Vascular Flora of the Lower San Francisco Volcanic Field, Coconino County, Arizona Author(S): Kyle Christie Source: Madroño, 55(1):1-14

Total Page:16

File Type:pdf, Size:1020Kb

Vascular Flora of the Lower San Francisco Volcanic Field, Coconino County, Arizona Author(S): Kyle Christie Source: Madroño, 55(1):1-14 Vascular Flora of the Lower San Francisco Volcanic Field, Coconino County, Arizona Author(s): Kyle Christie Source: Madroño, 55(1):1-14. Published By: California Botanical Society DOI: http://dx.doi.org/10.3120/0024-9637(2008)55[1:VFOTLS]2.0.CO;2 URL: http://www.bioone.org/doi/ full/10.3120/0024-9637%282008%2955%5B1%3AVFOTLS%5D2.0.CO%3B2 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/ terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. MADRON˜ O, Vol. 55, No. 1, pp. 1–14, 2008 VASCULAR FLORA OF THE LOWER SAN FRANCISCO VOLCANIC FIELD, COCONINO COUNTY, ARIZONA KYLE CHRISTIE Deaver Herbarium, Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011-5640 [email protected] ABSTRACT The San Francisco Volcanic Field lies near the southern edge of the Colorado Plateau in north- central Arizona, and is dominated by an extensive Pinyon-Juniper woodland. During 2004 and 2005, a floristic inventory vouchered 487 taxa from 74 families and 268 genera, including eight species endemic to Arizona. The Asteraceae, Poaceae, Fabaceae, Brassicaceae, and Scrophulariaceae comprised 51% of the total flora. Eriogonum, Muhlenbergia, Penstemon, Aristida, Astragalus,and Cryptantha were the best represented genera. Nonnative taxa accounted for ten percent of the total flora. Cryptantha minima and Suckleya suckleyana were vouchered as new records for Arizona. Key Words: Floristics, flora, Pinyon-Juniper woodlands, San Francisco Volcanic Field, volcanic endemism. Arizona displays the third highest diversity of distributions due to global climate change, vascular plants in the United States with over especially in semiarid environments and at 3,500 known taxa; however, it is also the fifth ecotones, are a definite possibility in upcoming most ‘‘at-risk’’ state with over 15% of its plant years (Allen and Breshears 1998). The ecophysio- species at risk of extinction due to rarity or graphic nature of the lower SFVF (it encompass- habitat loss (Stein 2002). While many floristic es a woodland community in a semi-arid climate, inventories document vascular plant diversity and has a widespread ecotonal component) lends around the state, no vascular plant inventory greater urgency to a floristic assessment of the exists for the lower San Francisco Volcanic Field area. The findings from this study will provide a (SFVF), an expansive Pinyon-Juniper woodland benchmark of local floristic diversity and serve as in north-central Arizona (Moore and Cole 2004). a basis for future comparisons. Inventories in adjacent areas have been primarily restricted to National Park Service units and Study Area scenic landscapes such as deep canyons or mountain peaks (e.g., McDougall & Haskell The SFVF lies near the southern edge of the 1960; Joyce 1976; Hazen 1978; Schilling 1980; Colorado Plateau physiographic province in Kierstead 1981; Gilbert and Licher 2005; Moir north-central Arizona; south-central Coconino 2006). Pinyon-Juniper woodlands have often County (Bailey et al. 1994; Bailey 1998). The been overlooked or ignored during the creation lower SFVF, and synonymously the study area, of inventories, and thus the relatively vast lower was defined as the contiguous Pinus edulis/ SFVF represents a significant gap in floristic Juniperus monosperma dominated portion of the knowledge. SFVF. It is elevationally bound by montane The SFVF lies at the convergence of several coniferous forests above and grasslands below biotic communities, in the middle of a large (Brown and Lowe 1980). Inclusions of other elevational gradient, and at the junction of vegetation on north-facing