ABOUT URANIUM DETERMINATIONS in the Last Few

Total Page:16

File Type:pdf, Size:1020Kb

ABOUT URANIUM DETERMINATIONS in the Last Few ABOUT URANIUM DETERMINATIONS İhsan TOPALOĞLU and Nilüfer BAYÇIN Maden Tetkik ve Arama Enstitüstü, Ankara ABSTRACT. — The most important methods in connection with uranium analyses published up to date will be briefly outlined in this article. Here each method is not taken separately. Instead, methods applied by various authors in the separation of uranium from its associated elements — Such as extraction, precipitation, electrolysis, column chromatography, separation by means of ion exchangers — and the determination proper — such as gravimetric, volumetric, coloriroetric and spectro — photometric, fluorometric, electrometric and radiometric — are discussed as a whole. Of these methods those which were actually put to test and their degree of precision checked up, using standard specimens, are discussed in detail. INTRODUCTION the determinations, and then this is fol- In the last few years, due to the rapid lowed by the determination proper. For development observed in the means for the uranium separation, either an extrac- putting to good use the atomic energy, tion method or one using precipitation, analysis of radioactive minerals— espe- electrolysis, column chromatography or cially the determination of elements Ura- ion exchangers is applied. As for the nium and Thorium—won a wide interest. determination, any one of the methods The physical and chemical analyses of that can be specified as gravimetric, these elements have, in pace with the mar- volumetric, colorimetric and spectro - ked development in this field in general, photometric, fluorometric, electronic or displayed considerable progress. Exten- radioactive may be chosen. sive work is being eagerly carried on and In all methods, in order to decompose the results regularly published. This the ore containing uranium, the sample article is written with the purpose of is treated with HNO3 or some mixtures briefly reviewing the current literature of acids such as (HNO3+HC1O4), (HNO8 on the methods of uranium analysis, + HF), (HN03 + HG104 + H2SO4+ considered particularly important, and HF) in given proportions. Those which to describe those among them which are not dissolved in acids are rendered are actually applied in our Institute. soluble by means of special mixtures like ( NaOH+Na2O2 ), (NaOH+NaNO3), PART I (Na2O2+Na2CO3). URANIUM DETERMINATION METHODS Separation of Uranium Various methods have been devised for the determination of uranium. In 1. Extraction methods. general, first step in any method is to This is based on the fact that some free the uranium from its associated ele- uranium salts are more readily decom- ments, interfering with the precision of posed in certain organic solvents than 44 İhsan TOPALOĞLU, Nilüfer BAYÇIN in an aqueous solution of a given com- an ethyl acetate extraction have been position. The organic solution which , jointly used. In case the amount of U3 8 comes in contact with the one contain- exceeds 0.05 gr. in a solution of the ori- ing the uranium, either continuously or ginal sample, the tri-butyl phosphate gradually, after a while absorbs all of separation is dispensed with (12). the uranium. This is followed by ,evapor- According to a different method, the ation, of by destruction, of the organic extraction of uranium is done by first matter leaving uranium salt. adding sulfo-cyanide and then tin (II) One of the methods used to recover chloride in a medium of hydrochloric uranium from low-grade ores is the ether acid, followed by further addition, extraction method. In this method the within a given range of acidity (pH), of solution containing uranium is first dibutoxytetraethylene glycol plus tin acidified by adding nitric acid and, af- (II) chloride. As the latest publications ter being saturated with ammonium have shown a penta-ether to give a nitrate, is subjected to ether extraction purer product and do this more quickly in an extractor (1, 2, 3). An other method than tri-butyl phosphate, this latter may consists of ethyl acetate extraction from preferably be substituted (13, 14). nitric acid solutions having a high con- Apart from these, based on the fact centration of or being saturated with alu- that the complex substance obtained by minum nitrate (4, 5, 6, 7, 8). This method uranium (VI) with 8-hydroxykinoline is of separation for uranium is widely soluble in organise solutions, uranium is used and often applied prior to calori- extracted, within a given pH range, metric, spectro - photometric and flu- using 8 - kinolinol (oxine) and its deri- orometric determinations. Some authors vatives (such as di-chloro-oxine and di- prefer to apply ether acetate extraction bromo-oxine) and chloroform. The deter- method after adding hot aluminum mination of uranium follows using nitrate to the solution containing nitric spectro-photometry (21, 15, 16). acid or heating the solution to the boil- An other method, similar to the one ing point (9, 10, 11). In order to free above, is the cupferron or chloroform the uranium— obtained with either of extraction in a medium of sulfuric acid these