CABI Annual Report Switzerland 2013

Total Page:16

File Type:pdf, Size:1020Kb

CABI Annual Report Switzerland 2013 CABI Annual Report Switzerland 2013 www.cabi.org KNOWLEDGE FOR LIFE CABI improves people’s lives worldwide by providing information and applying scientific expertise to solve problems in agriculture and the environment CABI improves people’s lives worldwide by providing information and applying scientific expertise to solve problems in agriculture and the environment. © CAB International 2014. CAB International trading as CABI and recognized in the UK as an International Organization as defined by the UK International Organizations Act 1968 and formalized by Statutory Instrument 1982 No. 1071. CABI Head Office, Wallingford, Oxfordshire OX10 8DE, United Kingdom. This annual report was prepared by the staff of CABI’s centre in Switzerland and covers activities in 2013. Images are attributed to the photographers as far as is known and are by CABI staff unless specified. Front cover photo – Saidou Nacambo preparing house fly diet in Mali (photo: S. Nacambo ) Inside front cover photo – Hariet L. Hinz checking the aquatic weed flowering rush, Butomus umbellatus, for damage (photo: P. Häfliger) Citation details: CABI (2014) CABI Switzerland Annual Report, 2013. CABI, Delémont, Switzerland. For copies of this report, please contact CABI ([email protected]), or visit the CABI website www.cabi.org www.cabi.org KNOWLEDGE FOR LIFE contents preface 2 environmental impact of invasive plants 37 working towards sustainable management of Ambrosia introduction 3 artemisiifolia in Europe 38 improving the establishment of ecological compensation areas highlights 4 in the Swiss Jura mountains 39 CABI presents at an EU Parliament symposium on the invasive maize pest Diabrotica 4 weed biological control 40 new weed biocontrol project 5 introduction 40 the ragweed leaf beetle arrives in Europe 5 biological control of toadflaxes, Linaria genistifolia and L. vulgaris 42 tripartite meeting in Montpellier, France 6 is there still hope for biological control of houndstongue, new book: Biological Control Programmes in Canada 2001–2012 6 Cynoglossum officinale, in the USA? 43 tripartite collaboration between CABI, the University of Neuchâtel biological control of hawkweeds, Pilosella spp., for North America 44 and the Canton Jura 7 controlling noxious Russian knapweed, Acroptilon repens, CABI – Canton Jura collaboration on local projects 7 in the USA and Canada 45 highest-level support for collaborative action in Myanmar 8 biological control of the environmental weed garlic mustard, Alliaria petiolata 46 Ulrich Kuhlmann and Zhang Feng receive Visiting Professor status from the Institute of Plant Protection, Chinese Academy biological control of whitetops, Lepidium draba and L. appelianum, of Agricultural Sciences 9 for the USA 47 emerging best practices in tertiary agricultural education in Cambodia 9 foreign exploration consortium for biological control of perennial pepperweed, Lepidium latifolium, in the USA 48 training course on scientific writing 10 giving dyer’s woad, Isatis tinctoria, the blues 49 from DPR Korea to Rwanda – a new project on soil insect pest management 10 protecting the USA’s wetland areas from common reed, Phragmites australis 50 building plant protection capacity in DPR Korea 11 searching for specific pathogens to control Canada thistle, training of trainers on mass production of beneficial nematodes Cirsium arvense, in the USA 51 in DPR Korea 12 tackling common tansy, Tanacetum vulgare, in North America 52 DPR Korea embassy representatives visit Delémont 12 biological control of swallow-worts, Vincetoxicum spp. 53 video production in Albania and Turkey 13 stemming the spread of Russian olive, Elaeagnus angustifolia 54 student highlights 14 prospects for the biological control of oxeye daisy, Lars Andreassen completes his PhD at the University of Manitoba 14 Leucanthemum vulgare 55 Dr Sun Yan 15 revisiting biological control of field bindweed, Convolvulus arvensis 56 new MSc student 15 what are the prospects for biological control of tutsan, Hypericum Alicia Leroux completes the experimental work for her MSc 15 androsaemum, in New Zealand? 57 evaluating the risk of biocontrol introductions for Japanese knotweed, arthropod biological control 16 Fallopia japonica, in Switzerland 58 introduction 16 Prospects for biological control of Butomus umbellatus 59 biological control of the cabbage seedpod weevil, Ceutorhynchus obstrictus 17 integrated crop management 60 biological control of the swede midge, Contarinia nasturtii 18 introduction 60 biological control of the brown marmorated stinkbug, SCOPES institutional partnership project in Albania 61 Halyomorpha halys 19 improved food security for smallholder rice farmers in the impact of climate on Lygus parasitoids 20 Greater Mekong Subregion 62 biological control of red clover casebearer 21 strengthening maize producing farming communities in the Greater Mekong Subregion 63 biological control of the European earwig, Forficula