slopes, drainages, several known physiographic and floristic zones; canyons, or unusual microsites were also included and was therefore anticipated to have a high as part of the study area. diversity of vascular plants (Brown and Lowe The study area lies between 35u109470 and 1980; McLaughlin 1992). Cinder ecosystems 35u419300 latitude and between 2111u21930 and resulting from the recent Sunset Crater volcanic 2112u109120 longitude, and encompasses approx- eruption are also known to host several edaph- imately 1134 km2 (Fig. 1). Elevations range from ically-limited, rare, and endemic plants (AGFD 1700 to 2400 m; however, approximately 84% of 2005a, b, c). the study area falls between 1829 and 2134 m. The distributions of Pinyon-Juniper wood- Roughly 73% of the study area lies within the lands, and potentially the understory species Coconino and Kaibab National Forests, while associated with this community type, have varied the remainder occurs on essentially undeveloped historically with changing climate variables (Be- private (16%) and State (11%) land. Approxi- tancourt et al. 1990). Shifts in vegetation mately 70 widely-spaced cinder cones dot the 2 MADRON˜ O [Vol. 55 FIG. 1. Location of the lower San Francisco Volcano Field (lower SFVF). otherwise flat plateau of the lower SFVF. The continuously for the past three million yrs study area lacks major river systems, bodies of (Moore et al. 1976). Paleomagnetic data, Potas- water or streams, and perennial water is essen- sium-Argon dating, and thorough field mapping, tially absent. Biotic communities are solely suggest that substrates of the SFVF range from restricted to Great Basin Conifer Woodlands less than one-thousand yrs old at the eastern edge with several small inclusions of Petran Montane of the volcanic field to over six-million yrs old at Conifer Forests and Desert Grasslands at anom- the southwestern edge of the volcanic field, only alous sites (Brown and Lowe 1980). The SFVF 100 km away (Tanaka et al. 1986; Moore and sits near the junction of the Colorado Plateau and Wolfe 1987; Wolfe et al. 1987) Apachian floristic areas (McLaughlin 1989). Due to its volcanic history, igneous rocks and The lower SFVF has a semi-arid climate and their associated soils are the dominant substrates receives approximately 38 cm of precipitation of the SFVF. Basaltic rocks, cinders, and lava annually; however, precipitation can vary dra- from the Holocene to Middle Pliocene cover matically, often ranging between 25 and 65 cm about 80% of the of the study area. Quaternary from year to year (Bailey et al. 1994; Bailey 1998; alluviums (3.5%), Holocene to Middle Pliocene WRCC 2005). Precipitation is bi-modal, as very rhyolites and andesites (3%), Pleistocene alluvi- dry late springs and early summers punctuate ums (2%), and Permian sandstone and limestone winter and monsoonal moisture. Approximately (11%) comprise the additional surficial geology 50% of the annual precipitation comes from (Richard et al. 2000). summer monsoons. The winter of 2004–2005 received 200% of the historical precipitation METHODS average, while the spring of 2005 was 140% wetter than normal. Summer rains of 2005 Vascular plants were collected for 55 d (ca. brought 75% of the historical precipitation 400 hr) between March and October of 2004 and average (WRCC 2005). 