univ. Press. palmeri Maxon [M&H; Wagner & Moran 1993] Palmer’s spleenwort platyneuron (Linnaeus) Britton, Sterns, & Poggenburg [M&H; Wagner & Moran 1993] ebony spleenwort resiliens Kunze [M&H; W&S; Wagner & Moran 1993] black-stem spleenwort septentrionale (Linnaeus) Hoffmann [M&H; W&S; Wagner & Moran 1993] forked spleenwort trichomanes Linnaeus [Bennert & Fischer 1993; M&H; W&S; Wagner & Moran 1993] maidenhair spleenwort Family AZOLLACEAE [1/1/1] Azolla mosquito-fern Lumpkin, T.A. 1993. Azollaceae, pp. 338-342. IN: Flora of North America, vol. 2. Oxford Univ. Press. caroliniana Willdenow : Reports in W&S apparently belong to Azolla mexicana Presl, though Azolla caroliniana is known adjacent to NM near the Texas State line [Lumpkin 1993]. mexicana Schlechtendal & Chamisso ex K. Presl [Lumpkin 1993; M&H] Mexican mosquito-fern Family DENNSTAEDTIACEAE [1/1/1] Pteridium bracken-fern Jacobs, C.A. & J.H. Peck. Pteridium, pp. 201-203. IN: Flora of North America, vol. 2. Oxford Univ. Press. aquilinum (Linnaeus) Kuhn var. pubescens Underwood [Jacobs & Peck 1993; M&H; W&S] bracken-fern Family DRYOPTERIDACEAE [6/13/13] Athyrium lady-fern Kato, M. 1993. Athyrium, pp. -
Vascular Plant Species of the Comanche National Grassland in United States Department Southeastern Colorado of Agriculture
Vascular Plant Species of the Comanche National Grassland in United States Department Southeastern Colorado of Agriculture Forest Service Donald L. Hazlett Rocky Mountain Research Station General Technical Report RMRS-GTR-130 June 2004 Hazlett, Donald L. 2004. Vascular plant species of the Comanche National Grassland in southeast- ern Colorado. Gen. Tech. Rep. RMRS-GTR-130. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 36 p. Abstract This checklist has 785 species and 801 taxa (for taxa, the varieties and subspecies are included in the count) in 90 plant families. The most common plant families are the grasses (Poaceae) and the sunflower family (Asteraceae). Of this total, 513 taxa are definitely known to occur on the Comanche National Grassland. The remaining 288 taxa occur in nearby areas of southeastern Colorado and may be discovered on the Comanche National Grassland. The Author Dr. Donald L. Hazlett has worked as an ecologist, botanist, ethnobotanist, and teacher in Latin America and in Colorado. He has specialized in the flora of the eastern plains since 1985. His many years in Latin America prompted him to include Spanish common names in this report, names that are seldom reported in floristic pub- lications. He is also compiling plant folklore stories for Great Plains plants. Since Don is a native of Otero county, this project was of special interest. All Photos by the Author Cover: Purgatoire Canyon, Comanche National Grassland You may order additional copies of this publication by sending your mailing information in label form through one of the following media. -
Phylogenetic Relationships Among the Perennial
Plant Div. Evol. Vol. 128/1–2, 151–172 E Stuttgart, August 20, 2010 Phylogenetic relationships among the perennial, endemic Apiaceae subfamily Apioideae of western North America: additional data from the cpDNA trnF-trnL-trnT region continue to support a highly polyphyletic Cymopterus By Feng-Jie Sun and Stephen R. Downie With 3 figures and 3 tables Abstract Sun, F.-J. & Downie, S.R.: Phylogenetic relationships among the perennial, endemic Apiaceae sub- family Apioideae of western North America: additional data from the cpDNA trnF-trnL-trnT region continue to support a highly polyphyletic Cymopterus. — Plant Div. Evol. 128: 151–172. 2010. — ISSN 1869-6155. Considerable confusion exists with regard to the delimitation of Cymopterus and its relationship to the other herbaceous, perennial genera of Apiaceae subfamily Apioideae endemic to western North Amer- ica north of Mexico. Previous molecular systematic studies using nrDNA ITS and cpDNA rps16 in- tron sequences have shown that the genus Cymopterus is highly polyphyletic, with its species inextri- cably linked with those of Aletes, Lomatium, Oreoxis, Pseudocymopterus, Pteryxia, and several other genera of the region. The general lack of resolution of these trees and their overall low branch support values, however, suggested that additional data might be useful to establish monophyly of genera or identify major clades for further phylogenetic and revisionary studies. In this study, we analyze cpD- NA trnF-trnL-trnT sequence data from 129 accessions of North American Apioideae (representing 111 species and 21 genera) using maximum parsimony, maximum likelihood and Bayesian inference methods individually and in combination with ITS and rps16 intron sequence data available through previous phylogenetic studies for the same set of accessions. -
White River National Forest Rare Plant Survey 2006