two methods — from its organic or perchloric acid. In this method, in solvent, this latter is evaporated. contrast to the previous ones, uranium Again, prior to colorimetric and (VI) is left in the aqueous solution, fluorometric determinations, the tri-butyl while cupferrates of the associated ele- phoshate extraction method may be ap- ments pass into the organic solution. plied to solutions containing uranium This method of extraction is applied nitrate. In this method, in order to ob- either before (20, 87) or after (3, 17, 18, tain two better-defined phases than in 19) hydrogen sulfide group elements are one using only tri-butyl phosphate, separated; the advantage of the method tri-butyl, phosphate + methyl isobutyl being the possibility it offers for the ketone or tri-butyl phosphate + diethyl double cupferron extraction, as the ether or a 22 % solution of tri-butyl uranium may be of (IV) or (VI) valence phosphate in n-hexane must be used (12). (21,22). And this is based on the fact Lately, to extract uranium especially that in an acid medium cupferron and from ores or solutions where it exists in uranium (VI) do not give any preci- very small quantities, first a mixture of pitate, while uranium (IV) precipitates tri-butyl phosphase and n-hexane, then in the form of a cupferrate and decom- ABOUT URANIUM DETERMINATIONS 45 poses in an organic solvent. Usually, zinc amalgam and then treated with after such a separation, the determina- ammonium carbonate. During this pro- tion of uranium is made volumetrically. cess uranium (IV) carbonate is separa- ted as a precipitate while iron (II) 2. Precipitation methods. remains in the solution. This method These methods make possible only is suggested mostly for the purpose of group separations, due to the fact that a rapid volumetric or gravimetric deter- uranium does precipitate with certain mination of uranium in the presence anions and cathions. Of course, they of- of excessive iron (26). Similarly, the ten are to be subjected to subsequent ore is rendered soluble with the aid of separation using any one of the extrac- potassium bifluoride and hydrofluoric tion methods. acid and then treated with an excess Frequently, uranium is precipitated of tin (II) chloride. In this manner, from uranyl solutions, under the action fluorides of uranium (IV), thorium, of ammonium diuranate. This method rare earth metals and earth alkali pre- makes possible the separation of uranium cipitate and are separated. This method from certain anions and some cathions, is applied mainly to complex minerals, such as Cu (II), Ni (II), which give such as, samarskite, columbite-tantalite complex substances with alkali, alkali and titano-niobite (27). earth (metals) and ammonia, and is 3. Separation by electrolysis. only applied to solutions containing no fluor, carbonate, citrate or tartarate. Electrolysis is used as an other ap- Thus the uranium precipitate, partly proach to freeing uranium from the separated from heavy metals, is decom- elements which might have misleading posed in a special acid, subsequently to effects during a determination. The undergo further separation either by sample, put in a solution form for this electrolysis or ether extraction. In this purpose, is subsequently electrolyzed, method pyridine or hexa-methylene tet- often in a medium of sulfuric acid, ramine are also used in place of ammonia using a mercury cathod. Under these (23,24,1). conditions, iron, cobalt, nickel, cop- per, zinc, gallium, germanium, rho- In still another widely used method, dium, palladium, silver, cadmium, in- hydrogen sulfide is passed through an dium, tin, iridium, platinum, gold, mer- acid solution containing uranium. Thus, cury, thallium, chromium, molybdenum, after the heavy metallic sulfides are rhenium, bismuth, arsenic, selenium, disposed of, cupferron - chloroform ex- tellurium, lead and osmium accumulate traction is applied to the filtrate. on the mercury cathod. Along with Instead of passing hydrogen sulfide these, manganese, ruthenium and anti- gas, the solution is treated, in an acid mony are also partially separated. Fol- medium, by sodium sulfide or, as prac- lowing this, uranium, columbium (VI), ticed lately, by thioacetamide (17, 18). tantalum, tungsten, titanium, vanadium A variation of this consists of preci- and zirconium, which are left ,in the pitating uranium (VI) with certain solution, are subjected to extraction for other metals in the form of phosphates, separation (28, 29, 30, 31). followed by the cupferron - chloroform extraction (25). 4. Column chromatography. Apart from these, as a special case, In this method separation is done the sample solutipn is reduced with in a column. The sample acidified with 46 İhsan TOPALOĞLU, Nilüfer BAYÇIN nitric acid is passed through a column dures are: (a) Amberlite 1R-4B, Amber- of specific dimensions which contains lite IRA-400, Amberlite IRA-410, a certain amount of active cellulose. Of Dowex-1, Dowex 2 (as ion exchanger the elements, totally or partiaily ab- resins) and (b) Amberlite IR-100, Amber- sorbed in the cellulose, in direct rela- ite IR- 120 and Dowex-50 (as cathion tionship with their speed in the column, exchanger resins).