2005. An effort was made to collect every taxon, The SFVF was created by at least seven major as well as to collect from the entire geographic eruptive events, and is one of the major basaltic and habitat range of the study area. Special effort volcanic fields of the Colorado Plateau (Cooley was made to target areas and habitats that 1962; Tanaka et al. 1986). It includes over 600 harbored greater diversity or locally unusual Pliocene, Pleistocene, and Holocene volcanic taxa. Voucher collections included plant descrip- vents, volcanoes, and cinder cones, and their tions, habitat descriptions, locality descriptions, associated sheet deposits and lava flows (Tanaka and lists of associated species. UTM coordinates et al. 1986). Local basaltic volcanism began and elevations were taken from a Garmin eTrex roughly six millions yrs ago and has occurred Legend GPS unit (Garmin International; Olathe, 2008] CHRISTIE: VASCULAR FLORA OF THE LOWER SFVF 3 TABLE 1. TAXONOMIC COMPOSITION OF THE LOWER SAN FRANCISCO VOLCANIC FIELD. Divisions and Classes Families Genera Species Infraspecific taxa Total Taxa Polypodiophyta 2 3 3 0 3 Pinophyta 6 Pinopsida 2 2 5 0 5 Gnetopsida 1 1 1 0 1 Magnoliophyta 478 Magnoliopsida 57 212 372 6 378 Liliopsida 12 50 98 2 100 Totals 74 268 479 8 487 KS). Voucher specimens were pressed, dried, dix A.) This absence may suggest that these mounted, and deposited in the Deaver Herbari- species are locally uncommon; as approximately um (ASC) at Northern Arizona University one-third reach the extent of their ranges near the following typical protocols (Weber 1976). Spec- SFVF, and another one-third lack much suitable imens were identified primarily using the Inter- habitat in the SFVF. On average it has been mountain Flora (Cronquist et al. 1972+), the Flora 25 yrs since one of these species was collected of North America (Flora of North America from the SFVF, perhaps because these species Editorial Committee 1993+), treatments from simply no longer occur or have decreased in the Manual of Vascular Plants of Arizona as abundance locally. Fourteen additional common published in the Journal of the Arizona-Nevada taxa were encountered in the field but were not Academy of Science (Vascular Plants of Arizona collected due to documentation by extant her- Editorial Committee 1992+), and Seed Plants of barium collections. These taxa are indicated with Northern Arizona (McDougall 1973). All nomen- a pound sign (#) in Appendix A.
Recommended publications
  • Pima County Plant List (2020) Common Name Exotic? Source
    Pima County Plant List (2020) Common Name Exotic? Source McLaughlin, S. (1992); Van Abies concolor var. concolor White fir Devender, T. R. (2005) McLaughlin, S. (1992); Van Abies lasiocarpa var. arizonica Corkbark fir Devender, T. R. (2005) Abronia villosa Hariy sand verbena McLaughlin, S. (1992) McLaughlin, S. (1992); Van Abutilon abutiloides Shrubby Indian mallow Devender, T. R. (2005) Abutilon berlandieri Berlandier Indian mallow McLaughlin, S. (1992) Abutilon incanum Indian mallow McLaughlin, S. (1992) McLaughlin, S. (1992); Van Abutilon malacum Yellow Indian mallow Devender, T. R. (2005) Abutilon mollicomum Sonoran Indian mallow McLaughlin, S. (1992) Abutilon palmeri Palmer Indian mallow McLaughlin, S. (1992) Abutilon parishii Pima Indian mallow McLaughlin, S. (1992) McLaughlin, S. (1992); UA Abutilon parvulum Dwarf Indian mallow Herbarium; ASU Vascular Plant Herbarium Abutilon pringlei McLaughlin, S. (1992) McLaughlin, S. (1992); UA Abutilon reventum Yellow flower Indian mallow Herbarium; ASU Vascular Plant Herbarium McLaughlin, S. (1992); Van Acacia angustissima Whiteball acacia Devender, T. R. (2005); DBGH McLaughlin, S. (1992); Van Acacia constricta Whitethorn acacia Devender, T. R. (2005) McLaughlin, S. (1992); Van Acacia greggii Catclaw acacia Devender, T. R. (2005) Acacia millefolia Santa Rita acacia McLaughlin, S. (1992) McLaughlin, S. (1992); Van Acacia neovernicosa Chihuahuan whitethorn acacia Devender, T. R. (2005) McLaughlin, S. (1992); UA Acalypha lindheimeri Shrubby copperleaf Herbarium Acalypha neomexicana New Mexico copperleaf McLaughlin, S. (1992); DBGH Acalypha ostryaefolia McLaughlin, S. (1992) Acalypha pringlei McLaughlin, S. (1992) Acamptopappus McLaughlin, S. (1992); UA Rayless goldenhead sphaerocephalus Herbarium Acer glabrum Douglas maple McLaughlin, S. (1992); DBGH Acer grandidentatum Sugar maple McLaughlin, S. (1992); DBGH Acer negundo Ashleaf maple McLaughlin, S.