auricularia 22 ensuring future food security through the strengthening of research biological control of the box tree moth, Cydalima perspectalis 23 capacity in DPR Korea 64 biological control of plant bugs in Chinese cotton 24 enhancing capacity for crop protection through partnership with finding the optimal dose for beneficial nematodes to control MoA DPR Korea 65 Diabrotica in Europe 25 increasing food production in DPR Korea by sustainably reducing risk analysis & invasion ecology 26 the impact of soil-borne insect pests 66 steering CABI’s flagship programme: Plantwise 67 introduction 26 supporting implementation of IPM and rational pesticide use in the increasing sustainability of European forests: ISEFOR 27 Plantwise programme at a national level 69 pathway evaluation and pest risk management in transport: PERMIT 28 sustainable forest management for fuelwood production in Brazil 70 ecological impact of the harlequin ladybird, Harmonia axyridis, implementation of best management practices and IPM in oriental in Switzerland 29 tobacco in Turkey 71 investigating impacts of Jatropha curcas production: JATROPHABILITY 30 insects as a source of protein: PROteINSECT 31 publications, reports, talks and posters 2013 72 use of insects for animal feed in Africa 32 staff list 2013 78 forest pests and their biological control in South America 33 about CABI 80 ecosystems management 34 introduction 34 CABI in Switzerland 81 biological control of broad-leaved dock, Rumex obtusifolius 35 acronyms 82 novel method for controlling exotic knotweeds and restoring contaminated soil 36 1 preface It was a pleasure for me to accept the invitation to contribute a preface to the CABI Switzerland Annual Report. I work at the Global Programme Food Security of the Swiss Agency for Development and Cooperation (SDC) and am responsible for Switzerland’s contribution to international agricultural research for development. SDC has been supporting CABI’s research and international development work for over two decades now. During this time, CABI has built upon and further developed its strong international reputation in the field of plant health and has continued to apply its expertise in areas that are pertinent to SDC. Through its broad range of activities it effectively addresses the needs of the various actors in the agricultural sector, from smallholder farmers and extension workers to academic researchers and policy makers. In doing so, it directly addresses today’s most critical challenges of poverty and long-term food security. Most of the CABI projects and programmes that SDC has supported in the past were led very successfully and professionally by CABI’s centre in Switzerland and resulted in tangible differences to sustainable agriculture and farmer livelihoods in various parts of the world. As an endorsement of CABI’s ability to deliver, SDC decided to increase its support to the organization in 2011 in order to provide the opportunity to conceptualize and initiate its first global programme, Plantwise. SDC was particularly impressed with the relevance, organizational set-up and global character of the programme, as well as its aim to enable farmers, advisory services and researchers to access the knowledge they need to grow better quality crops and improve livelihoods. SDC, to this day, remains one of the major donors of Plantwise, supporting its rapidly expanding implementation across the world, and I am both pleased and proud that this successful programme is being coordinated by the CABI centre at Delémont, Switzerland. As part of my role at SDC, I am also the liaison officer for CABI in Switzerland. Switzerland’s membership of CABI, which commenced in 2000, has provided further opportunities for the organization to enhance collaboration with advanced Swiss research institutes and to obtain national funding for project implementation in areas such as biological control, invasion ecology, risk analysis, ecosystems management and crop health for food security. Switzerland has some of the world’s highest standards of sustainable agriculture and I know that CABI’s integrated crop management team, located at the Swiss centre, is making the best use of it to identify, test and implement solutions for sustainable agriculture to tackle environmental issues, alleviate poverty and enable food security. I have been privileged to watch CABI thrive over the last few years as it continues to expand and put into practice its diverse range of expertise and experience. Through the dedication and enthusiasm of its staff, and the continued support of its member countries, partners and donors,
Recommended publications
  • Coleoptera: Chrysomelidae)