Recommended publications
  • Reactor Centrum Nederland
    RCN H-lfS REACTOR CENTRUM NEDERLAND RCX-186 INVESTIGATION'S ON' l'RAN>L CHLORIDE, ITS HYDRATES, AND BAL;I" SALTS by G. Prins RCN does not assume any liabili;;' with respect to the use of, or for damages resulting from the use of any information, apparatus, method or process disclosed in this document. is: >?:'': as o. t><?~ifi, Vr i"verr\ity \T.'J '.•'••:":• Petten, May 1973. St'MMARY 'ibis report describes the preparation and an inwst: .-at io:. physieo-cheniical properties ot uranyl .-hlorivie, its i.y.-.r .*.•. 01 its basic sales. The Methods lor Lhe synthesis ot l'i'.,i\,, l'U .i!L , .'t; ,i , .U'.vi i; li«vo beer. critically reviewed in Chapter Li and L:U: :::a:<> ru been careiulLy checked. In order to obtain more information on phase rv latienshiy :- uranyl chloride - water system, the system I'O - \iC\ - •• ,i been investigated (Chapter III;. Five solubility rogi.ns :. round with the corresponding solid phases ."i>,i:i ..JH.O, l\> ,•.i. : i .•: . 2UO.HCl.4H.vO, 4U0 .HCl ÖH,Ü, and L'O .2ri,0. One oi the throe basie salts, 4U0 .HCL.8H ,0, is tsetastable. This compound has no. heen described before. Since the basic salt ro,(OH)C1.2H,0 is congruently soluhle, it ran '.-.- prepared easily. Vibrational spectra of U0oJio, its hydrates, l'0,<oh)C1.2H,u, i'i',. Jt-,i>. and lour other uranyl compounds have been obtained (Chapt.r l\'). !:;.• interpretation of these spectra has heen restricted to a discussion ot the stretching frequencies of the uranyl group.
    [Show full text]
  • ORGANOMETAT,T,TC CHEMISTRY of URANIUM a Thesis Submitted By
    ORGANOMETAT,T,TC CHEMISTRY OF URANIUM A thesis submitted by R1TN R. SIGURDSON, B.Sc. for the DEGREE of DOCTOR of PHILOSOPHY of the UNIVERSITY of LONDON Royal College of Science Imperial College of Science and Technology London, SW7 ?AY August 1976 TO MY PARENTS 3 ACKNOWLEDGEMENTS I would like to express my gratitude to Professor Geoffrey Wilkinson, F.R.S. for his guidance and enthusiastic support throughout the course of this work. Many thanks are also extended to Drs. Dick Andersen, Ernesto Carmona-Guzman and David Cole-Hamilton for their suggestionS, encouragement and advice, and to Dr. Kostas Mertis for his patient help during the first months. I am indebted to the Canadian Research Council of Canada for financial support during the past three years. 4 CONTENTS ABSTRACT 6 INTRODUCTION I. The Chemistry of Uranium(IV) 8 .II. The Chemistry of Uranium(V) 15 III. The Chemistry of Uranium(VI) 16 CHAPTER I. DILITHIUMHEXAALKYLURANATE(IV) COMPLEXES I. Introduction 19 II. Results and Discussion 27 III. Experimental 35 CHAPTER II. TRILITHIUMOCTAALKYLURANATE(V) COMPLEXES I. Introduction 54 II. Results and Discussion 55 III. Experimental 60 CHAPTER III. ADDITION COMPOUNDS OF URANIUM(VI) HEXAISO-PROPDXIDE WITH LITHIUM, MAGNESIUM AND ALUMINIUM ALKYLS I. Introduction 70 II. Results and Discussion 71 III. Experimental 77 CHAPTER IV. ORGANOMETALLIC CHEMISTRY OF ADAMANTANE I. Introduction 84 II. Results and Discussion 85 III. Experimental 87 REFERENCES 92 5 ABBREVIATIONS Me - methyl Et - ethyl Prn- normal-propyl Pri- iso-propyl Bun- normal-butyl But- iso-butyl But- tertiary-butyl Ph - phenyl CP cyclopentadienyl DME - dimethoxyethane tmed - N,N,NI,N'-tetramethylethylenediamine pmdt - N,N,Nt,N",N"-pentamethyldiethylenetriamine g.l.c.