    [Show full text]
  • Sahnish (Arikara) Ethnobotany
    Kindscher, L. Yellow Bird, M. Yellow Bird & Sutton Yellow M. Bird, Yellow L. Kindscher, Sahnish (Arikara) Ethnobotany This book describes the traditional use of wild plants among the Arikara (Sahnish) for food, medicine, craft, and other uses. The Arikara grew corn, hunted and foraged, and traded with other tribes in the northern Great Plains. Their villages were located along the Sahnish (Arikara) Missouri River in northern South Dakota and North Dakota. Today, many of them live at Fort Berthold Reservation, North Dakota, as part of the MHA (Mandan, Hidatsa, Arikara) Ethnobotany Nation. We document the use of 106 species from 31 plant families, based primarily on the work of Melvin Gilmore, who recorded Arikara ethnobotany from 1916 to 1935. Gilmore interviewed elders for their stories and accounts of traditional plant use, collected material goods, and wrote a draft manuscript, but was not able to complete it due to debilitating illness. Fortunately, his field notes, manuscripts, and papers were archived and form the core of the present volume. Gilmore’s detailed description is augmented here with historical accounts of the Arikara gleaned from the journals of Great Plains explorers—Lewis and Clark, John Bradbury, Pierre Tabeau, and others. Additional plant uses and nomenclature is based on the field notes of linguist Douglas R. Parks, who carried out detailed documentation of the Sahnish (Arikara) Ethnobotany tribe’s language from 1970–2001. Although based on these historical sources, the present volume features updated modern botanical nomenclature, contemporary spelling and interpretation of Arikara plant names, and color photographs and range maps of each species.
    [Show full text]
  • Identification of Milkweeds (Asclepias, Family Apocynaceae) in Texas
    Identification of Milkweeds (Asclepias, Family Apocynaceae) in Texas Texas milkweed (Asclepias texana), courtesy Bill Carr Compiled by Jason Singhurst and Ben Hutchins [email protected] [email protected] Texas Parks and Wildlife Department Austin, Texas and Walter C. Holmes [email protected] Department of Biology Baylor University Waco, Texas Identification of Milkweeds (Asclepias, Family Apocynaceae) in Texas Created in partnership with the Lady Bird Johnson Wildflower Center Design and layout by Elishea Smith Compiled by Jason Singhurst and Ben Hutchins [email protected] [email protected] Texas Parks and Wildlife Department Austin, Texas and Walter C. Holmes [email protected] Department of Biology Baylor University Waco, Texas Introduction This document has been produced to serve as a quick guide to the identification of milkweeds (Asclepias spp.) in Texas. For the species listed in Table 1 below, basic information such as range (in this case county distribution), habitat, and key identification characteristics accompany a photograph of each species. This information comes from a variety of sources that includes the Manual of the Vascular Flora of Texas, Biota of North America Project, knowledge of the authors, and various other publications (cited in the text). All photographs are used with permission and are fully credited to the copyright holder and/or originator. Other items, but in particular scientific publications, traditionally do not require permissions, but only citations to the author(s) if used for scientific and/or nonprofit purposes. Names, both common and scientific, follow those in USDA NRCS (2015). When identifying milkweeds in the field, attention should be focused on the distinguishing characteristics listed for each species.