    Acta Biol. Univ. Daugavp. 10 (2) 2010 ISSN 1407 - 8953 MATERIALS ON LATVIAN EUMOLPINAE HOPE, 1840 (COLEOPTERA: CHRYSOMELIDAE) Andris Bukejs Bukejs A. 2010. Materials on Latvian Eumolpinae Hope, 1840 (Coleoptera: Chrysomelidae). Acta Biol. Univ. Daugavp., 10 (2): 107 -114. Faunal, phenological and bibliographical information on Latvian Eumolpinae are presented in the current paper. Bibliographycal analysis on this leaf-beetles subfamily in Latvia is made for the first time. An annotated list of Latvian Eumolpinae including 4 species of 3 genera is given. Key words: Coleoptera, Chrysomelidae, Eumolpinae, Latvia, fauna, bibliography. Andris Bukejs. Institute of Systematic Biology, Daugavpils University, Vienības 13, Daugavpils, LV-5401, Latvia; [email protected] INTRODUCTION (Precht 1818, Fleischer 1829). Subsequently, more than 15 works were published. Scarce faunal The subfamily Eumolpinae Hope, 1840 includes records can also be found in following other more than 500 genera and 7000 species distributed articles (Lindberg 1932; Pūtele 1974, 1981a; mainly in the tropics and subtropics (Jolivet & Stiprais 1977; Rūtenberga 1992; Barševskis 1993, Verma 2008). Of them, 11 species of 6 genera are 1997; Telnov & Kalniņš 2003; Telnov et al. 2006, known from eastern Europe (Bieńkowski 2004), 2010; Bukejs & Telnov 2007). and only 4 species of 3 genera – from Fennoscandia and Baltiae (Silfverberg 2004). Imagoes of Eumolpinae feed on leaves of host plants; larvae occur in the soil, feed on In Latvian fauna, 3 genera and 4 species of underground parts of plants; pupate in the soil Eumolpinae are known. In adjacent territories, the (Bieńkowski 2004). number of registered Eumolpinae species slightly varies: Belarus – 5 species are recorded (Lopatin The aim of the current work is to summarize & Nesterova 2005), Estonia – 3 species information on Eumolpinae in Latvia.
    [Show full text]
  • Effects of Landscape, Intraguild Interactions, and a Neonicotinoid on Natural Enemy and Pest Interactions in Soybeans
    University of Kentucky UKnowledge Theses and Dissertations--Entomology Entomology 2016 EFFECTS OF LANDSCAPE, INTRAGUILD INTERACTIONS, AND A NEONICOTINOID ON NATURAL ENEMY AND PEST INTERACTIONS IN SOYBEANS Hannah J. Penn University of Kentucky, [email protected] Author ORCID Identifier: http://orcid.org/0000-0002-3692-5991 Digital Object Identifier: https://doi.org/10.13023/ETD.2016.441 Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Penn, Hannah J., "EFFECTS OF LANDSCAPE, INTRAGUILD INTERACTIONS, AND A NEONICOTINOID ON NATURAL ENEMY AND PEST INTERACTIONS IN SOYBEANS" (2016). Theses and Dissertations-- Entomology. 30. https://uknowledge.uky.edu/entomology_etds/30 This Doctoral Dissertation is brought to you for free and open access by the Entomology at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Entomology by an authorized administrator of UKnowledge. For more information, please contact [email protected]. STUDENT AGREEMENT: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained needed written permission statement(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine) which will be submitted to UKnowledge as Additional File. I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and royalty-free license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known.
    [Show full text]
  • Evaluating the Future Role of the University of California Natural Reserve System for Sensitive Plant Protection Under Climate Change
    Evaluating the Future Role of the University of California Natural Reserve System for Sensitive Plant Protection under Climate Change ERIN C. RIORDAN* AND PHILIP W. RUNDEL DEPARTMENT OF ECOLOGY AND EVOLUTIONARY BIOLOGY UNIVERSITY OF CALIFORNIA, LOS ANGELES, CALIFORNIA 90095 USA *EMAIL FOR CORRESPONDENCE: [email protected] WINTER 2019 PREPARED FOR THE UNIVERSITY OF CALIFORNIA NATURAL RESERVE SYSTEM Executive Summary Description Protected areas are critical for conserving California’s many sensitive plant species but their future role is uncertain under climate change. Climate-driven species losses and redistributions could dramatically affect the relevance of protected areas for biodiversity conservation this century. Focusing on the University of California Natural Reserve System (NRS), we predicted the future impact of climate change on reserve effectiveness with respect to sensitive plant protection. First, we evaluated the historical representation of sensitive plant species in the NRS reserve network by compiling species accounts from checklists, floras, and spatial queries of occurrence databases. Next, we calculated projected climate change exposure across the NRS reserve network for the end of the 21st century (2070–2099) relative to baseline (1971–2000) conditions under five future climate scenarios. We then predicted statewide changes in suitable habitat for 180 sensitive plant taxa using the same future climate scenarios in a species distribution modeling approach. Finally, from these predictions we evaluated suitable habitat retention at three spatial scales: individual NRS reserves (focal reserves), the NRS reserve network, and the surrounding mosaic of protected open space. Six reserves—Sagehen Creek Field Station, McLaughlin Natural Reserve, Jepson Prairie Reserve, Landels-Hill Big Creek Reserve, Sedgwick Reserve, and Boyd Deep Canyon Desert Research Center—were selected as focal reserves for analyses.
