13. Inorganic Constituents and Physical Parameters
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Reactor Centrum Nederland
RCN H-lfS REACTOR CENTRUM NEDERLAND RCX-186 INVESTIGATION'S ON' l'RAN>L CHLORIDE, ITS HYDRATES, AND BAL;I" SALTS by G. Prins RCN does not assume any liabili;;' with respect to the use of, or for damages resulting from the use of any information, apparatus, method or process disclosed in this document. is: >?:'': as o. t><?~ifi, Vr i"verr\ity \T.'J '.•'••:":• Petten, May 1973. St'MMARY 'ibis report describes the preparation and an inwst: .-at io:. physieo-cheniical properties ot uranyl .-hlorivie, its i.y.-.r .*.•. 01 its basic sales. The Methods lor Lhe synthesis ot l'i'.,i\,, l'U .i!L , .'t; ,i , .U'.vi i; li«vo beer. critically reviewed in Chapter Li and L:U: :::a:<> ru been careiulLy checked. In order to obtain more information on phase rv latienshiy :- uranyl chloride - water system, the system I'O - \iC\ - •• ,i been investigated (Chapter III;. Five solubility rogi.ns :. round with the corresponding solid phases ."i>,i:i ..JH.O, l\> ,•.i. : i .•: . 2UO.HCl.4H.vO, 4U0 .HCl ÖH,Ü, and L'O .2ri,0. One oi the throe basie salts, 4U0 .HCL.8H ,0, is tsetastable. This compound has no. heen described before. Since the basic salt ro,(OH)C1.2H,0 is congruently soluhle, it ran '.-.- prepared easily. Vibrational spectra of U0oJio, its hydrates, l'0,<oh)C1.2H,u, i'i',. Jt-,i>. and lour other uranyl compounds have been obtained (Chapt.r l\'). !:;.• interpretation of these spectra has heen restricted to a discussion ot the stretching frequencies of the uranyl group. -
ORGANOMETAT,T,TC CHEMISTRY of URANIUM a Thesis Submitted By
ORGANOMETAT,T,TC CHEMISTRY OF URANIUM A thesis submitted by R1TN R. SIGURDSON, B.Sc. for the DEGREE of DOCTOR of PHILOSOPHY of the UNIVERSITY of LONDON Royal College of Science Imperial College of Science and Technology London, SW7 ?AY August 1976 TO MY PARENTS 3 ACKNOWLEDGEMENTS I would like to express my gratitude to Professor Geoffrey Wilkinson, F.R.S. for his guidance and enthusiastic support throughout the course of this work. Many thanks are also extended to Drs. Dick Andersen, Ernesto Carmona-Guzman and David Cole-Hamilton for their suggestionS, encouragement and advice, and to Dr. Kostas Mertis for his patient help during the first months. I am indebted to the Canadian Research Council of Canada for financial support during the past three years. 4 CONTENTS ABSTRACT 6 INTRODUCTION I. The Chemistry of Uranium(IV) 8 .II. The Chemistry of Uranium(V) 15 III. The Chemistry of Uranium(VI) 16 CHAPTER I. DILITHIUMHEXAALKYLURANATE(IV) COMPLEXES I. Introduction 19 II. Results and Discussion 27 III. Experimental 35 CHAPTER II. TRILITHIUMOCTAALKYLURANATE(V) COMPLEXES I. Introduction 54 II. Results and Discussion 55 III. Experimental 60 CHAPTER III. ADDITION COMPOUNDS OF URANIUM(VI) HEXAISO-PROPDXIDE WITH LITHIUM, MAGNESIUM AND ALUMINIUM ALKYLS I. Introduction 70 II. Results and Discussion 71 III. Experimental 77 CHAPTER IV. ORGANOMETALLIC CHEMISTRY OF ADAMANTANE I. Introduction 84 II. Results and Discussion 85 III. Experimental 87 REFERENCES 92 5 ABBREVIATIONS Me - methyl Et - ethyl Prn- normal-propyl Pri- iso-propyl Bun- normal-butyl But- iso-butyl But- tertiary-butyl Ph - phenyl CP cyclopentadienyl DME - dimethoxyethane tmed - N,N,NI,N'-tetramethylethylenediamine pmdt - N,N,Nt,N",N"-pentamethyldiethylenetriamine g.l.c. -
Ms< 3A43 35340 CUSSIFIMTON C W a M Oho73sa
3A43 1 A £«v> t .My Thie docuarat consists of Jg> pages " Ro. _J} of 2hk copies, 8eries A* ♦ * D*te of Xseue: Kay ?f 19SX R eport fustoer: K-T05 Subject Category: CBBGSTHf^aBBBRAL 4 /0 - . 35340 * . ';: #Ms< gBBfcOBl IliLllliN COMPLEXES • 'SI, John T. Barr and Charles A. Horton Work Supervised by R. H. Lafferty, Jr. Laboratory Diriilon F. V. Hurd, Superintendent CUSSIFIMTON c w a m Sr ATOMIC *■•?«Snrt.i-.wt QW «.oH —*Q " \uiur. nwOMSirioATION HRAMCS F *-. CARBIDE ABB CARBOH CHSKXCALB CtMPAI* K-25 P lan t Oak Bldge, Tennessee RESTRICTS) This document contains rpsgSCS^^atB ae defined in the Atonic Energy Act traneaittal or the disclosure of ita dSSteSta in any manner to an unauthorised person is prohibited. t $ g * ' jf-V §a.