    [Show full text]
  • Ms< 3A43 35340 CUSSIFIMTON C W a M Oho73sa
    3A43 1 A £«v> t .My Thie docuarat consists of Jg> pages " Ro. _J} of 2hk copies, 8eries A* ♦ * D*te of Xseue: Kay ?f 19SX R eport fustoer: K-T05 Subject Category: CBBGSTHf^aBBBRAL 4 /0 - . 35340 * . ';: #Ms< gBBfcOBl IliLllliN COMPLEXES • 'SI, John T. Barr and Charles A. Horton Work Supervised by R. H. Lafferty, Jr. Laboratory Diriilon F. V. Hurd, Superintendent CUSSIFIMTON c w a m Sr ATOMIC *■•?«Snrt.i-.wt QW «.oH —*Q " \uiur. nwOMSirioATION HRAMCS F *-. CARBIDE ABB CARBOH CHSKXCALB CtMPAI* K-25 P lan t Oak Bldge, Tennessee RESTRICTS) This document contains rpsgSCS^^atB ae defined in the Atonic Energy Act traneaittal or the disclosure of ita dSSteSta in any manner to an unauthorised person is prohibited. t $ g * ' jf-V §a.*v OHO 73sa ***• v* * i Report Sodwr: K-705 Subject Category: cmCBm-CBBORAL Date of leant: m y 7, 1951 T itle : Uimon-TOB URAHUM COttUDOS Author: J. T. Birr and c. A. Horton ABSTRACT Bight chelated uranium complexes and 7 uranium amines, prepared fraft the reaction of organic aolutlone of uranium ealta with complexlng agents and organic bases, respectively, have been prepared and characterised. Salicylic and lactic acids, acetylacetone, and similar ccmplaxing agents which contain only acidic functional group*, shoved little reaction with uraniua compounds In organic solutions. However, upon the addition of an external base to the solution of the uraniua compound and the com­ pleting agent, the formation of a Werner-type Caspian resulted. For example, uranyl n itra te hexahydrate, sa lic y lic a d d , and pyridine in butyl acetate solution gave a precipitate of aallcylatoaquopyridlnouranyl n itra te .
    [Show full text]
  • Sources, Effects and Risks of Ionizing Radiation
    SOURCES, EFFECTS AND RISKS OF IONIZING RADIATION United Nations Scientific Committee on the Effects of Atomic Radiation UNSCEAR 2016 Report to the General Assembly, with Scientific Annexes UNITED NATIONS New York, 2017 NOTE The report of the Committee without its annexes appears as Official Records of the General Assembly, Seventy-first Session, Supplement No. 46 and corrigendum (A/71/46 and Corr.1). The report reproduced here includes the corrections of the corrigendum. The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The country names used in this document are, in most cases, those that were in use at the time the data were collected or the text prepared. In other cases, however, the names have been updated, where this was possible and appropriate, to reflect political changes. UNITED NATIONS PUBLICATION Sales No. E.17.IX.1 ISBN: 978-92-1-142316-7 eISBN: 978-92-1-060002-6 © United Nations, January 2017. All rights reserved, worldwide. This publication has not been formally edited. Information on uniform resource locators and links to Internet sites contained in the present publication are provided for the convenience of the reader and are correct at the time of issue. The United Nations takes no responsibility for the continued accuracy of that information or for the content of any external website.