    [Show full text]
  • Field Release of the Insects Calophya Latiforceps
    United States Department of Field Release of the Insects Agriculture Calophya latiforceps Marketing and Regulatory (Hemiptera: Calophyidae) and Programs Pseudophilothrips ichini Animal and Plant Health Inspection (Thysanoptera: Service Phlaeothripidae) for Classical Biological Control of Brazilian Peppertree in the Contiguous United States Environmental Assessment, May 2019 Field Release of the Insects Calophya latiforceps (Hemiptera: Calophyidae) and Pseudophilothrips ichini (Thysanoptera: Phlaeothripidae) for Classical Biological Control of Brazilian Peppertree in the Contiguous United States Environmental Assessment, May 2019 Agency Contact: Colin D. Stewart, Assistant Director Pests, Pathogens, and Biocontrol Permits Plant Protection and Quarantine Animal and Plant Health Inspection Service U.S. Department of Agriculture 4700 River Rd., Unit 133 Riverdale, MD 20737 Non-Discrimination Policy The U.S. Department of Agriculture (USDA) prohibits discrimination against its customers, employees, and applicants for employment on the bases of race, color, national origin, age, disability, sex, gender identity, religion, reprisal, and where applicable, political beliefs, marital status, familial or parental status, sexual orientation, or all or part of an individual's income is derived from any public assistance program, or protected genetic information in employment or in any program or activity conducted or funded by the Department. (Not all prohibited bases will apply to all programs and/or employment activities.) To File an Employment Complaint If you wish to file an employment complaint, you must contact your agency's EEO Counselor (PDF) within 45 days of the date of the alleged discriminatory act, event, or in the case of a personnel action. Additional information can be found online at http://www.ascr.usda.gov/complaint_filing_file.html.
    [Show full text]
  • Networking Agroecology: Integrating the Diversity of Agroecosystem Interactions
    Provided for non-commercial research and educational use only. Not for reproduction, distribution or commercial use. This chapter was originally published in the book Advances In Ecological Research, Vol. 49 published by Elsevier, and the attached copy is provided by Elsevier for the author's benefit and for the benefit of the author's institution, for non-commercial research and educational use including without limitation use in instruction at your institution, sending it to specific colleagues who know you, and providing a copy to your institution’s administrator. All other uses, reproduction and distribution, including without limitation commercial reprints, selling or licensing copies or access, or posting on open internet sites, your personal or institution’s website or repository, are prohibited. For exceptions, permission may be sought for such use through Elsevier's permissions site at: http://www.elsevier.com/locate/permissionusematerial From David A. Bohan, Alan Raybould, Christian Mulder, Guy Woodward, Alireza Tamaddoni-Nezhad, Nico Bluthgen, Michael J.O. Pocock, Stephen Muggleton, Darren M. Evans, Julia Astegiano, François Massol, Nicolas Loeuille, Sandrine Petit, Sarina Macfadyen, Networking Agroecology: Integrating the Diversity of Agroecosystem Interactions. In Guy Woodward and David A. Bohan, editors: Advances In Ecological Research, Vol. 49, Amsterdam, The Netherlands: Academic Press, 2013, pp. 1-67. ISBN: 978-0-12-420002-9 © Copyright 2013 Elsevier Ltd Elsevier Author's personal copy CHAPTER ONE Networking Agroecology:
    [Show full text]
  • Die Steppe Lebt