*v OHO 73sa ***• v* * i Report Sodwr: K-705 Subject Category: cmCBm-CBBORAL Date of leant: m y 7, 1951 T itle : Uimon-TOB URAHUM COttUDOS Author: J. T. Birr and c. A. Horton ABSTRACT Bight chelated uranium complexes and 7 uranium amines, prepared fraft the reaction of organic aolutlone of uranium ealta with complexlng agents and organic bases, respectively, have been prepared and characterised. Salicylic and lactic acids, acetylacetone, and similar ccmplaxing agents which contain only acidic functional group*, shoved little reaction with uraniua compounds In organic solutions. However, upon the addition of an external base to the solution of the uraniua compound and the com pleting agent, the formation of a Werner-type Caspian resulted. For example, uranyl n itra te hexahydrate, sa lic y lic a d d , and pyridine in butyl acetate solution gave a precipitate of aallcylatoaquopyridlnouranyl n itra te . -
Sources, Effects and Risks of Ionizing Radiation
SOURCES, EFFECTS AND RISKS OF IONIZING RADIATION United Nations Scientific Committee on the Effects of Atomic Radiation UNSCEAR 2016 Report to the General Assembly, with Scientific Annexes UNITED NATIONS New York, 2017 NOTE The report of the Committee without its annexes appears as Official Records of the General Assembly, Seventy-first Session, Supplement No. 46 and corrigendum (A/71/46 and Corr.1). The report reproduced here includes the corrections of the corrigendum. The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The country names used in this document are, in most cases, those that were in use at the time the data were collected or the text prepared. In other cases, however, the names have been updated, where this was possible and appropriate, to reflect political changes. UNITED NATIONS PUBLICATION Sales No. E.17.IX.1 ISBN: 978-92-1-142316-7 eISBN: 978-92-1-060002-6 © United Nations, January 2017. All rights reserved, worldwide. This publication has not been formally edited. Information on uniform resource locators and links to Internet sites contained in the present publication are provided for the convenience of the reader and are correct at the time of issue. The United Nations takes no responsibility for the continued accuracy of that information or for the content of any external website. -
WO 2016/074683 Al 19 May 2016 (19.05.2016) W P O P C T
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2016/074683 Al 19 May 2016 (19.05.2016) W P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C12N 15/10 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (21) International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, PCT/DK20 15/050343 DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, 11 November 2015 ( 11. 1 1.2015) KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, (25) Filing Language: English PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (26) Publication Language: English SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: PA 2014 00655 11 November 2014 ( 11. 1 1.2014) DK (84) Designated States (unless otherwise indicated, for every 62/077,933 11 November 2014 ( 11. 11.2014) US kind of regional protection available): ARIPO (BW, GH, 62/202,3 18 7 August 2015 (07.08.2015) US GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, (71) Applicant: LUNDORF PEDERSEN MATERIALS APS TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, [DK/DK]; Nordvej 16 B, Himmelev, DK-4000 Roskilde DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, (DK). -
12.10 Mill Mx