    [Show full text]
  • WO 2016/074683 Al 19 May 2016 (19.05.2016) W P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2016/074683 Al 19 May 2016 (19.05.2016) W P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C12N 15/10 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (21) International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, PCT/DK20 15/050343 DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, 11 November 2015 ( 11. 1 1.2015) KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, (25) Filing Language: English PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (26) Publication Language: English SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: PA 2014 00655 11 November 2014 ( 11. 1 1.2014) DK (84) Designated States (unless otherwise indicated, for every 62/077,933 11 November 2014 ( 11. 11.2014) US kind of regional protection available): ARIPO (BW, GH, 62/202,3 18 7 August 2015 (07.08.2015) US GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, (71) Applicant: LUNDORF PEDERSEN MATERIALS APS TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, [DK/DK]; Nordvej 16 B, Himmelev, DK-4000 Roskilde DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, (DK).
    [Show full text]
  • Technology of Uranium Purification. Impurities Decontamination
    TECHNOLOGY OF URANIUM PURIFICATION. IMPURITIES DECONTAMINATION FROM URANYL CHLORIDE BY EXTRACTION WITH TRI-n-OCTYLAMINE IN THE PRESENCE OF THIOUREA AS COMPLEXING LIGAND. AIcídio Abrão PUBLICAÇÃO IEA 458 DEZEMBRO/1976 CEQ 69 PUBL. I EA 45B OEZEMBRO/1976 CEQ 68 TECHNOLOGY OF URANIUM PURIFICATION. IMPURITIES DECONTAMINATION FROM URANYL CHLORIDE BY EXTRACTION WITH TRI-n-OCTYLAMINE IN THE PRESENCE OF THIOUREA AS COMPLEXING LIGAND. Alcidio Abrio CENTRO DE ENGENHARIA QUÍMICA (CEQ) INSTITUTO DE ENERGIA ATÔMICA SAO PAULO - BRASIL APHOVAOO PARA PUBLICAÇÃO EM NOVEMBRO/1976 CONSELHO DELIBERATIVO Eng? HMcio Modnto da Costa Eng? Ivano Humbert Marchesi Prof. Admar Cervellim Prof. Sérgio Matcarenhai de Oliveira Dr. Klaus Reinach Or. Roberto D'Utra Vai SUPERINTENDENTE Prof. Dr, Ròmulo Ribe/r.» Pierori INSTITUTO DE ENERGIA ATÔMICA Caixa Postal 11.049 (Pinheiros) Cidade Universitária "Armando de Sallei Oliveira" SAO PAULO - BRASIL NOTA Este trabalho foi confe-ido p«lo autor depois de composto e sua redação tt'i conforme o original, sem qualquer correçáo ou mudança. TECHNOLOGY OF URANIUM PURIFICATION. IMPURITIES DECONTAMINATION FROM URANYL CHLORIDE BY EXTRACTION WITH TRI-n-OCTYLAMINE IN THE PRESENCE OF THIOUREA AS COMPLEXING LIGAND- Alcidio Abrão ABSTRACT The extraction of jranyl chloride by trinoctyiamme ITOAI and in decontamination from several impurities v»,th the aid of thiourea is investigated The effect of thiourea as a complexing agsnt, giving rise to unextracted canonic species of several metallic ion and its consequence in the extraction of uranyl chlonde from hydrochloric acid with TOA benzene!x'lenel is described Also, the effect of an acidified thiourea solution for scrubbing the organic phase loaded with uranyl chloride is studied INTRODUCTION The long chain amines had shown to be excellent extractants for various inorganic rid organic acds, and for a great number of anionic metallic complexes Smith and Page'441 had indicated the association properties of high weight amines w.th acids.