    Buchrücken 1200 Stück:Layout 1 04.04.2008 14:39 Seite 1 Die Steppe lebt Felssteppen und Trockenrasen in Niederösterreich Heinz Wiesbauer (Hrsg.) Die Steppe lebt ISBN 3-901542-28-0 Die Steppe lebt Felssteppen und Trockenrasen in Niederösterreich Heinz Wiesbauer (Hrsg.) Mit Beiträgen von Roland Albert, Horst Aspöck, Ulrike Aspöck, Hans-Martin Berg, Peter Buchner, Erhard Christian, Margret Bunzel-Drüke, Manuel Denner, Joachim Drüke, Michael Duda, Rudolf Eis, Karin Enzinger, Ursula Göhlich, Mathias Harzhauser, Johannes Hill, Werner Holzinger, Franz Humer, Rudolf Klepsch, Brigitte Komposch, Christian Komposch, Ernst Lauermann, Erwin Neumeister, Mathias Pacher, Wolfgang Rabitsch, Birgit C. Schlick-Steiner, Luise Schratt-Ehrendorfer, Florian M. Steiner, Otto H. Urban, Henning Vierhaus, Wolfgang Waitzbauer, Heinz Wiesbauer und Herbert Zettel St. Pölten 2008 Die Steppe lebt – Felssteppen und Trockenrasen in Niederösterreich Begleitband zur gleichnamigen Ausstellung in Hainburg an der Donau Bibliografische Information der Deutschen Bibliothek Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.ddb.de abrufbar. ISBN 3-901542-28-0 Die Erstellung des Buches wurde aus Mitteln von LIFE-Natur gefördert. LIFE-Natur-Projekt „Pannonische Steppen und Trockenrasen“ Gestaltung: Manuel Denner und Heinz Wiesbauer Lektorat: caout:chouc Umschlagbilder: Heinz Wiesbauer Druck: Gugler Druck, Melk Medieninhaber: Amt der NÖ Landesregierung, Abteilung Naturschutz Landhausplatz 1 A-3109 St. Pölten Bestellung: Tel.: +43/(0)2742/9005-15238 oder [email protected] © 2008 Autoren der jeweiligen Beiträge, Bilder: Bildautoren Sämtliche Rechte vorbehalten Inhalt 1. Einleitung 5 2. Eiszeitliche Steppen und Großsäuger 9 2.1 Was ist Eiszeit? 11 2.2 Die Tierwelt der Eiszeit 14 2.3 Der Einfluss von Großherbivoren auf die Naturlandschaft Mitteleuropas 17 3.
    [Show full text]
  • SUNY Cortland School of Arts and Sciences Annual Report 2018-19
    SUNY Cortland School of Arts and Sciences Annual Report 2018-19 September 3, 2019 R. Bruce Mattingly, Dean Vincent DeTuri, Associate Dean Mary McGuire, Assistant Dean Meghan VanDeuson, Secretary II, Dean’s Office Michele Lella, Secretary I, Associate Dean’s Office i Table of Contents I. Introduction 2 II. Assessment and Student Learning Outcomes 2 III. Enrollment Trends and Budget Analysis 3 IV. Highlights and Major Accomplishments 4 A. Personnel Changes 4 B. Sabbatical Leaves and Other Leaves of Absence 5 C. Faculty Awards and Honors 6 D. Faculty Promotions effective Fall 2019 9 E. Alumni Awards and Honors 9 F. Department Highlights in Teaching, Research and Creative Activity 10 G. Faculty Service Activities 20 H. Associate Dean’s Report 21 Appendices 1. Academic Standing Data Tables 2. Faculty Publications and Creative Activities 3. Faculty Presentations 4. External Grants 5. Faculty Service Activities i I. Introduction We are pleased to present the 2018-19 Annual Report for the School of Arts and Sciences. This year, we were pleased to add a new member to our team, as Vincent DeTuri joined us as the new Associate Dean. Faculty across all eighteen departments continued their excellent work in all areas of responsibility. Christa Carsten, Mathematics, won the Non-Tenure Track Excellence in Teaching Award, and Scott Moranda, History, was the recipient of the Rozanne Brooks Dedicated Teaching Award. Tiantian Zheng, Sociology/Anthropology, was promoted to the rank of Distinguished Professor, and Donna West, Modern Languages, received the Chancellor’s Award for Excellence in Scholarship and Creative Activities. Kathleen Lawrence, Communication and Media Studies, won the Chancellor’s Award for Excellence in Faculty Service, and Jenn McNamara, Art and Art History, received the campus award for Outstanding Achievement in Service.