    [Show full text]
  • Vascular Plant and Vertebrate Inventory of Chiricahua National Monument
    In Cooperation with the University of Arizona, School of Natural Resources Vascular Plant and Vertebrate Inventory of Chiricahua National Monument Open-File Report 2008-1023 U.S. Department of the Interior U.S. Geological Survey National Park Service This page left intentionally blank. In cooperation with the University of Arizona, School of Natural Resources Vascular Plant and Vertebrate Inventory of Chiricahua National Monument By Brian F. Powell, Cecilia A. Schmidt, William L. Halvorson, and Pamela Anning Open-File Report 2008-1023 U.S. Geological Survey Southwest Biological Science Center Sonoran Desert Research Station University of Arizona U.S. Department of the Interior School of Natural Resources U.S. Geological Survey 125 Biological Sciences East National Park Service Tucson, Arizona 85721 U.S. Department of the Interior DIRK KEMPTHORNE, Secretary U.S. Geological Survey Mark Myers, Director U.S. Geological Survey, Reston, Virginia: 2008 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS-the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web:http://www.usgs.gov Telephone: 1-888-ASK-USGS Suggested Citation Powell, B.F., Schmidt, C.A., Halvorson, W.L., and Anning, Pamela, 2008, Vascular plant and vertebrate inventory of Chiricahua National Monument: U.S. Geological Survey Open-File Report 2008-1023, 104 p. [http://pubs.usgs.gov/of/2008/1023/]. Cover photo: Chiricahua National Monument. Photograph by National Park Service. Note: This report supersedes Schmidt et al. (2005). Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S.
    [Show full text]
  • Danaus Plexippus)
    1. Species: Monarch (butterfly) (Danaus plexippus) 2. Status: Table 1 summarizes the current status of this species or subspecies by various ranking entity and defines the meaning of the status. Table 1. Current status of Danaus plexippus. Entity Status Status Definition NatureServe G4 Species is Apparently Secure At fairly low risk of extinction or elimination due to an extensive range and/or many populations or occurrences, but with possible cause for some concern as a result of local recent declines, threats, or other factors. CNHP S5 Species is Secure At very low risk or extinction or elimination due to a very extensive range, abundant populations or occurrences, and little to no concern from declines or threats. Colorado None N/A State List Status USDA Forest R2 Sensitive Region 2 Regional Forester’s Sensitive Species Service USDI FWSb None N/A a Colorado Natural Heritage Program. b US Department of Interior Fish and Wildlife Service. The 2012 U.S. Forest Service Planning Rule defines Species of Conservation Concern (SCC) as “a species, other than federally recognized threatened, endangered, proposed, or candidate species, that is known to occur in the plan area and for which the regional forester has determined that the best available scientific information indicates substantial concern about the species' capability to persist over the long-term in the plan area” (36 CFR 219.9). This overview was developed to summarize information relating to this species’ consideration to be listed as a SCC on the Rio Grande National Forest, and to aid in the development of plan components and monitoring objectives.
    [Show full text]
  • Vascular Plant and Vertebrate Inventory of Montezuma Castle National Monument Vascular Plant and Vertebrate Inventory of Montezuma Castle National Monument
    Schmidt, Drost, Halvorson In Cooperation with the University of Arizona, School of Natural Resources Vascular Plant and Vertebrate Inventory of Montezuma Castle National Monument Vascular Plant and Vertebrate Inventory of Montezuma Castle National Monument Plant and Vertebrate Vascular U.S. Geological Survey Southwest Biological Science Center 2255 N. Gemini Drive Flagstaff, AZ 86001 Open-File Report 2006-1163 Southwest Biological Science Center Open-File Report 2006-1163 November 2006 U.S. Department of the Interior U.S. Geological Survey National Park Service In cooperation with the University of Arizona, School of Natural Resources Vascular Plant and Vertebrate Inventory of Montezuma Castle National Monument By Cecilia A. Schmidt, Charles A. Drost, and William L. Halvorson Open-File Report 2006-1163 November, 2006 USGS Southwest Biological Science Center Sonoran Desert Research Station University of Arizona U.S. Department of the Interior School of Natural Resources U.S. Geological Survey 125 Biological Sciences East National Park Service Tucson, Arizona 85721 U.S. Department of the Interior Dirk Kempthorne, Secretary U.S. Geological Survey Mark Myers, Director U.S. Geological Survey, Reston, Virginia: 2006 Note: This document contains information of a preliminary nature and was prepared primarily for internal use in the U.S. Geological Survey. This information is NOT intended for use in open literature prior to publication by the investigators named unless permission is obtained in writing from the investigators named and from the Station Leader. Suggested Citation Schmidt, C. A., C. A. Drost, and W. L. Halvorson 2006. Vascular Plant and Vertebrate Inventory of Montezuma Castle National Monument. USGS Open-File Report 2006-1163.