millennium essay A victim of truth Vitalism was an attempt to reconcile rationality with a sense of wonder. Sunetra Gupta onvictions, said Nietzsche, are more he life of Jons dangerous enemies of truth than lies. Jacob Berzelius EVANS MARY CAmong the catalogue of convictions T that the human race has challenged and traced the tensions eventually relinquished is the fascinating notion that living organisms are distinct between materialism from nonliving entities by possessing a and idealism in dramatic ‘vital force’. The philosophy of ‘vitalism’ has its roots in the original distinction between detail. organic and inorganic compounds, dating from around 1600, which was based on their reaction to heat. Although both types remaining tenets of vitalism — that although of substance changed form when heated, organic chemicals could be modified in the inorganic compounds could be recovered laboratory, they could only be produced upon removing the heat source, whereas the through the agency of a vital force present in organic compounds appeared to undergo a living plants and animals. mysterious and irrevocable alteration. Berzelius apparently tried to downplay The implication that the latter were Wohler’s discovery by exiling urea to a hin- imbued with a vital force gave birth to an terland between organic and inorganic com- idea that eventually came to occupy a very pounds. An alternative school of thought tricky position between materialism and proposes that his lack of enthusiasm had idealism by endorsing the viewpoint that, more to do with the problems it posed for his although organic material might obey the own theory of inorganic compound forma- same physical and chemical laws as inorgan- tion. -
Technology of Uranium Purification. Impurities Decontamination
TECHNOLOGY OF URANIUM PURIFICATION. IMPURITIES DECONTAMINATION FROM URANYL CHLORIDE BY EXTRACTION WITH TRI-n-OCTYLAMINE IN THE PRESENCE OF THIOUREA AS COMPLEXING LIGAND. AIcídio Abrão PUBLICAÇÃO IEA 458 DEZEMBRO/1976 CEQ 69 PUBL. I EA 45B OEZEMBRO/1976 CEQ 68 TECHNOLOGY OF URANIUM PURIFICATION. IMPURITIES DECONTAMINATION FROM URANYL CHLORIDE BY EXTRACTION WITH TRI-n-OCTYLAMINE IN THE PRESENCE OF THIOUREA AS COMPLEXING LIGAND. Alcidio Abrio CENTRO DE ENGENHARIA QUÍMICA (CEQ) INSTITUTO DE ENERGIA ATÔMICA SAO PAULO - BRASIL APHOVAOO PARA PUBLICAÇÃO EM NOVEMBRO/1976 CONSELHO DELIBERATIVO Eng? HMcio Modnto da Costa Eng? Ivano Humbert Marchesi Prof. Admar Cervellim Prof. Sérgio Matcarenhai de Oliveira Dr. Klaus Reinach Or. Roberto D'Utra Vai SUPERINTENDENTE Prof. Dr, Ròmulo Ribe/r.» Pierori INSTITUTO DE ENERGIA ATÔMICA Caixa Postal 11.049 (Pinheiros) Cidade Universitária "Armando de Sallei Oliveira" SAO PAULO - BRASIL NOTA Este trabalho foi confe-ido p«lo autor depois de composto e sua redação tt'i conforme o original, sem qualquer correçáo ou mudança. TECHNOLOGY OF URANIUM PURIFICATION. IMPURITIES DECONTAMINATION FROM URANYL CHLORIDE BY EXTRACTION WITH TRI-n-OCTYLAMINE IN THE PRESENCE OF THIOUREA AS COMPLEXING LIGAND- Alcidio Abrão ABSTRACT The extraction of jranyl chloride by trinoctyiamme ITOAI and in decontamination from several impurities v»,th the aid of thiourea is investigated The effect of thiourea as a complexing agsnt, giving rise to unextracted canonic species of several metallic ion and its consequence in the extraction of uranyl chlonde from hydrochloric acid with TOA benzene!x'lenel is described Also, the effect of an acidified thiourea solution for scrubbing the organic phase loaded with uranyl chloride is studied INTRODUCTION The long chain amines had shown to be excellent extractants for various inorganic rid organic acds, and for a great number of anionic metallic complexes Smith and Page'441 had indicated the association properties of high weight amines w.th acids. -
Oceanic CO2 Outgassing and Biological Production Hotspots
Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-152 Manuscript under review for journal Biogeosciences Discussion started: 25 April 2019 c Author(s) 2019. CC BY 4.0 License. Oceanic CO2 outgassing and biological production hotspots induced by pre-industrial river loads of nutrients and carbon in a global modelling approach Lacroix Fabrice1,2, Ilyina Tatiana1, and Hartmann Jens3 1Ocean in the Earth System, Max Planck Institute for Meteorology, Hamburg, Germany 2Department of Geoscience, Université Libre de Bruxelles, Brussels, Belgium 3Institute for Geology, Center for Earth System Research and Sustainability, University of Hamburg, Hamburg, Germany Correspondence to: Fabrice Lacroix ([email protected]) Abstract. Rivers