    [Show full text]
  • Vascular Plant Inventory of Mount Rainier National Park
    National Park Service U.S. Department of the Interior Natural Resource Program Center Vascular Plant Inventory of Mount Rainier National Park Natural Resource Technical Report NPS/NCCN/NRTR—2010/347 ON THE COVER Mount Rainier and meadow courtesy of 2007 Mount Rainier National Park Vegetation Crew Vascular Plant Inventory of Mount Rainier National Park Natural Resource Technical Report NPS/NCCN/NRTR—2010/347 Regina M. Rochefort North Cascades National Park Service Complex 810 State Route 20 Sedro-Woolley, Washington 98284 June 2010 U.S. Department of the Interior National Park Service Natural Resource Program Center Fort Collins, Colorado The National Park Service, Natural Resource Program Center publishes a range of reports that address natural resource topics of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Technical Report Series is used to disseminate results of scientific studies in the physical, biological, and social sciences for both the advancement of science and the achievement of the National Park Service mission. The series provides contributors with a forum for displaying comprehensive data that are often deleted from journals because of page limitations. All manuscripts in the series receive the appropriate level of peer review to ensure that the information is scientifically credible, technically accurate, appropriately written for the intended audience, and designed and published in a professional manner. This report received informal peer review by subject-matter experts who were not directly involved in the collection, analysis, or reporting of the data.
    [Show full text]
  • Efficacy and Host Specificity Compared Between Two Populations of The
    Biological Control 65 (2013) 53–62 Contents lists available at SciVerse ScienceDirect Biological Control journal homepage: www.elsevier.com/locate/ybcon Efficacy and host specificity compared between two populations of the psyllid Aphalara itadori, candidates for biological control of invasive knotweeds in North America ⇑ Fritzi Grevstad a, , Richard Shaw b, Robert Bourchier c, Paolo Sanguankeo d, Ghislaine Cortat e, Richard C. Reardon f a Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA b CABI, Bakeham Lane, Egham, Surrey TW20 9TY, United Kingdom c Agriculture and AgriFood Canada-Lethbridge Research Centre, Lethbridge, AB, Canada T1J 4B1 d Olympic Natural Resources Center, University of Washington, Forks, WA 98331, USA e CABI, CH 2800 Delemont, Switzerland f USDA Forest Service, Forest Health Technology Enterprise Team, Morgantown, WV 26505, USA highlights graphical abstract " Two populations of the psyllid Aphalara itadori are effective at reducing knotweed growth and biomass. " The two populations differ in their performance among different knotweed species. " Development of A. itadori occurred infrequently on several non-target plant species. " The psyllid exhibited non-preference and an inability to persist on non- target plants. article info abstract Article history: Invasive knotweeds are large perennial herbs in the Polygonaceae in the genus Fallopia that are native to Received 2 February 2012 Asia and invasive in North America. They include Fallopia japonica (Japanese knotweed), F. sachalinensis Accepted 4 January 2013 (giant knotweed), and a hybrid species F. x bohemica (Bohemian knotweed). Widespread throughout Available online 12 January 2013 the continent and difficult to control by mechanical or chemical methods, these plants are good targets for classical biological control.