    [Show full text]
  • WHITE SAGE Fire
    Plant Guide or sweat lodge) with the flowering end toward the WHITE SAGE fire. The leaves were burned as an incense to cleanse and drive away bad spirits, evil influences, bad Artemisia ludoviciana Nutt. Plant Symbol = ARLU dreams, bad thoughts, and sickness. A small pinch of baneberry (Actea rubra) was often mixed with it for Contributed By: USDA NRCS National Plant Data this purpose. The smoke was used to purify people, Center & University of California-Davis Arboretum spaces, implements, utensils, horses, and rifles in various ceremonies. The Lakota also make bracelets for the Sun Dance from white sage (Rogers 1980). The Cheyenne use the white sage in their Sun Dance and Standing Against Thunder ceremonies (Hart 1976). Other tribes who used white sage include the Arapaho, Comanche, Gros Ventre, Creek, Navaho, Tewa, and Ute (Nickerson 1966, Carlson and Jones 1939, Hart 1976, Thwaites 1905, Denig 1855, Elmore 1944, Robbins et al. 1916, Chamberlin 1909). The Dakota and other tribes used white sage tea for stomach troubles and many other ailments (Gilmore 1977). The Cheyenne used the crushed leaves as snuff for sinus attacks, nosebleeds, and headaches (Hart 1976). The Crow made a salve for use on sores by mixing white sage with neck-muscle fat (probably from buffalo) (Hart 1976). They used a strong tea as an astringent for eczema and as a deodorant and an antiperspirant for underarms and feet. The Kiowa made a bitter drink from white sage, which they used to reduce phlegm and to relieve a variety of lung and stomach complaints (Vestal and Shultes 1939).
    [Show full text]
  • Ajo Peak to Tinajas Altas: a Flora of Southwestern Arizona
    Felger, R.S., S. Rutman, and J. Malusa. 2014. Ajo Peak to Tinajas Altas: A flora of southwestern Arizona. Part 6. Poaceae – grass family. Phytoneuron 2014-35: 1–139. Published 17 March 2014. ISSN 2153 733X AJO PEAK TO TINAJAS ALTAS: A FLORA OF SOUTHWESTERN ARIZONA Part 6. POACEAE – GRASS FAMILY RICHARD STEPHEN FELGER Herbarium, University of Arizona Tucson, Arizona 85721 & Sky Island Alliance P.O. Box 41165, Tucson, Arizona 85717 *Author for correspondence: [email protected] SUSAN RUTMAN 90 West 10th Street Ajo, Arizona 85321 JIM MALUSA School of Natural Resources and the Environment University of Arizona Tucson, Arizona 85721 [email protected] ABSTRACT A floristic account is provided for the grass family as part of the vascular plant flora of the contiguous protected areas of Organ Pipe Cactus National Monument, Cabeza Prieta National Wildlife Refuge, and the Tinajas Altas Region in southwestern Arizona. This is the second largest family in the flora area after Asteraceae. A total of 97 taxa in 46 genera of grasses are included in this publication, which includes ones established and reproducing in the modern flora (86 taxa in 43 genera), some occurring at the margins of the flora area or no long known from the area, and ice age fossils. At least 28 taxa are known by fossils recovered from packrat middens, five of which have not been found in the modern flora: little barley ( Hordeum pusillum ), cliff muhly ( Muhlenbergia polycaulis ), Paspalum sp., mutton bluegrass ( Poa fendleriana ), and bulb panic grass ( Zuloagaea bulbosa ). Non-native grasses are represented by 27 species, or 28% of the modern grass flora.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2009/0263516 A1 CYR (43) Pub