are a major source of nutrients, carbon and alkalinity for the global ocean, where the delivered compounds strongly impact biogeochemical processes. In this study, we firstly estimate pre-industrial riverine fluxes of nutrients, carbon and alkalinity based on a hierarchy of weathering and land-ocean export models, while identifying regional hotspots of the land-ocean exports. Secondly, we implement the riverine loads into a global biogeochemical ocean model and describe their 5 implications for oceanic nutrient concentrations, the net primary production (NPP) and CO2 fluxes globally, as well as in a regional shelf analysis. Thirdly, we quantify the terrestrial origins and the long-term oceanic fate of riverine carbon in the framework, while assessing the potential implementation of riverine carbon fluxes in a fully coupled land-atmosphere-ocean model. Our approach leads to annual pre-industrial riverine exports of 3.7 Tg P, 27 Tg N, 158 Tg Si and 603 Tg C, which were derived from weathering and non-weathering sources and were fractionated into organic and inorganic compounds. -
2-Properties of Organic Compnds
Experiment 2 – Properties of Organic Compounds Organic compounds are compounds based on carbon. They contain carbon and hydrogen, and can also contain other nonmetal elements such as oxygen, nitrogen, or halogen atoms. The properties of organic compounds are very different from the properties of inorganic compounds that you have been using up to this point. In this lab, you will explore some of the differences in the properties of organic vs. ionic substances. Most organic compounds are nonpolar and thus do not mix with polar molecules like water. Therefore organic substances, in general, are insoluble in water. However, they are soluble in nonpolar solvents. Most ionic substances, on the other hand, are soluble in water and insoluble in nonpolar solvents. Organic compounds can be gases, liquids, or solids at room temperature. Ionic compounds are all solids at room temperature with very high melting points. Organic compounds have relatively low melting points and boiling points. The reason for these differences lies in the type of attractive forces holding the particles next to each other in each case. Ionic compounds consist of a vast array of alternating positive and negatively charged ions. Ionic substances are held together by very strong electrostatic forces and there are no individual molecules present. In order to melt an ionic compound, the ions must be able to move around each other, so a huge amount of energy is needed to break these strong electrostatic forces and thus ionic compounds have very high melting points. Organic compounds, on the other hand, consist of individual molecules held together by covalent bonds. -
13. Carbon: an Important Element
13. Carbon: An Important Element ✱ Can you recall? (1) What is an element? What are the different types of elements? Ans. A substance which cannot be broken down into simple substances by any chemical reaction is called an element. Metals, non-metals and metalloids are the different types of elements. (2) What remains behind on complete combustion of any organic compound? Ans. On complete combustion of any organic compound, carbon dioxide and water are formed. (3) What type of element is carbon? Give some information about it? Ans. Carbon is a non-metallic element. Carbon is the main constituent of all plant and animal products. In nature, it is found in the free state and also in compounds. Try This Activity – 1 (1) Take some milk in an evaporating dish. Heat the evaporating dish on a Bunsen burner. What remains behind at the bottom of an evaporating dish on complete evaporation of the milk? Ans. Carbon remains behind at the bottom of an evaporating dish on the complete evaporation of the milk. (2) Take small samples of sugar, wool, dry leaves, hair, seeds, split pulses and plastic in separate test tubes. Heat each test tube and observe the changes taking place in the substances. What does the black substance remaining in each test tube indicate? Ans. The black substance remaining in each tube indicates that it is a carbon residue. ✱ Carbon - The element carbon is available abundantly in the nature and occurs in free as well as in the combined state. In this chapter, let us study the properties of the non- metallic element carbon. -