    [Show full text]
  • International Conference on Nuclear Power and Its Fuel Cycle Salzburg, Austria • 2-13 May 1977
    INTERNATIONAL CONFERENCE ON NUCLEAR POWER AND ITS FUEL CYCLE SALZBURG, AUSTRIA • 2-13 MAY 1977 "•- "i^. IAEA-CN-36/555 REVIEW OF EXPERIENCE GAINED IN FABRICATING NUCLEAR GRADE URANIUM AND THORIUM COMPOUNDS AND THEIR ANALYTICAL QUALI_ TY CONTROL AT THE INSTITUTO DE ENERGIA ATÔMICA, SÂ*O PAU LO, BRAZIL. AbrSo, A., França Jr., J.M., Ikuta, A., Püschel, C.R., FedergrUn, L., Lordello, A.R., Tomida, E.K., Moraes, S., Brito, J.de, Gomes„ R.P., Araújo, J.A., Floh, B., Matsu_ da, H.T. INSTITUTO DE ENERGIA ATÔMICA Caixa Postal 11.049 (Pinheiros) Cidade Universitária "Armando Salles Oliveira" SÃO PAULO - BRASIL Introduction As part of the national program for developping atomic energy for peaceful uses, directed by Brazilian Nuclear Energy Commission (CNEN), the Instituto de Energia Atômica (IEA),Sao Paulo,has giving great emphasis to a systematic development of research on establishing of the technology of ura nium and thorium, training of chemists and engineers, and production of some nuclear materials for further métallurgie work and fabrication of fuel ele_ ments for nuclear research reactors. This paper reviews the main activities on the recovery of uranium from ores, the purification of uranium and tho rium raw concentrates and their transformation in nuclear grade compounds. The design and assemblage of pilot facilities for ammonium diuranate (ADU), uranium tetrafluoride, uranium trioxide, uranium oxide microspheres, uranyl nitrate denitration, uranium hexaflucride and thorium compounds are discus_ sed. The establishment of analytical procedures as an important support to the technical work is emphasised. Recovery of Dranium from Ores For the establishment of the technology of U recovery from dome£ tic resources, some work has been done on unexploited till now phosphate rock.
    [Show full text]
  • Waste Preparation and Transport Chemistry: Results of the FY 2000 Studies
    OAKRIDGE ORNL/TM-20001298 NATIONALLABORATORY MANAGED BY UT-BATTELLE FOR THE DEPARTMENT OF ENERGY Waste Preparation and Transport Chemistry: Results of the FY 2000 Studies R. D. Hunt T. A. Dillow J. R. Parrott, Jr. J. C. Schryver C. F. Weber 7. D. Welch Tanks Focus Area ’ - UT-BATTELLE ORNC-27 (4.00) -. ORNL/T-M-20001298 f Chemical Technology Division Waste Preparation and Transport Chemistry: Results of the FY 2000 Studies R. D. Hunt J. C. Schryver* T. A. Dillow C. F. Webert J. R. Parrott, Jr. T. D. Welch *Computer Science and Mathematics Division, ORNL +Computational Physics and Engineering Division, ORNL December 2000 E . Preparedfor the Tanks Focus Area DOE Offke of Science and Technology in fulfillment of Milestones A. 1.1-2 and A.2.1-3 of TTP OR16WT41 Preparedby the OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee3783 l-6285 managed by UT-BATTELLE, LLC . for the U.S. DEPARTMENT OF ENERGY under contract DE-AC05-OOOR22725 CONTENTS LIST OF TABLES . , . v 1 LISTOFFIGURES . v EXECUTIVE SUMMARY ....................................................... vii KEYOBSERVATIONS ......................................................... ix 1. INTRODUCTION ... ..I ...................................................... 1 1.1 PIPELINE PLUGS AT HANFORD ........................................... 1 1.2 PIPELINE PLUG AT THE SAVANNAH RIVER SITE ........................... 1 1.3 PRIOR STUDIES ON SOLIDS FORMATION BY THE TANKS FOCUS AREA ...... 2 2. VISCOSITY TESTS ........................................................... 3 2.1 VISCOSITY SAMPLES .................................................... 3 2.2 VISCOSITY DURING GRADUAL WASTE COOLING .......................... 4 2.3 VISCOSITY AFTER A SIMULATED PUMP FAILURE. ......................... 6 2.4 VISCOSITY AFTER SIMULATED SALTCAKE DISSOLUTION ................. 11 2.5 DISCUSSION OF THE VISCOSITY RESULTS . , . 11 3. MODELING OF THE VISCOSITY RESULTS . , . 14 3.1 PRELIMINARYCONSIDERATIONS ......................................