    [Show full text]
  • Recerca I Territori V12 B (002)(1).Pdf
    Butterfly and moths in l’Empordà and their response to global change Recerca i territori Volume 12 NUMBER 12 / SEPTEMBER 2020 Edition Graphic design Càtedra d’Ecosistemes Litorals Mediterranis Mostra Comunicació Parc Natural del Montgrí, les Illes Medes i el Baix Ter Museu de la Mediterrània Printing Gràfiques Agustí Coordinadors of the volume Constantí Stefanescu, Tristan Lafranchis ISSN: 2013-5939 Dipòsit legal: GI 896-2020 “Recerca i Territori” Collection Coordinator Printed on recycled paper Cyclus print Xavier Quintana With the support of: Summary Foreword ......................................................................................................................................................................................................... 7 Xavier Quintana Butterflies of the Montgrí-Baix Ter region ................................................................................................................. 11 Tristan Lafranchis Moths of the Montgrí-Baix Ter region ............................................................................................................................31 Tristan Lafranchis The dispersion of Lepidoptera in the Montgrí-Baix Ter region ...........................................................51 Tristan Lafranchis Three decades of butterfly monitoring at El Cortalet ...................................................................................69 (Aiguamolls de l’Empordà Natural Park) Constantí Stefanescu Effects of abandonment and restoration in Mediterranean meadows .......................................87
    [Show full text]
  • Contribution to the Knowledge of the Fauna of Bombyces, Sphinges And
    driemaandelijks tijdschrift van de VLAAMSE VERENIGING VOOR ENTOMOLOGIE Afgiftekantoor 2170 Merksem 1 ISSN 0771-5277 Periode: oktober – november – december 2002 Erkenningsnr. P209674 Redactie: Dr. J–P. Borie (Compiègne, France), Dr. L. De Bruyn (Antwerpen), T. C. Garrevoet (Antwerpen), B. Goater (Chandlers Ford, England), Dr. K. Maes (Gent), Dr. K. Martens (Brussel), H. van Oorschot (Amsterdam), D. van der Poorten (Antwerpen), W. O. De Prins (Antwerpen). Redactie-adres: W. O. De Prins, Nieuwe Donk 50, B-2100 Antwerpen (Belgium). e-mail: [email protected]. Jaargang 30, nummer 4 1 december 2002 Contribution to the knowledge of the fauna of Bombyces, Sphinges and Noctuidae of the Southern Ural Mountains, with description of a new Dichagyris (Lepidoptera: Lasiocampidae, Endromidae, Saturniidae, Sphingidae, Notodontidae, Noctuidae, Pantheidae, Lymantriidae, Nolidae, Arctiidae) Kari Nupponen & Michael Fibiger [In co-operation with Vladimir Olschwang, Timo Nupponen, Jari Junnilainen, Matti Ahola and Jari- Pekka Kaitila] Abstract. The list, comprising 624 species in the families Lasiocampidae, Endromidae, Saturniidae, Sphingidae, Notodontidae, Noctuidae, Pantheidae, Lymantriidae, Nolidae and Arctiidae from the Southern Ural Mountains is presented. The material was collected during 1996–2001 in 10 different expeditions. Dichagyris lux Fibiger & K. Nupponen sp. n. is described. 17 species are reported for the first time from Europe: Clostera albosigma (Fitch, 1855), Xylomoia retinax Mikkola, 1998, Ecbolemia misella (Püngeler, 1907), Pseudohadena stenoptera Boursin, 1970, Hadula nupponenorum Hacker & Fibiger, 2002, Saragossa uralica Hacker & Fibiger, 2002, Conisania arida (Lederer, 1855), Polia malchani (Draudt, 1934), Polia vespertilio (Draudt, 1934), Polia altaica (Lederer, 1853), Mythimna opaca (Staudinger, 1899), Chersotis stridula (Hampson, 1903), Xestia wockei (Möschler, 1862), Euxoa dsheiron Brandt, 1938, Agrotis murinoides Poole, 1989, Agrotis sp.
    [Show full text]
  • When Misconceptions Impede Best Practices: Evidence Supports Biological Control of Invasive Phragmites
    Biol Invasions https://doi.org/10.1007/s10530-019-02166-8 (0123456789().,-volV)( 0123456789().,-volV) PERSPECTIVES AND PARADIGMS When misconceptions impede best practices: evidence supports biological control of invasive Phragmites Bernd Blossey . Stacy B. Endriss . Richard Casagrande . Patrick Ha¨fliger . Hariet Hinz . Andrea Da´valos . Carrie Brown-Lima . Lisa Tewksbury . Robert S. Bourchier Received: 9 July 2019 / Accepted: 26 November 2019 Ó The Author(s) 2019 Abstract Development of a biological control pro- the risks invasive Phragmites represent to North gram for invasive Phagmites australis australis in American habitats. But to protect those habitats and North America required 20 years of careful research, the species, including P. australis americanus,we and consideration of management alternatives. A come to a different decision regarding biological recent paper by Kiviat et al. (Biol Invasions control. Current management techniques have not 21:2529–2541, 2019. https://doi.org/10.1007/s10530- been able to reverse the invasiveness of P. australis 019-02014-9) articulates opposition to this biocontrol australis, threats to native rare and endangered species program and questions the ethics and thoroughness of continue, and large-scale herbicide campaigns are not the researchers. Here we address inaccuracies and only costly, but also represent threats to non-target misleading statements presented in Kiviat et al. species. We see implementation of biocontrol as the (2019), followed by a brief overview of why biological best hope for managing one of the most problematic control targeting Phragmites in North America can be invasive plants in North America. After extensive implemented safely with little risk to native species.
    [Show full text]