    US 20090263516A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2009/0263516 A1 CYR (43) Pub. Date: Oct. 22, 2009 (54) PLANT EXTRACT COMPOSITION AND Publication Classification THEIR USE TO MODULATE CELLULAR (51) Int. Cl. ACTIVITY A636/8962 (2006.01) A636/00 (2006.01) (75) Inventor: Benoit CYR, St. Augustin de A6IP35/00 (2006.01) Desmaures (CA) CI2N 5/06 (2006.01) Correspondence Address: A6IR 36/3 (2006.01) SHEPPARD, MULLIN, RICHTER & HAMPTON A 6LX 36/899 (2006.01) LLP (52) U.S. Cl. ......... 424/754; 424/725; 435/375; 424/774; 990 Marsh Road 424/779; 424/755; 424/750; 424/777 Menlo Park, CA 94025 (US) (57) ABSTRACT (73) Assignee: Biopharmacopae Design Extracts from plant material, or semi-purified/purified mol International Inc., Saint-Foy (CA) ecules or compounds prepared from the extracts that demon strate the ability to modulate one or more cellular activities (21) Appl. No.: 12/263,114 are provided. The extracts are capable of slowing down, inhibiting or preventing cell migration, for example, the (22) Filed: Oct. 31, 2008 migration of endothelial cells or neoplastic cells and thus, the use of the extracts to slow down, inhibit or prevent abnormal Related U.S. Application Data cell migration in an animal is also provided. Methods of selecting and preparing the plant extracts and methods of (63) Continuation of application No. 10/526,387, filed on screening the extracts to determine their ability to modulate Oct. 6, 2005, now abandoned, filed as application No. one or more cellular activity are described. The purification or PCT/CA03/01284 on Sep.
    [Show full text]
  • Tesis Amarilla, Leonardo David.Pdf (5.496Mb)
    Universidad Nacional de Córdoba Facultad de Ciencias Exactas, Físicas y Naturales Estudio Poblacional y Filogenético en Munroa (Poaceae, Chloridoideae) Lic. Leonardo David Amarilla Tesis para optar al grado de Doctor en Ciencias Biológicas Directora: Dra. Ana M. Anton Co-Director: Dr. Jorge O. Chiapella Asesora de Tesis: Dra. Victoria Sosa Instituto Multidisciplinario de Biología Vegetal CONICET-UNC Córdoba, Argentina 2014 Comisión Asesora de Tesis Dra. Ana M. Anton, IMBIV, Córdoba. Dra. Noemí Gardenal, IDEA, Córdoba. Dra. Liliana Giussani, IBODA, Buenos Aires. Defensa Oral y Pública Lugar y Fecha: Calificación: Tribunal evaluador de Tesis Firma………………………………… Aclaración…………………………………... Firma………………………………… Aclaración…………………………………... Firma………………………………… Aclaración…………………………………... “Tengamos ideales elevados y pensemos en alcanzar grandes cosas, porque como la vida rebaja siempre y no se logra sino una parte de lo que se ansía, soñando muy alto alcanzaremos mucho más” Bernardo Alberto Houssay A mis padres y hermanas Quiero expresar mi más profundo agradecimiento a mis directores de tesis, la Dra. Ana M. Anton y el Dr. Jorge O. Chiapella, por todo lo que me enseñaron en cuanto a sistemática y taxonomía de gramíneas, por sus consejos, acompañamiento y dedicación. De la misma manera, quiero agradecer a la Dra. Victoria Sosa (INECOL A.C., Veracruz, Xalapa, México) por su acompañamiento y por todo lo que me enseñó en cuando a filogeografía y genética de poblaciones. Además quiero agradecer… A mis compañeros de trabajo: Nicolás Nagahama, Raquel Scrivanti, Federico Robbiati, Lucia Castello, Jimena Nores, Marcelo Gritti. A los curadores y equipo técnico del Museo Botánico de Córdoba. A la Dra. Reneé Fortunato. A la Dra. Marcela M. Manifesto. A la Dra.