White River National Forest Rare Plant Survey 2006 Prepared for White River National Forest By Peggy Lyon, Janis Huggins and Georgia Doyle Colorado Natural Heritage Program 254 General Services Building Colorado State University Fort Collins CO 80523 Acknowledgments This project would not have been possible without the help of many people in the White River National Forest: Kevin Atchley for first requesting this survey and working to get a contract in place; Beth Brenneman and Keith Giezentanner who took over for Kevin when he left the area; Joe Doerr and Philip Nyland, for sharing their experience and caring about the rare plants on the forest. Also, we depend on the support of the staff of CNHP in Fort Collins, especially Dave Anderson, Jill Handwerk, Susan Spackman, and Amy Lavender. Thanks also to Tim Hogan at the CU Herbarium for assisting with identification of problem plants; Dee Malone for her expertise and transportation to Taylor Pass; and John Chapman, FS Volunteer, for his time and transportation to Warren Lakes. Colorado Natural Areas Program, under the energetic direction of Brian Kurzel, and members of the Colorado Native Plant Society assisted with a survey of the Hoosier Ridge State Natural Area. Finally, thanks to our spouses, George and Rick, for putting up with our absences over the summer, and our faithful companions Molly and Misia, who protected us from Ptarmigan and other scary things. 2 Executive Summary The White River National Forest contracted with Colorado State University in 2005 to have the Colorado Natural Heritage Program (CNHP) conduct a survey of sensitive plants on the forest. -
Cymopterus Evertii Hartman & Kirkpatrick (Evert’S Springparsley): a Technical Conservation Assessment
Cymopterus evertii Hartman & Kirkpatrick (Evert’s springparsley): A Technical Conservation Assessment Prepared for the USDA Forest Service, Rocky Mountain Region, Species Conservation Project November 19, 2004 Lynn Moore1 and Sandy Friedley2 1Windom Floristics 361 South Camino Del Rio #222 Durango, CO 81303 2Ecosphere Environmental Services 2257 Main Avenue Durango, CO 81301 Peer Review Administered by Society for Conservation Biology Moore, L. and S. Friedley. (2004, November 19). Cymopterus evertii Hartman & Kirkpatrick (Evert’s springparsley): a technical conservation assessment. [Online]. USDA Forest Service, Rocky Mountain Region. Available: http://www.fs.fed.us/r2/projects/scp/assessments/cymopterusevertii.pdf [date of access]. ACKNOWLEDGEMENTS The authors would like to thank Tessa Dutcher and Bonnie Heidel of the Wyoming Natural Diversity Database for their assistance and prompt responses to our inquiries. Thanks go to Kent Houston of the Shoshone National Forest for providing management information. Gratitude goes to Ron Hartman for patiently and promptly answering emails concerning the systematics and taxonomy of Cymopterus evertii. We offer our thanks to Walter and Laura Fertig for responding to questions concerning past work on this species. We are grateful to the Rocky Mountain Herbarium (RM), USFS Region 4 Herbarium (OGDF), Intermountain Herbarium (UTC), University of Montana (MONTU), R. L. McGregor Herbarium (KANU), and University of Colorado Museum (COLO) for providing herbarium label data. Additional thanks go to Walter Fertig and Rob Thurston for sharing their data concerning predicted distribution and Irwin Evert for providing background information on botanical investigations in northern Wyoming. We would also like to express our appreciation to Ken Heil, Mark Porter, David Inouye, Beth Burkhart and other reviewers for their comments and review of the manuscript. -
Utah Flora: Apiaceae (Umbelliferae)
Great Basin Naturalist Volume 46 Number 1 Article 6 1-31-1986 Utah flora: Apiaceae (Umbelliferae) Sherel Goodrich USDA Forest Service, Intermountain Forest and Range Experiment Station, Ogden, Utah Follow this and additional works at: https://scholarsarchive.byu.edu/gbn Recommended Citation Goodrich, Sherel (1986) "Utah flora: Apiaceae (Umbelliferae)," Great Basin Naturalist: Vol. 46 : No. 1 , Article 6. Available at: https://scholarsarchive.byu.edu/gbn/vol46/iss1/6 This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Great Basin Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. UTAH FLORA: APIACEAE (UMBELLIFERAE) Sherel Goodrich' Abstract— Eighty-four taxa in 30 genera of the parsley family, Apiaceae (Umbelliferae) are treated for Utah. Four of the genera with one species each that escape from cultivation are included in the key but not in the text. Keys to genera, species and infraspecific taxa are provided, along with detailed descriptions, distributional data, and pertinent comments. Proposed new taxa are Cymopteriis acaulis (Pursh) Raf var. parvus Goodrich and Lomatiiun scabrum (Coult. & Rose) Mathias var. tripinnatus Goodrich. New combinations include: Cymopteriis acaulis (Pursh) Raf. \ar. fendleri (Gray) Goodrich and var. higginsii (Welsh) Goodrich; Cymopteriis purpureus Wats. var. jonesii (Coult. & Rose) Goodrich and var. rosei (Jones) Goodrich; Cymopteriis terebinthinus (Hook.) T. & G. var. petraeus (Jones) Goodrich. This paper is another in a series leading to a about 3,000 species worldwide) also contributes definitive treatment of the flora of Utah.