    [Show full text]
  • Title Extraction of Thorium and Uranium from Monazite
    Extraction of Thorium and Uranium from Monazite (Refining Title by Solvent Extraction) Author(s) Nishimura, Shinichi Memoirs of the College of Science, University of Kyoto. Series Citation B (1959), 26(2): 173-191 Issue Date 1959-11-15 URL http://hdl.handle.net/2433/258565 Right Type Departmental Bulletin Paper Textversion publisher Kyoto University MEMOIRS OF THE COLLEGE OF SCIENCE, UNIVERSITY oF I<yoTo, SERIEs B, Vol. XXVI, No. 2 Geology and Mineralogy, Article 7, 1959 Extraction of Thorium and Uranium{ fi'om Monazlte (Refining by Solvent Extractlon) By Shin'iehi NIsmMuRA Geological and Mineralogical Institute, University ef Kyoto (Received Sept. 8, 1959) Abstraet This paper describes the economical process of preduction of thorium and uranium salts from crude thorium-uranium hydrexide derived frern monazite by the solvent extraction. This process obtained as an experimental result consists of the following operatiens: (1) crude thorium-uranium cake is dissolved in nitric acid ; (2) beth thorium and uranium are extracted with tributyl phosphate frorn nitric acid solution, and refining thorium-uranium hydrexide is precipitated; (3) hydrexide cal<e is dissolved in hydrochloric acid and uranium alone is ex- tracted with tributyl phosphate frorn hydrochloric acid solution; (4) uraninm in stripping solution is precipitated as natrium uranate with caustic soda; (5) after thorium in raMnate being precipitated as carbonate, thorium carbonate is dissolved in nitric acid and converted into thoriurn nitrate crystal. This process has a characteristics that the extraction and the separation of thorium and uranium can be carried eut with the same solvent only by the conversion of the kind of acid, and also it offers some advaRtages that the products by this method is superior in quality and more cheap in cost to those by the conventional oxalate- carbonate method.
    [Show full text]
  • Extraction of Thorium and Uranium from Chloride Solutions by Tri-N-Butyl Phosphate and Tri-N-Octyl Phosphine Oxide
    Journal of NUCLEAR SCIENCE and TECHNOLOGY, 1, No.5, p.155~462 (1964). 155 Extraction of Thorium and Uranium from Chloride Solutions by Tri-n-Butyl Phosphate and Tri-n-Octyl Phosphine Oxide Kenju WATANABE* Received November 4, 1963 The extraction of thorium and uranium chlorides by TBP and TOPO was studied. The composition of complexes extracted from the chloride solutions of low acid concentration was established by partition study to be UO2Cl2(TOPO)2,UCl4(TOPO)2, ThCl4(TOPO)2 and UCl4(TBP)2. Composition of the thorium complex in the TBP phase free from hydrochloric acid was revealed by infrared study to be ThCl4(TBP)4. The extraction behavior of thorium chloride by TBP was different from that of U(IV) and Pu(IV) chloride, and the composition of the complex was presumed to be HThCl5(TBP)4 in the extraction from concentrated chloride solution containing hydrochloric acid. The extraction of thorium, uranium and drochloric acid. The extraction of Pu by TBP plutonium chlorides by tri-n-butyl phosphate from hydrochloric acid is also discussed. (TBP) or tri-n-octyl phosphine oxide (TOPO) has been studied by many workers. The EXPERIMENTAL distribution of uranyl chloride between TBP and hydrochloric acid was reported by Reilly(1), General techniques used were similar to Irving(2), Larsen(3) and Ishimori(4). Naito pro- those in previous studies(4)(10).Measurements posed the composition of the extracted complex were made at a constant temperature of 25dc. to be UO2Cl2(TBP)2(5). According to Iwase(6), Reagents: TBP was purified by the usual in the extraction of uranium tetrachloride method(10)~(13).TOPO was obtained from East- from hydrochloric acid solution by TBP, the man Organic Chemicals and Dojindo & Co., composition of the species extracted is UCl4• Ltd.