    [Show full text]
  • Illinois Bundleflower (Desmanthus Illinoensis) Story by Alan Shadow, Manager USDA-NRCS East Texas Plant Materials Center Nacogdoches, Texas
    Helping People Help The Land September/October 2011 Issue No. 11 The Reverchon Naturalist Recognizing the work of French botanist Julien Reverchon, who began collecting throughout the North Central Texas area in 1876, and all the botanists/naturalists who have followed ... Drought, Heat and Native Trees ranging from simple things like more extensive root systems, to more drastic measures like pre- Story by Bruce Kreitler mature defoliation, what they actually have little Abilene, Texas defense against is a very prolonged period of no appreciable water supply. nybody that has traveled in Texas this year A will have noticed that not only most of the By the way, even though they are usually the land browned out, but also if you look at the trees same species, there is a difference in landscape in the fields and beside the roads, they aren't trees and native trees, which are untended plants looking so good either. It doesn't take a rocket that have to fend for themselves. While they are scientist to realize that extreme high temperatures indeed the same basic trees, the differences be- combined with, and partially caused by, drought tween the environments that they live in are huge are hard on trees. and thus overall general environmental factors such as drought, temperature, and insect infesta- Since I'm pretty sure that most of the people read- tions act on them differently. For the purposes of ing this article understand very well that drought this article, I'm referring to trees that are on their is a problem for trees, the question isn't is the pre- own, untended for their entire lives in fields, pas- sent drought going to have an effect on trees, but tures, forests, or just wherever nature has placed rather, what are the present effects of the drought them and refer to them as native trees.
    [Show full text]
  • Vascular Plants and a Brief History of the Kiowa and Rita Blanca National Grasslands
    United States Department of Agriculture Vascular Plants and a Brief Forest Service Rocky Mountain History of the Kiowa and Rita Research Station General Technical Report Blanca National Grasslands RMRS-GTR-233 December 2009 Donald L. Hazlett, Michael H. Schiebout, and Paulette L. Ford Hazlett, Donald L.; Schiebout, Michael H.; and Ford, Paulette L. 2009. Vascular plants and a brief history of the Kiowa and Rita Blanca National Grasslands. Gen. Tech. Rep. RMRS- GTR-233. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 44 p. Abstract Administered by the USDA Forest Service, the Kiowa and Rita Blanca National Grasslands occupy 230,000 acres of public land extending from northeastern New Mexico into the panhandles of Oklahoma and Texas. A mosaic of topographic features including canyons, plateaus, rolling grasslands and outcrops supports a diverse flora. Eight hundred twenty six (826) species of vascular plant species representing 81 plant families are known to occur on or near these public lands. This report includes a history of the area; ethnobotanical information; an introductory overview of the area including its climate, geology, vegetation, habitats, fauna, and ecological history; and a plant survey and information about the rare, poisonous, and exotic species from the area. A vascular plant checklist of 816 vascular plant taxa in the appendix includes scientific and common names, habitat types, and general distribution data for each species. This list is based on extensive plant collections and available herbarium collections. Authors Donald L. Hazlett is an ethnobotanist, Director of New World Plants and People consulting, and a research associate at the Denver Botanic Gardens, Denver, CO.
    [Show full text]