International Conference on Nuclear Power and Its Fuel Cycle Salzburg, Austria • 2-13 May 1977
INTERNATIONAL CONFERENCE ON NUCLEAR POWER AND ITS FUEL CYCLE SALZBURG, AUSTRIA • 2-13 MAY 1977 "•- "i^. IAEA-CN-36/555 REVIEW OF EXPERIENCE GAINED IN FABRICATING NUCLEAR GRADE URANIUM AND THORIUM COMPOUNDS AND THEIR ANALYTICAL QUALI_ TY CONTROL AT THE INSTITUTO DE ENERGIA ATÔMICA, SÂ*O PAU LO, BRAZIL. AbrSo, A., França Jr., J.M., Ikuta, A., Püschel, C.R., FedergrUn, L., Lordello, A.R., Tomida, E.K., Moraes, S., Brito, J.de, Gomes„ R.P., Araújo, J.A., Floh, B., Matsu_ da, H.T. INSTITUTO DE ENERGIA ATÔMICA Caixa Postal 11.049 (Pinheiros) Cidade Universitária "Armando Salles Oliveira" SÃO PAULO - BRASIL Introduction As part of the national program for developping atomic energy for peaceful uses, directed by Brazilian Nuclear Energy Commission (CNEN), the Instituto de Energia Atômica (IEA),Sao Paulo,has giving great emphasis to a systematic development of research on establishing of the technology of ura nium and thorium, training of chemists and engineers, and production of some nuclear materials for further métallurgie work and fabrication of fuel ele_ ments for nuclear research reactors. This paper reviews the main activities on the recovery of uranium from ores, the purification of uranium and tho rium raw concentrates and their transformation in nuclear grade compounds. The design and assemblage of pilot facilities for ammonium diuranate (ADU), uranium tetrafluoride, uranium trioxide, uranium oxide microspheres, uranyl nitrate denitration, uranium hexaflucride and thorium compounds are discus_ sed. The establishment of analytical procedures as an important support to the technical work is emphasised. Recovery of Dranium from Ores For the establishment of the technology of U recovery from dome£ tic resources, some work has been done on unexploited till now phosphate rock. -
Characteristics of Life and Biochemistry
Harriet Wilson, Lecture Notes Bio. Sci. 4 - Microbiology Sierra College Characteristics of Life and Biochemistry Microbiology is the science or study of microscopic life forms, and these, like all other living organisms have a number of characteristics in common that can be used to distinguish them from non-living materials. These characteristics of life include the ability to reproduce (both sexually and asexually), the ability to carry out metabolic processes and to grow by assimilation, the ability to respond to environmental stimuli (both external and internal), the ability to mutate, and the ability to maintain a high degree of organization. Reproduction is a characteristic common to all living organisms, because living cells arise only from preexisting living cells (biogenesis as opposed to abiogenesis). Most microorganisms reproduce themselves by a process called fission that involves the division of one cell into two new cells (daughter cells). This form of reproduction is considered to be asexual because it does not involve a reorganization of the genetic material present. The daughter cells formed are genetically identical to the original cell. Most, if not all, organisms also engage in some sort of sexual reproduction. This involves the reorganization of genetic materials and results in the formation of genetically unique individuals. Growth by assimilation is another characteristic common to living organisms. Assimilation is the process organisms use to take in materials from their environment, break them down, and then reorganize them into new cellular components. Assimilation involves metabolism, another characteristic of living organisms. Metabolism can be defined as all the chemical reactions that take place within living organisms, and includes both catabolism (breakdown reactions) and anabolism (building reactions).