    [Show full text]
  • A Spectrophotometric Study on Uranyl Nitrate Complexation to 150 °C
    CORE Metadata, citation and similar papers at core.ac.uk Provided by RERO DOC Digital Library J Solution Chem (2007) 36: 1093–1102 DOI 10.1007/s10953-007-9175-9 ORIGINAL PAPER A Spectrophotometric Study on Uranyl Nitrate Complexation to 150 °C O.M. Suleimenov · T.M. Seward · J.K. Hovey Received: 19 December 2006 / Accepted: 9 March 2007 / Published online: 26 July 2007 © Springer Science+Business Media, LLC 2007 Abstract The formation constant of the mononitratouranyl complex was studied spec- trophotometrically at temperatures of 25, 40, 55, 70, 100 and 150 °C (298, 313, 328, 343, 373 and 423 K). The uranyl ion concentration was fixed at approximately 0.008 mol·kg−1 and the ligand concentration was varied from 0.05 to 3.14 mol·kg−1. The uranyl nitrate + complex, UO2NO3 , is weak at 298 K but its equilibrium constant (at zero ionic strength) =− ± ± increases with temperature from log10 β1 0.19 0.02 (298 K) to 0.78 0.04 (423 K). Keywords Stability constants · Uranyl nitrate · Spectrophotometric · Aqueous solution 1 Introduction Uranyl ion and its complexes with various ligands plays an important role in the extrac- tion and beneficiation chemistry of uranium. Quantitative modeling of these processes as well as the modeling of the other chemical, geological and biological processes involving uranium requires knowledge of reliable thermodynamic complexation constants. Recently, − 2− 2− − the study of uranyl complexes with inorganic ligands such as Cl , CO3 , SO4 and NO3 in aqueous solutions at elevated temperatures has undergone renewed interest because of the importance of uranium solution chemistry and mobility in nuclear waste disposal envi- ronments.
    [Show full text]
  • The Potentiometric and Laser RAMAN Study of the Hydrolysis of Uranyl
    AECL-9266 ATOMIC ENERGY [/ \ fl L'ENERGIEATOMIQUE OF CANADA LIMITED \ #^4 '/ DU CANADA LIMITEE THE POTENTIOMETRIC AND LASER RAMAN STUDY OF THE HYDROLYSIS OF URANYL CHLORIDE UNDER PHYSIOLOGICAL CONDITIONS AND THE EFFECT OF SYSTEMATIC AND RANDOM ERRORS ON THE HYDROLYSIS CONSTANTS Etude de raman au potentiometre et au laser de I'hydrolyse du chlorure d'uranyle dans des conditions physiologiques et de I'effet des erreurs systematiques et aleatoires de constantes d 'hydrolyse L.L. DESCHENES, G.H. KRAMER, K.J. MONSERRAT and P.A. ROBINSON Chalk River Nuclear Laboratories Laboratoires nucleates de Chalk River Chalk River, Ontario December 1986 decembre ATOMIC ENERGY OF CANADA LIMITED THE POTENTIOMETRIC AND LASER RAMAN STUDY OF THE HYDROLYSIS OF URANYL CHLORIDE UNDER PHYSIOLOGICAL CONDITIONS AND THE EFFECT OF SYSTEMATIC AND RANDOM ERRORS ON THE HYDROLYSIS CONSTANTS by L.L. Deschenes*, G-H. Kramer, K.J. Monserrat* and P.A. Robinson *Systems Materials Branch Dosimetric Research Branch Chalk River Nuclear Laboratories Chalk River, Ontario KOJ 1JO 1986 December AECL-9266 L'ENERGIE ATOMIQUE DU CANADA, LIMITEE ETUDE DE RAMAN AU POTENTIOMETRE ET AU LASER DE L'HYDROLYSE DU CHLORURE D'URANYLE DANS DES CONDITIONS PHYSIOLOGIQUES ET DE L'EFFET DES ERREURS SYSTÉMATIQUES ET ALEATOIRES DE CONSTANTES D'HYDROLYSE par L.L. Deschenes*, G.H. Kramer, K.J. Monserrat* et P.A. Robinson RÉSUMÉ On a étudié l'hydrolyse des ions d'uranyle dans une solution de 0,15 mol/L de (Na)C1 à 37°C par titrage potentiométrique. Les résultats ont correspondu à la formation de (U02)2(OH)2, U03(0H)„, (U02)3(0H)5 et (U02)„(0H)7.
    [Show full text]